To reveal the sediment transporting mechanism between the abandoned Huanghe River (Yellow River) Delta and radial sand ridges, “End Member” Model and grain size trend analysis have been employed to separate the “...To reveal the sediment transporting mechanism between the abandoned Huanghe River (Yellow River) Delta and radial sand ridges, “End Member” Model and grain size trend analysis have been employed to separate the “dynamic populations” in the surficial sediment particle spectra and to determine the possible sediment transporting pathway. The results reveal four “dynamic subpopulations”(EM1 to EM4) and two reverse sediment transporting directions: a northward transport tend from the radial sand ridges to mud patch, and a southward transport trend in deep water area outside the mud patch. Combined with the published hydrodynamic information, the transporting mechanism of dynamic populations has been discussed, and the main conclusion is that the transporting of finer subpopulations EM1 and EM2 is controlled by the “anticlockwise residual current circulation” forming during tidal cycle, which favor a northward transporting trend and the forming of mud patch on the north of radial sand ridges, while the transporting of coarser EM3 is mainly controlled by wind driven drift in winter, which favors a southward transporting direction.展开更多
环境敏感因子是沉积环境演化研究中的重要参数,其提取方法有多种,不同方法在海湾内应用成果相对较少。文章根据山东半岛威海湾WH-05岩心(钻探深度18.2 m)高分辨率(2 cm)粒度分析结果,采用基本端元模拟算法(BasEMMA)、粒级—标准偏差法...环境敏感因子是沉积环境演化研究中的重要参数,其提取方法有多种,不同方法在海湾内应用成果相对较少。文章根据山东半岛威海湾WH-05岩心(钻探深度18.2 m)高分辨率(2 cm)粒度分析结果,采用基本端元模拟算法(BasEMMA)、粒级—标准偏差法和粒级旋转主成分分析法(V-PCA)提取了环境敏感因子,结合AMS14C数据,对不同方法提取的环境敏感因子进行了对比分析,探讨了其对季风强度变化的响应关系。结果表明:8.4 ka B.P.以来威海湾沉积物类型均为粉砂,粉砂含量为主、黏土含量次之、砂含量较少,以跳跃组分为主,悬浮组分次之。BasEMMA和粒级—标准偏差法提取的3个敏感粒级范围(2.6~11.0μm、31.3~63.4μm、256.9~500.0μm)总体一致,能较好地反映东亚季风长周期变化事件(8.4~6.5 ka B.P.东亚季风强度减弱;6.5 ka B.P.至今东亚季风强度增强);V-PCA提取的环境敏感因子,能较好地反映东亚季风短周期变化事件(如明清小冰期、西汉小冰期事件等)。以上三种方法提取的环境敏感因子指示了研究区气候变化,对研究区沉积环境具有较好的指示作用。展开更多
Four end members were inverted from surface sediment grain size data from the South Yellow Sea by using the end member(EM) model. The sediment provenance and hydrodynamic meanings of each EM were discussed based on th...Four end members were inverted from surface sediment grain size data from the South Yellow Sea by using the end member(EM) model. The sediment provenance and hydrodynamic meanings of each EM were discussed based on the frequency and spatial distributions of the EMs. EM1 and EM2 reflect the dynamic transport and sorting processes of the terrigenous sediment, and EM3 and EM4 reflect the modification of relic sand. The ocean front mainly affected transport of relatively coarse terrigenous sediment in the South Yellow Sea, and the fine terrigenous sediments were generally unaffected by the ocean front. Fine sediment could pass through the ocean front and deposit in the central South Yellow Sea under weak tidal condition to form most part of the Central Yellow Sea Mud(CYSM). The CYSM extended toward northwest and southwest. The sediment in the north part of the CYSM mainly consisted of sediment from the Yellow River(Huanghe) in the northwest, and the sediment in the southwest part of CYSM mainly consisted of Subei coastal sediments from both the Yangtze River(Changjiang) and the Yellow River. Compared to the traditional method of sediment grain size analysis, the EM model can determine the EMs and provide better explanations of the sediment provenance and dynamic regional sedimentary environment in the study area.展开更多
文摘To reveal the sediment transporting mechanism between the abandoned Huanghe River (Yellow River) Delta and radial sand ridges, “End Member” Model and grain size trend analysis have been employed to separate the “dynamic populations” in the surficial sediment particle spectra and to determine the possible sediment transporting pathway. The results reveal four “dynamic subpopulations”(EM1 to EM4) and two reverse sediment transporting directions: a northward transport tend from the radial sand ridges to mud patch, and a southward transport trend in deep water area outside the mud patch. Combined with the published hydrodynamic information, the transporting mechanism of dynamic populations has been discussed, and the main conclusion is that the transporting of finer subpopulations EM1 and EM2 is controlled by the “anticlockwise residual current circulation” forming during tidal cycle, which favor a northward transporting trend and the forming of mud patch on the north of radial sand ridges, while the transporting of coarser EM3 is mainly controlled by wind driven drift in winter, which favors a southward transporting direction.
文摘环境敏感因子是沉积环境演化研究中的重要参数,其提取方法有多种,不同方法在海湾内应用成果相对较少。文章根据山东半岛威海湾WH-05岩心(钻探深度18.2 m)高分辨率(2 cm)粒度分析结果,采用基本端元模拟算法(BasEMMA)、粒级—标准偏差法和粒级旋转主成分分析法(V-PCA)提取了环境敏感因子,结合AMS14C数据,对不同方法提取的环境敏感因子进行了对比分析,探讨了其对季风强度变化的响应关系。结果表明:8.4 ka B.P.以来威海湾沉积物类型均为粉砂,粉砂含量为主、黏土含量次之、砂含量较少,以跳跃组分为主,悬浮组分次之。BasEMMA和粒级—标准偏差法提取的3个敏感粒级范围(2.6~11.0μm、31.3~63.4μm、256.9~500.0μm)总体一致,能较好地反映东亚季风长周期变化事件(8.4~6.5 ka B.P.东亚季风强度减弱;6.5 ka B.P.至今东亚季风强度增强);V-PCA提取的环境敏感因子,能较好地反映东亚季风短周期变化事件(如明清小冰期、西汉小冰期事件等)。以上三种方法提取的环境敏感因子指示了研究区气候变化,对研究区沉积环境具有较好的指示作用。
基金supported by the National Natural Science Foundation of China(Grant Nos.41130856&41206053)the National Key Basic Research Program of China(Grant No.2010CB428901)
文摘Four end members were inverted from surface sediment grain size data from the South Yellow Sea by using the end member(EM) model. The sediment provenance and hydrodynamic meanings of each EM were discussed based on the frequency and spatial distributions of the EMs. EM1 and EM2 reflect the dynamic transport and sorting processes of the terrigenous sediment, and EM3 and EM4 reflect the modification of relic sand. The ocean front mainly affected transport of relatively coarse terrigenous sediment in the South Yellow Sea, and the fine terrigenous sediments were generally unaffected by the ocean front. Fine sediment could pass through the ocean front and deposit in the central South Yellow Sea under weak tidal condition to form most part of the Central Yellow Sea Mud(CYSM). The CYSM extended toward northwest and southwest. The sediment in the north part of the CYSM mainly consisted of sediment from the Yellow River(Huanghe) in the northwest, and the sediment in the southwest part of CYSM mainly consisted of Subei coastal sediments from both the Yangtze River(Changjiang) and the Yellow River. Compared to the traditional method of sediment grain size analysis, the EM model can determine the EMs and provide better explanations of the sediment provenance and dynamic regional sedimentary environment in the study area.