In recent years,as China's industrialization process and urban-rural integration strategy have continued to deepen,some industrial and domestic wastewater has been discharged directly into rivers without effective...In recent years,as China's industrialization process and urban-rural integration strategy have continued to deepen,some industrial and domestic wastewater has been discharged directly into rivers without effective treatment.This has resulted in the continuous accumulation and enrichment of pollutants in water bodies.This phenomenon results in a significant accumulation of heavy metals in the sediment of water bodies,which not only represents a significant threat to the ecological environment but also ultimately poses a risk to human health.The objective of this study is to provide a comprehensive review of the current status of heavy metal pollution in water sediment in China.In addition,this paper analyzes the advantages and limitations of existing techniques for the harmless treatment of heavy metal pollution and forecasts the development direction of this field.展开更多
Amidst growing environmental protection intensity by the Chinese government, this paper investigates the effects of environmental regulation on China's industrial pollution treatment productivity and environmental TF...Amidst growing environmental protection intensity by the Chinese government, this paper investigates the effects of environmental regulation on China's industrial pollution treatment productivity and environmental TFP. By estimating China's pollution treatment productivity between 2001 and 2008 and analyzing environmental regulation intensity and the effects of the relevant factors and pollution treatment productivity using panel data, this paper discovers that (1) pollution treatment productivity contributed a significant share of about 40% to industrial environmental TFP during the investigation period; (2) environmental regulation may not necessarily cause adverse impacts on pollution treatment efficiency and productivity but demonstrates a U-shaped relationship: when the share of pollution treatment cost in industrial value-added is above the range of 3.8%-5.1%, environmental regulation is likely to promote pollution treatment productivity and thus environmental TFP Judging by the estimation result, enhancing environmental protection and expediting the development of ecological civilization are conducive to China "s economic transition towards an intensive, efficient, circular, and sustainable development pattern. China's current industrial development has the capacity to tolerate a rather demanding level of pollution treatment and management and China needs to further rely on energy conservation and the environmental production industries to promote the progress of pollution treatment technologies.展开更多
Non-point source(NPS) pollution is considered to be one of the main threats of the aquatic environment. Mountainous regions are particularly important water sources for urban areas. The various driving factors of NPS ...Non-point source(NPS) pollution is considered to be one of the main threats of the aquatic environment. Mountainous regions are particularly important water sources for urban areas. The various driving factors of NPS pollution such as terrain, precipitation, and vegetation type in mountainous regions show clear spatial heterogeneity. Consequently, the management systems required for NPS pollution in mountainous regions are complex. In this study, we developed a framework to estimate and map the treatment costs for NPS pollution in mountainous regions and applied this method in Baoxing County, a typical mountainous county in Sichuan Province of southwest China. The export levels of total nitrogen(TN) and total phosphorus(TP) in Baoxing County were estimated using the water purification model in InVEST(Itegrated Valuation of Ecosystem Services and Tradeoffs) tool. NPS pollutant treatment costs were calculated based on the level of pollutants exports, water yield, water quality targets, and treatment costs of NPS pollutants per unit mass. The results show that at the watershed level the amounts of TN and TP exported in Baoxing County were below threshold limits. However, at the sub-watershed level, TN and TP excesses of 291.64 and 2.96 tons per year were found, respectively, with mean TN and TP treatment costs of 6.58 US$/hm^2 and 0.35 US$/hm^2. Appraising pollution treatment cost intuitively reflects the overall expenditure in NPS pollution reduction from an economic perspective. This study provides a foundation for the implementation of Payment for Ecosystem Service(PES) and the prevention and control of NPS pollution.展开更多
After the erection of Three-Gorge Reservoir, the water environment in the reservoir area will be turned into water bodies like lakes, and the self-clarification ability of water will also be much slower than ever. Now...After the erection of Three-Gorge Reservoir, the water environment in the reservoir area will be turned into water bodies like lakes, and the self-clarification ability of water will also be much slower than ever. Now, the quality of water in most segments in upper reaches of Yangtze River cannot meet the requirements of l-ll class Environment Quality Standard (GHZB1-1999). In Yangtze River, dialing River and Wujiang River, the main indexes such as colon bacillus, nonionic ammonia, chemical oxygen demand (COD), petroleum, phenol, total phosphorus (TP), heavy metal, etc., have exceeded the standard limits. The water bodies of the reservoir area are facing serious risk of eutrophicationm. To solve that problem, a countermea-sure of multi-spot diverted treatment and separate discharge is recommended. For doing this, lots of small-scale wastewater treatment facilities employing updated activated sludge treatment technologies are to be set up. Up to now, a number of sewage treatment technologies to control eutrophication of water have been developed, which include processes of sequencing batch activated sludge (SBR), absorbing bio-degradation (AB), oxidation channel, package intermittent aeration system (PIAS), intermittent cycle extended aeration system (ICEAS), UNITANK and so on. The Effective one to be applied in the reservoir area should convey the requirements of ecological agriculture, forestry and urban planning, and be accompanied by legal support for appropriate exploitation of natural resources.展开更多
In the current paper,which deals with the noise pollution excited by distribution transformers in the living area,a comprehensive treatment scheme is put forward for the purpose of reducing the sound pressure level em...In the current paper,which deals with the noise pollution excited by distribution transformers in the living area,a comprehensive treatment scheme is put forward for the purpose of reducing the sound pressure level emitting into the environment.In accordance with the associated test standard,the sound pressure levels of distribution transformer and surrounding environment are not only tested but analyzed as well.The measurements were carried out with the frequency analysis of the 1/3 octave resolution,with the center frequencies at 125 Hz,250 Hz,400 Hz,and 500 Hz.As illustrated,on the basis of the measurement results,the frequency of noise at 500 Hz of distribution transformer causes the major noise pollution in the surrounding environment.This measurement result is in line with the noise frequency characteristics of distribution transformer.There are two transmission routes of noise:(i)the noise excited by distribution transformer transmits by means of the wall of distribution room,and (ii)part of noise spreads through the ground of distribution room.Accordingly,acoustic shield and vibration isolation device are applied for the reduction of the low frequency noise emitted through the above two paths.Aimed at applying the appropriate acoustic material and vibration mounting,the evaluation of the noise reduction and vibration absorption is carried out in accordance with the sound and vibration insulation theory.Following the noise treatment,the transformer and environment noise are measured again.The corresponding findings shed light on the fact that the sound level satisfied the requirement of limits of the ordinance.The proposed noise treatment scheme can be applied to the existing power distribution facilities for controlling the sound levels that reach a point where it is comparatively more unobjectionable.展开更多
Volatile organic compounds (VOCs) are an atmospheric pollutant with a boiling point of 50˚C - 260˚C at room temperature and pressure. They are precursors of sulfur dioxide and ozone, which can seriously pollute the at...Volatile organic compounds (VOCs) are an atmospheric pollutant with a boiling point of 50˚C - 260˚C at room temperature and pressure. They are precursors of sulfur dioxide and ozone, which can seriously pollute the atmosphere and endanger human health. After the “14th Five-Year Plan”, VOCs, instead of SO2, became one of the five indicators of China’s atmospheric governance. As a result, the government’s efforts to control VOCs have increased significantly. VOCs governance mustn’t be delayed. This paper provides a comprehensive summary and analysis of VOCs governance, covering the classification of VOCs, analysis of VOC governance technology (with a focus on end-of-pipe governance technology), national policy regulations, current governance shortcomings, and a forward-looking perspective on the future direction of VOCs governance, emphasizing healthy and sustainable development.展开更多
In Saint-Louis, Senegal, a constructed wetland with horizontal flow reed beds (FHa and FHb) has demonstrated significant efficacy in treating municipal wastewater. Analyzing various treatment stages, the system showed...In Saint-Louis, Senegal, a constructed wetland with horizontal flow reed beds (FHa and FHb) has demonstrated significant efficacy in treating municipal wastewater. Analyzing various treatment stages, the system showed only a slight temperature variation, from an influent average of 26.3°C to an effluent of 24.7°C. Electrical conductivity decreased from 1331 mS/cm to 974.5 mS/cm post-primary treatment, with suspended solids (SS) dramatically reduced from 718.9 mg/L to 5.7 mg/L in the final effluent. Biochemical oxygen demand (BOD5) and chemical oxygen demand (COD) saw a notable decrease, from initial levels of 655.6 mg/L and 1240 mg/L to 2.3 mg/L and 71.3 mg/L, respectively. Nitrogenous compounds (N-TN) and phosphates () also decreased significantly, indicating the system’s nutrient removal capacity. Microbiological analysis revealed a reduction in fecal coliforms from 7.5 Ulog/100ml to 1.8 Ulog/100ml and a complete elimination of helminth eggs. The presence of Phragmites and Typha was instrumental in enhancing these reductions. The system’s compliance with the Senegalese standards for disposal into natural environments, WHO recommendations for unrestricted water reuse in irrigation, and the European legislation for water reuse was established. The effluent quality met the stringent criteria for various classes of agricultural reuse, illustrating the system’s potential for sustainable water management. This wetland model presents a robust solution for water-stressed regions, ensuring environmental protection while supporting agricultural needs. The study calls for ongoing research to further refine the system for optimal, reliable wastewater treatment and water resource sustainability.展开更多
Two organobentonites were synthesized by placing quaternary ammonium cationscetyltrimethylammonium bromide (CTMAB) and cetylpyridinium chloride (CPC) on bentonite bycation exchange. Their ability to adsorb phenol, ani...Two organobentonites were synthesized by placing quaternary ammonium cationscetyltrimethylammonium bromide (CTMAB) and cetylpyridinium chloride (CPC) on bentonite bycation exchange. Their ability to adsorb phenol, aniline. nitrobenzene and p-nitrophenol were examined.The optimal conditions for organobentonites to remove the organic pollutants from waterwere studied. The removal rates for organobentonites to treat the organic compounds in water werefound to be over 8 times for the original mineral (untreated bentonite).The removal rates of organic pollutants and COD of wastewater were further improved by organobentonites in the presence of aluminum sulfate. The structure of organobentonites and the mechanism for their adsorption were investigated by X-ray diffraction (XRD) analysis, infrared spectra and BET surface area.展开更多
The slightly polluted wastewater from oil refinery contains some COD, oil pollutants and suspended solids (SS). A small-scale fixed film biological aerated filter (BAF) process was used to treat the wastewater. Th...The slightly polluted wastewater from oil refinery contains some COD, oil pollutants and suspended solids (SS). A small-scale fixed film biological aerated filter (BAF) process was used to treat the wastewater. The influences of hydraulic retention time (HRT), air/water volume flow ratio and backwashing cycle on treatment efficiencies were investigated. The wastewater was treated by the BAF process under optimal conditions: the HRT of 1.0 h, the air/water volume flow ratio of about 5 : 1 and the backwashing cycle of every 4-7 days. The results showed that the average removal efficiency of COD, oil pollutants and SS was 84.5%, 94.0% and 83.4%, respectively. And the average effluent concentration of COD, oil pollutants and SS was 12.5, 0.27, 14.5 mg·L^-1, respectively. The experimental results demonstrated that the BAF process is a suitable and highly efficient method to treat the wastewater.展开更多
This study analyzes the management of wastewater pollutants in a number of Chinese industrial sectors from 1998 to 2010. We use decomposition analysis to calculate changes in wastewater pollutant emissions that result...This study analyzes the management of wastewater pollutants in a number of Chinese industrial sectors from 1998 to 2010. We use decomposition analysis to calculate changes in wastewater pollutant emissions that result from cleaner production processes, end-of-pipe treatment, structural changes in industry, and changes in the scale of production. We focus on one indicator of water quality and three pollutants: chemical oxygen demand (COD), petroleum, cyanide, and volatile phenols. We find that until 2002, COD emissions were mainly reduced through end-of-pipe treatments. Cleaner production processes didn’t begin contributing to COD emissions reductions until the introduction of a 2003 law that enforced their implementation. Petroleum emissions were primarily lowered through cleaner production mechanisms, which have the added benefit of reducing the input cost of intermediate petroleum. Diverse and effective pollution abatement strategies for cyanide and volatile phenols are emerging among industries in China. It will be important for the government to consider differences between industries should they choose to regulate the emissions of specific chemical substances.展开更多
Man made activities are changing environment of our planet earth.Various methods are used to reduce the environmental pollution.In this paper the methods of air/water/soil pollution mitigation/reduction using electrom...Man made activities are changing environment of our planet earth.Various methods are used to reduce the environmental pollution.In this paper the methods of air/water/soil pollution mitigation/reduction using electromagnetic fields is discussed.Air/water/soil contains ions and the energy transfer for living organisms takes place by ion exchange processes.Ions are affected by electric/magnetic fields.Many investigators展开更多
Various methods are used to reduce the environmental pollution.In this paper the methods of air/water/soil pollution mitigation/reduction using electromagnetic fields is discussed.Air/water/soil contains ions and the ...Various methods are used to reduce the environmental pollution.In this paper the methods of air/water/soil pollution mitigation/reduction using electromagnetic fields is discussed.Air/water/soil contains ions and the energy transfer for living organisms take place by ion exchange processes.Ions are affected by electric/magnetic fields.Many investigators are working on improving environment by applying electromagnetic fields,which affect展开更多
To evaluate the nitrogen pollution load in an aquifer, a water and nitrogen balance analysis was conducted over a thirty-five year period at five yearly intervals. First, we established a two-horizon model comprising ...To evaluate the nitrogen pollution load in an aquifer, a water and nitrogen balance analysis was conducted over a thirty-five year period at five yearly intervals. First, we established a two-horizon model comprising a channel/soil horizon, and an aquifer horizon, with exchange of water between the aquifer and river. The nitrogen balance was estimated from the product of nitrogen concentration and water flow obtained from the water balance analysis. The aquifer nitrogen balance results were as follows: 1) In the aquifer horizon, the total nitrogen pollution load potential (NPLP) peaked in the period 1981-1990 at 1800 t·yr-1;following this the NPLP rapidly decreased to about 600 t·yr-1 in the period 2006-2010. The largest NPLP input component of 1000 t·yr-1 in the period 1976-1990 was from farmland. Subsequently, farmland NPLP decreased to only 400 t·yr-1 between 2006 and 2010. The second largest input component, 600 t·yr-1, was effluent from wastewater treatment works (WWTWs) in the period 1986-1990;this also decreased markedly to about 100 t·yr-1 between 2006 and 2010;2) The difference between input and output in the aquifer horizon, used as an index of groundwater pollution, peaked in the period 1986-1990 at about 1200 t·yr-1. This gradually decreased to about 200 t·yr-1 by 2006-2010. 3) The temporal change in NPLP coincided with the nitrogen concentration of the rivers in the study area. In addition, nitrogen concentrations in two test wells were 1.0 mg·l-1 at a depth of 150 m and only 0.25 mg·l-1 at 50 m, suggesting gradual percolation of the nitrogen polluted water deeper in the aquifer.展开更多
The use of wastewater as alternative source of water for vegetable crop irrigation has become an eminent component of urban agriculture due to current global water crises in most developing countries, and admits the i...The use of wastewater as alternative source of water for vegetable crop irrigation has become an eminent component of urban agriculture due to current global water crises in most developing countries, and admits the increasing effects of global climate change. The practise is however noted to be associated with significant health and environment risk due to excessive pollutant load. The study assessed the level of seasonal variation and removal of organic pollutants in wastewater using gravel filters combined with stabilisation ponds at Zagyuri in the Tamale Metropolis. The yard scale experiment consisted of cylindrical containers of different length filled with six different sizes of filter media and connected to stabilisation ponds where wastewater is allowed to pass through for filtration and stabilisation. The results indicated that for both seasons, the average concentration of BOD released into the stream at Zagyuri was 92.98 mg/l and 103.54 mg/l for the dry and wet season respectively whilst the COD was averaged 132.78 mg/l and 143.75 mg/l for the dry and wet seasons respectively. The results of the simple linear regression revealed a strong positive linear relationship between BOD and COD with coefficient of determination (R<sup>2</sup>) of 0.873 which was statistically highly significantly at <em>Pr</em> <em>value</em> of <0.0001. The results for ANOVA for the treatment factor were statistically highly significant at <em>Pr values</em> of 0.0011 and <0.0001 respectively for BOD<sub>5</sub> and COD. The average concentration of BOD was higher than the Ghana EPA recommended levels while that of COD was lower and thus within safety range for discharge into the environment.展开更多
The wide occurrence of new-emerging pollutants and their potential environmental and ecological risks have recently caused great public concerns. The paper firstly put forward the severe problem. Then the possible mai...The wide occurrence of new-emerging pollutants and their potential environmental and ecological risks have recently caused great public concerns. The paper firstly put forward the severe problem. Then the possible main reasons were analyzed which might attribute to both the inefficient removal of wastewater treatment plants with conventional technology and ignorance of the monitor and control of new-emerging pollutants in the effluents. Also, the complexity and extreme high costs may also make the organizations sidestep the problem. Finally, possible strategies to deal with the problems were proposed. The upgrade of wastewater treatment plants was important and urgent.展开更多
Information about effectiveness of a wastewater treatment plant is vital in ensuring the quality of water discharged into water bodies and the environment in general meet set standards.In this study,the performance of...Information about effectiveness of a wastewater treatment plant is vital in ensuring the quality of water discharged into water bodies and the environment in general meet set standards.In this study,the performance of a wastewater treatment plant located at the Export Processing Zone(EPZ)along River Athi in Machakos County,Kenya was assessed because the final effluent from the treatment plant is released into the river where water is used downstream.Effectiveness of the plant was assessed through the reduction percentage of pollutants between influent and effluent during the dry and wet seasons.Samples of water were collected from the following points i.e.inlet,outflow pool,outlet and along the river.The samples were analyzed for heavy metals,Total Dissolved Solids(TDS),Total Suspended Solids(TSS),Chemical Oxygen Demand(COD),Biological Oxygen Demand(BOD),organic nitrogen,phosphate,color,temperature,pH,and total coliforms.The resulting data was compared with the established standards.Standard methodologies of laboratory analysis were employed as per Kenyan regulations of 2006 on waste water treatment and discharge.From the results,the waste water treatment plant was not effective in reducing nitrates,phosphates,TDS,TSS,color,and heavy metals i.e.mercury,lead,selenium,copper and cadmium.The inefficiency was more pronounced in rain season.Nitrates(-2.04%),phosphates(-66%),mercury(-48%),lead(-48%),selenium(-2.29%)and copper(-9.75%)were high in the effluent after treatment process during the rains than in the influent.However,the treatment plant was effective in reducing Chemical Oxygen Demand(COD)and Biological Oxygen Demand(BOD).Some parameters like pH,conductivity,temperature,color and TSS were within allowable values described by Kenyan and International standards for effluent discharge into public waters.The study recommends expansion or re-designing of the treatment plant and better monitoring of the sources or types of wastewaters received at the plant for efficient and proper treatment process.Further research required on the seasonal fluctuation of pollutants along River Athi to reduce pollution of the waters.This should be coupled with studying the role of river gradient in self-cleansing of the pollutants.展开更多
The article is the investigation of heavy metals pollution on surface water in Ikoli River and Epie creek in Yenagoa,metropolis,Bayelsa State.Pb,Cd,Ni,Cr,Fe,Zn was determined and evaluated using Geographical Informati...The article is the investigation of heavy metals pollution on surface water in Ikoli River and Epie creek in Yenagoa,metropolis,Bayelsa State.Pb,Cd,Ni,Cr,Fe,Zn was determined and evaluated using Geographical Information System.Zinc concentration was below the permissible limit of 3 mg/L in all the locations sampled.Iron is 77.78%below the limit of WHO 2011 of 0.3 mg/L while other heavy metals examined in Ikoli River and Epie creek are highly polluted.The pollution index for contamination index shows 11.11%sample are high and 88.89%are low while the evaluation of heavy metal index and the pollution index load of the heavy metals contain 22.11%of the sample are low and 77.78%are high which imply the Ikoli River and Epie creek is polluted.Multivariate treatment of the result revealed a good correlation between the PCA and HCA,which showed activities of natural processes and man influenced environmental sources of the heavy metals which were mainly products of automobiles exhaust,water tank leakages as well as dumping of radioactive wastes and burning.The study investigated successfully the potential use of GIS with the help of multiple criteria decision analysis to predict and characterize areas of high pollution,medium,and low pollution in the study area.展开更多
[Objectives] By reasonable water distribution and air supply to soil, soil water permeability is maintained, and the nutrient conditions of degrading bacteria in soil are improved to effectively prevent soil clogging....[Objectives] By reasonable water distribution and air supply to soil, soil water permeability is maintained, and the nutrient conditions of degrading bacteria in soil are improved to effectively prevent soil clogging. [Methods] Through the innovation and improvement of traditional soil sewage treatment technology, the physical, chemical and biological characteristics of soil for sewage purification are utilized to enhance the pollutant decomposition ability of soil microorganisms and maintain soil water permeability.[Results] It has no secondary pollution, and can effectively remove pollutants such as COD_(Cr), TN, TP, NH_3-N, etc. in sewage. [Conclusions] The operation and maintenance cost is low, and the land can be reused, while water and nutrients can be restored to the land.展开更多
基金Supported by Provincial Undergraduate Innovation and Entrepreneurship Training Program of Jiangxi Provincial Department of Education(S202310846007,S202310846004).
文摘In recent years,as China's industrialization process and urban-rural integration strategy have continued to deepen,some industrial and domestic wastewater has been discharged directly into rivers without effective treatment.This has resulted in the continuous accumulation and enrichment of pollutants in water bodies.This phenomenon results in a significant accumulation of heavy metals in the sediment of water bodies,which not only represents a significant threat to the ecological environment but also ultimately poses a risk to human health.The objective of this study is to provide a comprehensive review of the current status of heavy metal pollution in water sediment in China.In addition,this paper analyzes the advantages and limitations of existing techniques for the harmless treatment of heavy metal pollution and forecasts the development direction of this field.
文摘Amidst growing environmental protection intensity by the Chinese government, this paper investigates the effects of environmental regulation on China's industrial pollution treatment productivity and environmental TFP. By estimating China's pollution treatment productivity between 2001 and 2008 and analyzing environmental regulation intensity and the effects of the relevant factors and pollution treatment productivity using panel data, this paper discovers that (1) pollution treatment productivity contributed a significant share of about 40% to industrial environmental TFP during the investigation period; (2) environmental regulation may not necessarily cause adverse impacts on pollution treatment efficiency and productivity but demonstrates a U-shaped relationship: when the share of pollution treatment cost in industrial value-added is above the range of 3.8%-5.1%, environmental regulation is likely to promote pollution treatment productivity and thus environmental TFP Judging by the estimation result, enhancing environmental protection and expediting the development of ecological civilization are conducive to China "s economic transition towards an intensive, efficient, circular, and sustainable development pattern. China's current industrial development has the capacity to tolerate a rather demanding level of pollution treatment and management and China needs to further rely on energy conservation and the environmental production industries to promote the progress of pollution treatment technologies.
基金sponsored by National Natural Science Foundation of China (Grant Nos. 41371539)Guangxi Natural Science Foundation Program (Grant Nos. 2018GXNSFBA138026)Guangxi Young and Middle-aged University Teachers’ Scientific Research Ability Enhancement Project (Grant Nos. 2018KY0360)
文摘Non-point source(NPS) pollution is considered to be one of the main threats of the aquatic environment. Mountainous regions are particularly important water sources for urban areas. The various driving factors of NPS pollution such as terrain, precipitation, and vegetation type in mountainous regions show clear spatial heterogeneity. Consequently, the management systems required for NPS pollution in mountainous regions are complex. In this study, we developed a framework to estimate and map the treatment costs for NPS pollution in mountainous regions and applied this method in Baoxing County, a typical mountainous county in Sichuan Province of southwest China. The export levels of total nitrogen(TN) and total phosphorus(TP) in Baoxing County were estimated using the water purification model in InVEST(Itegrated Valuation of Ecosystem Services and Tradeoffs) tool. NPS pollutant treatment costs were calculated based on the level of pollutants exports, water yield, water quality targets, and treatment costs of NPS pollutants per unit mass. The results show that at the watershed level the amounts of TN and TP exported in Baoxing County were below threshold limits. However, at the sub-watershed level, TN and TP excesses of 291.64 and 2.96 tons per year were found, respectively, with mean TN and TP treatment costs of 6.58 US$/hm^2 and 0.35 US$/hm^2. Appraising pollution treatment cost intuitively reflects the overall expenditure in NPS pollution reduction from an economic perspective. This study provides a foundation for the implementation of Payment for Ecosystem Service(PES) and the prevention and control of NPS pollution.
文摘After the erection of Three-Gorge Reservoir, the water environment in the reservoir area will be turned into water bodies like lakes, and the self-clarification ability of water will also be much slower than ever. Now, the quality of water in most segments in upper reaches of Yangtze River cannot meet the requirements of l-ll class Environment Quality Standard (GHZB1-1999). In Yangtze River, dialing River and Wujiang River, the main indexes such as colon bacillus, nonionic ammonia, chemical oxygen demand (COD), petroleum, phenol, total phosphorus (TP), heavy metal, etc., have exceeded the standard limits. The water bodies of the reservoir area are facing serious risk of eutrophicationm. To solve that problem, a countermea-sure of multi-spot diverted treatment and separate discharge is recommended. For doing this, lots of small-scale wastewater treatment facilities employing updated activated sludge treatment technologies are to be set up. Up to now, a number of sewage treatment technologies to control eutrophication of water have been developed, which include processes of sequencing batch activated sludge (SBR), absorbing bio-degradation (AB), oxidation channel, package intermittent aeration system (PIAS), intermittent cycle extended aeration system (ICEAS), UNITANK and so on. The Effective one to be applied in the reservoir area should convey the requirements of ecological agriculture, forestry and urban planning, and be accompanied by legal support for appropriate exploitation of natural resources.
基金supported by the science and technology project of China Southern Power Grid(No.GDKJXM20180152).
文摘In the current paper,which deals with the noise pollution excited by distribution transformers in the living area,a comprehensive treatment scheme is put forward for the purpose of reducing the sound pressure level emitting into the environment.In accordance with the associated test standard,the sound pressure levels of distribution transformer and surrounding environment are not only tested but analyzed as well.The measurements were carried out with the frequency analysis of the 1/3 octave resolution,with the center frequencies at 125 Hz,250 Hz,400 Hz,and 500 Hz.As illustrated,on the basis of the measurement results,the frequency of noise at 500 Hz of distribution transformer causes the major noise pollution in the surrounding environment.This measurement result is in line with the noise frequency characteristics of distribution transformer.There are two transmission routes of noise:(i)the noise excited by distribution transformer transmits by means of the wall of distribution room,and (ii)part of noise spreads through the ground of distribution room.Accordingly,acoustic shield and vibration isolation device are applied for the reduction of the low frequency noise emitted through the above two paths.Aimed at applying the appropriate acoustic material and vibration mounting,the evaluation of the noise reduction and vibration absorption is carried out in accordance with the sound and vibration insulation theory.Following the noise treatment,the transformer and environment noise are measured again.The corresponding findings shed light on the fact that the sound level satisfied the requirement of limits of the ordinance.The proposed noise treatment scheme can be applied to the existing power distribution facilities for controlling the sound levels that reach a point where it is comparatively more unobjectionable.
文摘Volatile organic compounds (VOCs) are an atmospheric pollutant with a boiling point of 50˚C - 260˚C at room temperature and pressure. They are precursors of sulfur dioxide and ozone, which can seriously pollute the atmosphere and endanger human health. After the “14th Five-Year Plan”, VOCs, instead of SO2, became one of the five indicators of China’s atmospheric governance. As a result, the government’s efforts to control VOCs have increased significantly. VOCs governance mustn’t be delayed. This paper provides a comprehensive summary and analysis of VOCs governance, covering the classification of VOCs, analysis of VOC governance technology (with a focus on end-of-pipe governance technology), national policy regulations, current governance shortcomings, and a forward-looking perspective on the future direction of VOCs governance, emphasizing healthy and sustainable development.
文摘In Saint-Louis, Senegal, a constructed wetland with horizontal flow reed beds (FHa and FHb) has demonstrated significant efficacy in treating municipal wastewater. Analyzing various treatment stages, the system showed only a slight temperature variation, from an influent average of 26.3°C to an effluent of 24.7°C. Electrical conductivity decreased from 1331 mS/cm to 974.5 mS/cm post-primary treatment, with suspended solids (SS) dramatically reduced from 718.9 mg/L to 5.7 mg/L in the final effluent. Biochemical oxygen demand (BOD5) and chemical oxygen demand (COD) saw a notable decrease, from initial levels of 655.6 mg/L and 1240 mg/L to 2.3 mg/L and 71.3 mg/L, respectively. Nitrogenous compounds (N-TN) and phosphates () also decreased significantly, indicating the system’s nutrient removal capacity. Microbiological analysis revealed a reduction in fecal coliforms from 7.5 Ulog/100ml to 1.8 Ulog/100ml and a complete elimination of helminth eggs. The presence of Phragmites and Typha was instrumental in enhancing these reductions. The system’s compliance with the Senegalese standards for disposal into natural environments, WHO recommendations for unrestricted water reuse in irrigation, and the European legislation for water reuse was established. The effluent quality met the stringent criteria for various classes of agricultural reuse, illustrating the system’s potential for sustainable water management. This wetland model presents a robust solution for water-stressed regions, ensuring environmental protection while supporting agricultural needs. The study calls for ongoing research to further refine the system for optimal, reliable wastewater treatment and water resource sustainability.
文摘Two organobentonites were synthesized by placing quaternary ammonium cationscetyltrimethylammonium bromide (CTMAB) and cetylpyridinium chloride (CPC) on bentonite bycation exchange. Their ability to adsorb phenol, aniline. nitrobenzene and p-nitrophenol were examined.The optimal conditions for organobentonites to remove the organic pollutants from waterwere studied. The removal rates for organobentonites to treat the organic compounds in water werefound to be over 8 times for the original mineral (untreated bentonite).The removal rates of organic pollutants and COD of wastewater were further improved by organobentonites in the presence of aluminum sulfate. The structure of organobentonites and the mechanism for their adsorption were investigated by X-ray diffraction (XRD) analysis, infrared spectra and BET surface area.
基金Supported by the Foundation of Science and Technology Project of Guangdong Province (2004B33301001)
文摘The slightly polluted wastewater from oil refinery contains some COD, oil pollutants and suspended solids (SS). A small-scale fixed film biological aerated filter (BAF) process was used to treat the wastewater. The influences of hydraulic retention time (HRT), air/water volume flow ratio and backwashing cycle on treatment efficiencies were investigated. The wastewater was treated by the BAF process under optimal conditions: the HRT of 1.0 h, the air/water volume flow ratio of about 5 : 1 and the backwashing cycle of every 4-7 days. The results showed that the average removal efficiency of COD, oil pollutants and SS was 84.5%, 94.0% and 83.4%, respectively. And the average effluent concentration of COD, oil pollutants and SS was 12.5, 0.27, 14.5 mg·L^-1, respectively. The experimental results demonstrated that the BAF process is a suitable and highly efficient method to treat the wastewater.
文摘This study analyzes the management of wastewater pollutants in a number of Chinese industrial sectors from 1998 to 2010. We use decomposition analysis to calculate changes in wastewater pollutant emissions that result from cleaner production processes, end-of-pipe treatment, structural changes in industry, and changes in the scale of production. We focus on one indicator of water quality and three pollutants: chemical oxygen demand (COD), petroleum, cyanide, and volatile phenols. We find that until 2002, COD emissions were mainly reduced through end-of-pipe treatments. Cleaner production processes didn’t begin contributing to COD emissions reductions until the introduction of a 2003 law that enforced their implementation. Petroleum emissions were primarily lowered through cleaner production mechanisms, which have the added benefit of reducing the input cost of intermediate petroleum. Diverse and effective pollution abatement strategies for cyanide and volatile phenols are emerging among industries in China. It will be important for the government to consider differences between industries should they choose to regulate the emissions of specific chemical substances.
文摘Man made activities are changing environment of our planet earth.Various methods are used to reduce the environmental pollution.In this paper the methods of air/water/soil pollution mitigation/reduction using electromagnetic fields is discussed.Air/water/soil contains ions and the energy transfer for living organisms takes place by ion exchange processes.Ions are affected by electric/magnetic fields.Many investigators
文摘Various methods are used to reduce the environmental pollution.In this paper the methods of air/water/soil pollution mitigation/reduction using electromagnetic fields is discussed.Air/water/soil contains ions and the energy transfer for living organisms take place by ion exchange processes.Ions are affected by electric/magnetic fields.Many investigators are working on improving environment by applying electromagnetic fields,which affect
文摘To evaluate the nitrogen pollution load in an aquifer, a water and nitrogen balance analysis was conducted over a thirty-five year period at five yearly intervals. First, we established a two-horizon model comprising a channel/soil horizon, and an aquifer horizon, with exchange of water between the aquifer and river. The nitrogen balance was estimated from the product of nitrogen concentration and water flow obtained from the water balance analysis. The aquifer nitrogen balance results were as follows: 1) In the aquifer horizon, the total nitrogen pollution load potential (NPLP) peaked in the period 1981-1990 at 1800 t·yr-1;following this the NPLP rapidly decreased to about 600 t·yr-1 in the period 2006-2010. The largest NPLP input component of 1000 t·yr-1 in the period 1976-1990 was from farmland. Subsequently, farmland NPLP decreased to only 400 t·yr-1 between 2006 and 2010. The second largest input component, 600 t·yr-1, was effluent from wastewater treatment works (WWTWs) in the period 1986-1990;this also decreased markedly to about 100 t·yr-1 between 2006 and 2010;2) The difference between input and output in the aquifer horizon, used as an index of groundwater pollution, peaked in the period 1986-1990 at about 1200 t·yr-1. This gradually decreased to about 200 t·yr-1 by 2006-2010. 3) The temporal change in NPLP coincided with the nitrogen concentration of the rivers in the study area. In addition, nitrogen concentrations in two test wells were 1.0 mg·l-1 at a depth of 150 m and only 0.25 mg·l-1 at 50 m, suggesting gradual percolation of the nitrogen polluted water deeper in the aquifer.
文摘The use of wastewater as alternative source of water for vegetable crop irrigation has become an eminent component of urban agriculture due to current global water crises in most developing countries, and admits the increasing effects of global climate change. The practise is however noted to be associated with significant health and environment risk due to excessive pollutant load. The study assessed the level of seasonal variation and removal of organic pollutants in wastewater using gravel filters combined with stabilisation ponds at Zagyuri in the Tamale Metropolis. The yard scale experiment consisted of cylindrical containers of different length filled with six different sizes of filter media and connected to stabilisation ponds where wastewater is allowed to pass through for filtration and stabilisation. The results indicated that for both seasons, the average concentration of BOD released into the stream at Zagyuri was 92.98 mg/l and 103.54 mg/l for the dry and wet season respectively whilst the COD was averaged 132.78 mg/l and 143.75 mg/l for the dry and wet seasons respectively. The results of the simple linear regression revealed a strong positive linear relationship between BOD and COD with coefficient of determination (R<sup>2</sup>) of 0.873 which was statistically highly significantly at <em>Pr</em> <em>value</em> of <0.0001. The results for ANOVA for the treatment factor were statistically highly significant at <em>Pr values</em> of 0.0011 and <0.0001 respectively for BOD<sub>5</sub> and COD. The average concentration of BOD was higher than the Ghana EPA recommended levels while that of COD was lower and thus within safety range for discharge into the environment.
文摘The wide occurrence of new-emerging pollutants and their potential environmental and ecological risks have recently caused great public concerns. The paper firstly put forward the severe problem. Then the possible main reasons were analyzed which might attribute to both the inefficient removal of wastewater treatment plants with conventional technology and ignorance of the monitor and control of new-emerging pollutants in the effluents. Also, the complexity and extreme high costs may also make the organizations sidestep the problem. Finally, possible strategies to deal with the problems were proposed. The upgrade of wastewater treatment plants was important and urgent.
文摘Information about effectiveness of a wastewater treatment plant is vital in ensuring the quality of water discharged into water bodies and the environment in general meet set standards.In this study,the performance of a wastewater treatment plant located at the Export Processing Zone(EPZ)along River Athi in Machakos County,Kenya was assessed because the final effluent from the treatment plant is released into the river where water is used downstream.Effectiveness of the plant was assessed through the reduction percentage of pollutants between influent and effluent during the dry and wet seasons.Samples of water were collected from the following points i.e.inlet,outflow pool,outlet and along the river.The samples were analyzed for heavy metals,Total Dissolved Solids(TDS),Total Suspended Solids(TSS),Chemical Oxygen Demand(COD),Biological Oxygen Demand(BOD),organic nitrogen,phosphate,color,temperature,pH,and total coliforms.The resulting data was compared with the established standards.Standard methodologies of laboratory analysis were employed as per Kenyan regulations of 2006 on waste water treatment and discharge.From the results,the waste water treatment plant was not effective in reducing nitrates,phosphates,TDS,TSS,color,and heavy metals i.e.mercury,lead,selenium,copper and cadmium.The inefficiency was more pronounced in rain season.Nitrates(-2.04%),phosphates(-66%),mercury(-48%),lead(-48%),selenium(-2.29%)and copper(-9.75%)were high in the effluent after treatment process during the rains than in the influent.However,the treatment plant was effective in reducing Chemical Oxygen Demand(COD)and Biological Oxygen Demand(BOD).Some parameters like pH,conductivity,temperature,color and TSS were within allowable values described by Kenyan and International standards for effluent discharge into public waters.The study recommends expansion or re-designing of the treatment plant and better monitoring of the sources or types of wastewaters received at the plant for efficient and proper treatment process.Further research required on the seasonal fluctuation of pollutants along River Athi to reduce pollution of the waters.This should be coupled with studying the role of river gradient in self-cleansing of the pollutants.
文摘The article is the investigation of heavy metals pollution on surface water in Ikoli River and Epie creek in Yenagoa,metropolis,Bayelsa State.Pb,Cd,Ni,Cr,Fe,Zn was determined and evaluated using Geographical Information System.Zinc concentration was below the permissible limit of 3 mg/L in all the locations sampled.Iron is 77.78%below the limit of WHO 2011 of 0.3 mg/L while other heavy metals examined in Ikoli River and Epie creek are highly polluted.The pollution index for contamination index shows 11.11%sample are high and 88.89%are low while the evaluation of heavy metal index and the pollution index load of the heavy metals contain 22.11%of the sample are low and 77.78%are high which imply the Ikoli River and Epie creek is polluted.Multivariate treatment of the result revealed a good correlation between the PCA and HCA,which showed activities of natural processes and man influenced environmental sources of the heavy metals which were mainly products of automobiles exhaust,water tank leakages as well as dumping of radioactive wastes and burning.The study investigated successfully the potential use of GIS with the help of multiple criteria decision analysis to predict and characterize areas of high pollution,medium,and low pollution in the study area.
文摘[Objectives] By reasonable water distribution and air supply to soil, soil water permeability is maintained, and the nutrient conditions of degrading bacteria in soil are improved to effectively prevent soil clogging. [Methods] Through the innovation and improvement of traditional soil sewage treatment technology, the physical, chemical and biological characteristics of soil for sewage purification are utilized to enhance the pollutant decomposition ability of soil microorganisms and maintain soil water permeability.[Results] It has no secondary pollution, and can effectively remove pollutants such as COD_(Cr), TN, TP, NH_3-N, etc. in sewage. [Conclusions] The operation and maintenance cost is low, and the land can be reused, while water and nutrients can be restored to the land.