HZSM-5/MCM-41 molecular sieve (H-ZM) catalysts with well-defined micro/mesoporous structures were synthesized and showed high performance for selective synthesis of triacetin via the esterification reaction of glycero...HZSM-5/MCM-41 molecular sieve (H-ZM) catalysts with well-defined micro/mesoporous structures were synthesized and showed high performance for selective synthesis of triacetin via the esterification reaction of glycerol with acetic acid. The conversion of glycerol was demonstrated to be 100% and the triacetin selectivity was over 91%, which can be attributed to the synergistic effect regarding suitable acidic property, excellent diffusion efficiency and good stability derived from the combined advantages of microporous molecular sieve HZSM-5 and mesoporous molecular sieve MCM-41.展开更多
Recent decades witnessed the significant progress made in the research field of 2D molecular sieve membranes.In comparison with their 3D counterparts, 2D molecular sieve membranes possessed several unique advantages l...Recent decades witnessed the significant progress made in the research field of 2D molecular sieve membranes.In comparison with their 3D counterparts, 2D molecular sieve membranes possessed several unique advantages like significantly reduced membrane thickness(one atom thick in theory) and diversified molecular sieving mechanisms(in-plane pores within nanosheets & interlayer galleries between nanosheets). M. Tsapatsis first carried out pioneering work on fabrication of lamellar ZSM-5 membrane. Since then, diverse 2D materials typically including graphene oxides(GOs) have been fabricated into membranes showing promising prospects in energy-efficient gas separation, pervaporation, desalination and nanofiltration. In addition to GOs, other emerging 2D materials, including 2D zeolites, 2D metal–organic frameworks(MOFs), 2 D covalent-organic frameworks(COFs), layered double hydroxides(LDHs), transition metal dichalcogenides(TMDCs), MXenes(typically Ti3C2TX), graphitic carbon nitrides(typically g-C3N4), hexagonal boron nitride(h-BN) and montmorillonites(MT) are showing intriguing performance in membrane-based separation process. This article summarized the most recent developments in the field of 2D molecular sieve membranes aside from GOs with particular emphasis on their structure–performance relationship and application prospects in industrial separation.展开更多
Titanium-containing mesoporous molecular sieves are of great significance in selective catalytic oxidation processes with bulky molecules. Recent researches and developments on the designing and synthesis of Ti-contai...Titanium-containing mesoporous molecular sieves are of great significance in selective catalytic oxidation processes with bulky molecules. Recent researches and developments on the designing and synthesis of Ti-containing mesoporous materials have been reviewed. Various strategies for the preparation of Ti-containing mesoporous materials, such as direct synthesis and post-synthesis, are described. Modifications of Ti-containing mesoporous materials by surface-grafting and atom-planting are also discussed. All approaches aimed mainly at the improving of the stability, the hydrophobicity, and mostly the catalytic activity. Structural and mechanistic features of various synthetic systems are discussed. Ticontaining mesoporous materials in liquid phase catalytic oxidation of organic compounds with H2O2 as an oxidant is briefly summarized, showing their broad utilities for green synthesis of fine chemicals by catalytic oxidative reactions.展开更多
Porous materials have regular three-dimensional pore structure, which has unique advantages in the field of modern pharmaceutical. At present, porous materials commonly used in the pharmaceutical field are mainly mole...Porous materials have regular three-dimensional pore structure, which has unique advantages in the field of modern pharmaceutical. At present, porous materials commonly used in the pharmaceutical field are mainly molecular sieves, macroporous adsorbent resins, activated carbon, etc. In this paper, the application status of these porous materials in the pharmaceutical field is reviewed, and the future development is prospected.展开更多
MnO 2 was prepared by column method from normal spinel LiMn 2O 4 with purity of 99.38%.The influence of LiMn 2O 4 grain size and acidity of leaching solution on the lithium leaching process was studied.The result...MnO 2 was prepared by column method from normal spinel LiMn 2O 4 with purity of 99.38%.The influence of LiMn 2O 4 grain size and acidity of leaching solution on the lithium leaching process was studied.The results show that the appropriate range of LiMn 2O 4 grain size was 60-160 meshes and the concentration of leaching solution HCl was 0.1 mol·L -1.The adsorption capacity Q of λ-MnO 2 for lithium increased with the increase of pH and changed markedly at pH 6.0-10.0.It was 3.80mmol/g at pH 12.0.The distribution coefficients K d of Li + and Na + were 3.406×10 4 and 2.300 respectively,and the separation coefficient α Li Na was 1.481×10 4 at pH 6.5.As a result,λ-MnO 2 is a high performance ion-sieve material for lithium ion.展开更多
The biggest challenge for organic phase change materials(PCMs)used in cold energy storage is to maintain high heat storage capacity while reducing the leakage risk of PCMs during the phase transition process.This is c...The biggest challenge for organic phase change materials(PCMs)used in cold energy storage is to maintain high heat storage capacity while reducing the leakage risk of PCMs during the phase transition process.This is crucial for expanding their applications in the more demanding cold storage field.In this study,novel formstable low-temperature composite PCMs are prepared with mesoporous materials,namely SBA-15 and CMK-3(which are prepared using the template method),as supporting matrices and dodecane as the PCM.Owing to the combined effects of capillary forces within mesoporous materials and interactions among dodecane molecules,both dodecane/SBA-15 and dodecane/CMK-3 exhibit outstanding shape stability and thermal cycling stability even after 200 heating/cooling cycles.In comparison to those of dodecane/SBA-15,dodecane/CMK-3 exhibits superior cold storage performance and higher thermal conductivity.Specifically,the phase transition temperature of dodecane/CMK-3 is-8.81℃ with a latent heat of 122.4 J·g^(-1).Additionally,it has a thermal conductivity of 1.21 W·m^(-1)·K^(-1),which is 9.45 times that of dodecane alone.All these highlight its significant potential for applications in the area of cold energy storage.展开更多
The electrochemical properties of 2D materials,particularly transition metal dichalcogenides(TMDs),hinge ontheir structural and chemical characteristics.To be practicallyviable,achieving large-scale,high-yield product...The electrochemical properties of 2D materials,particularly transition metal dichalcogenides(TMDs),hinge ontheir structural and chemical characteristics.To be practicallyviable,achieving large-scale,high-yield production is crucial,ensuring both quality and electrochemical suitability forapplications in energy storage,electrocatalysis,and potentialbasedionic sieving membranes.A prerequisite for success is a deepunderstanding of the synthesis process,forming a critical linkbetween materials synthesis and electrochemical performance.Thisreview extensively examines the liquid-phase exfoliation technique,providing insights into potential advancements and strategies tooptimize the TMDs nanosheet yield while preserving theirelectrochemical attributes.The primary goal is to compiletechniques for enhancing TMDs nanosheet yield through direct liquid-phase exfoliation,considering parameters like solvents,surfactants,centrifugation,and sonication dynamics.Beyond addressing the exfoliation yield,the review emphasizes the potentialimpact of these parameters on the structural and chemical properties of TMD nanosheets,highlighting their pivotal role inelectrochemical applications.Acknowledging evolving research methodologies,the review explores integrating machine learning anddata science as tools for understanding relationships and key characteristics.Envisioned to advance 2D material research,includingthe optimization of graphene,MXenes,and TMDs synthesis for electrochemical applications,this compilation charts a coursetoward data-driven techniques.By bridging experimental and machine learning approaches,it promises to reshape the landscape ofknowledge in electrochemistry,offering a transformative resource for the academic community.展开更多
Highly ordered hexagonal mesoporous silica SBA-15 with tunable morphology such as donut-like has been synthesized through the cosolvent approach. Donut-like SBA-15 prepared by using DMF cosolvent shows highly ordered ...Highly ordered hexagonal mesoporous silica SBA-15 with tunable morphology such as donut-like has been synthesized through the cosolvent approach. Donut-like SBA-15 prepared by using DMF cosolvent shows highly ordered circle channels and large mesopore size of 9.9 nm and pore volume of 1.45 cm3/g. Cosurfactant approach has also been used to control the morphology of SBA-15, resulting that highly ordered hard spheres (uniformed diameter—800 nm) mesoporous silica are formed. The morphology of mesoporous SBA-15 is much depended on the surface curvature energy of interface of inorganic silica and organic block copolymer species.展开更多
基金Supported by the National Natural Science Foundation of China(21620102007)the Natural Science Foundation for High Education of Jiangsu Province(17KJB530011)+1 种基金the Science and Technology Innovation Foundation of Yangzhou University(2017CXJ015)the Priority Academic Program Development of Jiangsu Higher Education Institutions(PAPD)
文摘HZSM-5/MCM-41 molecular sieve (H-ZM) catalysts with well-defined micro/mesoporous structures were synthesized and showed high performance for selective synthesis of triacetin via the esterification reaction of glycerol with acetic acid. The conversion of glycerol was demonstrated to be 100% and the triacetin selectivity was over 91%, which can be attributed to the synergistic effect regarding suitable acidic property, excellent diffusion efficiency and good stability derived from the combined advantages of microporous molecular sieve HZSM-5 and mesoporous molecular sieve MCM-41.
基金Supported by the National Natural Science Foundation of China(21176231)the Fundamental Research Funds for the Central Universities(DUT16RC(3)103)Thousand Youth Talents Program
文摘Recent decades witnessed the significant progress made in the research field of 2D molecular sieve membranes.In comparison with their 3D counterparts, 2D molecular sieve membranes possessed several unique advantages like significantly reduced membrane thickness(one atom thick in theory) and diversified molecular sieving mechanisms(in-plane pores within nanosheets & interlayer galleries between nanosheets). M. Tsapatsis first carried out pioneering work on fabrication of lamellar ZSM-5 membrane. Since then, diverse 2D materials typically including graphene oxides(GOs) have been fabricated into membranes showing promising prospects in energy-efficient gas separation, pervaporation, desalination and nanofiltration. In addition to GOs, other emerging 2D materials, including 2D zeolites, 2D metal–organic frameworks(MOFs), 2 D covalent-organic frameworks(COFs), layered double hydroxides(LDHs), transition metal dichalcogenides(TMDCs), MXenes(typically Ti3C2TX), graphitic carbon nitrides(typically g-C3N4), hexagonal boron nitride(h-BN) and montmorillonites(MT) are showing intriguing performance in membrane-based separation process. This article summarized the most recent developments in the field of 2D molecular sieve membranes aside from GOs with particular emphasis on their structure–performance relationship and application prospects in industrial separation.
基金the national natural science foundation of China (No.20541002)SINOPEC basic research foundation (X504034) Zhejiang provincial natural science foundation (No.Y405064)
文摘Titanium-containing mesoporous molecular sieves are of great significance in selective catalytic oxidation processes with bulky molecules. Recent researches and developments on the designing and synthesis of Ti-containing mesoporous materials have been reviewed. Various strategies for the preparation of Ti-containing mesoporous materials, such as direct synthesis and post-synthesis, are described. Modifications of Ti-containing mesoporous materials by surface-grafting and atom-planting are also discussed. All approaches aimed mainly at the improving of the stability, the hydrophobicity, and mostly the catalytic activity. Structural and mechanistic features of various synthetic systems are discussed. Ticontaining mesoporous materials in liquid phase catalytic oxidation of organic compounds with H2O2 as an oxidant is briefly summarized, showing their broad utilities for green synthesis of fine chemicals by catalytic oxidative reactions.
文摘Porous materials have regular three-dimensional pore structure, which has unique advantages in the field of modern pharmaceutical. At present, porous materials commonly used in the pharmaceutical field are mainly molecular sieves, macroporous adsorbent resins, activated carbon, etc. In this paper, the application status of these porous materials in the pharmaceutical field is reviewed, and the future development is prospected.
基金theNationalNaturalScienceFoundationofChi na (No .5 9972 0 2 7)theNaturalScienceFoundationofHubeiProvince (No .2 0 0 2AB0 74) )
文摘MnO 2 was prepared by column method from normal spinel LiMn 2O 4 with purity of 99.38%.The influence of LiMn 2O 4 grain size and acidity of leaching solution on the lithium leaching process was studied.The results show that the appropriate range of LiMn 2O 4 grain size was 60-160 meshes and the concentration of leaching solution HCl was 0.1 mol·L -1.The adsorption capacity Q of λ-MnO 2 for lithium increased with the increase of pH and changed markedly at pH 6.0-10.0.It was 3.80mmol/g at pH 12.0.The distribution coefficients K d of Li + and Na + were 3.406×10 4 and 2.300 respectively,and the separation coefficient α Li Na was 1.481×10 4 at pH 6.5.As a result,λ-MnO 2 is a high performance ion-sieve material for lithium ion.
基金supported by the National Natural Science Foundation of China(Grant No.51906230)the Key scientific and technological projects in Henan Province(Grant No.212102210007)the Project of Zhongyuan Science and Technology Innovation Talents(Grant No.234200510011).
文摘The biggest challenge for organic phase change materials(PCMs)used in cold energy storage is to maintain high heat storage capacity while reducing the leakage risk of PCMs during the phase transition process.This is crucial for expanding their applications in the more demanding cold storage field.In this study,novel formstable low-temperature composite PCMs are prepared with mesoporous materials,namely SBA-15 and CMK-3(which are prepared using the template method),as supporting matrices and dodecane as the PCM.Owing to the combined effects of capillary forces within mesoporous materials and interactions among dodecane molecules,both dodecane/SBA-15 and dodecane/CMK-3 exhibit outstanding shape stability and thermal cycling stability even after 200 heating/cooling cycles.In comparison to those of dodecane/SBA-15,dodecane/CMK-3 exhibits superior cold storage performance and higher thermal conductivity.Specifically,the phase transition temperature of dodecane/CMK-3 is-8.81℃ with a latent heat of 122.4 J·g^(-1).Additionally,it has a thermal conductivity of 1.21 W·m^(-1)·K^(-1),which is 9.45 times that of dodecane alone.All these highlight its significant potential for applications in the area of cold energy storage.
基金This project is funded by National Research Council of Thailand(NRCT)under Contract N42A660942.P.C.acknowledges the ETS scholarship awarded by Sirindhorn International Institute of Technology,Thammasat University.P.C.thanks Mrs.Siriporn Chavalekvirat,Mr.Decha Jitkla,Mr.Tule Chavalekvirat,Ms.Aritsa Bunpheng,and Mr.Na Jaemin for unconditional support and love.
文摘The electrochemical properties of 2D materials,particularly transition metal dichalcogenides(TMDs),hinge ontheir structural and chemical characteristics.To be practicallyviable,achieving large-scale,high-yield production is crucial,ensuring both quality and electrochemical suitability forapplications in energy storage,electrocatalysis,and potentialbasedionic sieving membranes.A prerequisite for success is a deepunderstanding of the synthesis process,forming a critical linkbetween materials synthesis and electrochemical performance.Thisreview extensively examines the liquid-phase exfoliation technique,providing insights into potential advancements and strategies tooptimize the TMDs nanosheet yield while preserving theirelectrochemical attributes.The primary goal is to compiletechniques for enhancing TMDs nanosheet yield through direct liquid-phase exfoliation,considering parameters like solvents,surfactants,centrifugation,and sonication dynamics.Beyond addressing the exfoliation yield,the review emphasizes the potentialimpact of these parameters on the structural and chemical properties of TMD nanosheets,highlighting their pivotal role inelectrochemical applications.Acknowledging evolving research methodologies,the review explores integrating machine learning anddata science as tools for understanding relationships and key characteristics.Envisioned to advance 2D material research,includingthe optimization of graphene,MXenes,and TMDs synthesis for electrochemical applications,this compilation charts a coursetoward data-driven techniques.By bridging experimental and machine learning approaches,it promises to reshape the landscape ofknowledge in electrochemistry,offering a transformative resource for the academic community.
文摘Highly ordered hexagonal mesoporous silica SBA-15 with tunable morphology such as donut-like has been synthesized through the cosolvent approach. Donut-like SBA-15 prepared by using DMF cosolvent shows highly ordered circle channels and large mesopore size of 9.9 nm and pore volume of 1.45 cm3/g. Cosurfactant approach has also been used to control the morphology of SBA-15, resulting that highly ordered hard spheres (uniformed diameter—800 nm) mesoporous silica are formed. The morphology of mesoporous SBA-15 is much depended on the surface curvature energy of interface of inorganic silica and organic block copolymer species.