Redesigning of complex products is not an easy task. Engineering change requirements can be extracted at any stage of the product redesign process, and it makes the management of engineering change become a challengin...Redesigning of complex products is not an easy task. Engineering change requirements can be extracted at any stage of the product redesign process, and it makes the management of engineering change become a challenging mission. The motivation for this study is to find the shortest path of behavioral change propagation (BCP), minimize the BCP, access to the special behavioral elements in order to better managing the BCP and classifying the behavioral attribute of the elements in terms of their relationship to change by betweenness centrality coefficient (BNCC), clustering coefficient (CLC), reachability coefficient (RC) and change propagation index (CPI). In this article, the procedure of managerial decision-making is proposed by combining system restrictions in behavioral clustering design structure matrix (BCDSM) with optimization algorithms. The practicality of suggested method is verified in redesign procedure of a phantom drone camera stabilizer as a case study. The results, indicate that the absorption of change by behavioral elements is dominant in the mechanical (63.9%), electrical (61.1%) and thermal (38.9%) behaviors of the drone camera stabilizer system in redesign process. These elements are best candidates for reducing the cost and time of behavioral changes in the system redesign and are desirable for the designer.展开更多
文摘Redesigning of complex products is not an easy task. Engineering change requirements can be extracted at any stage of the product redesign process, and it makes the management of engineering change become a challenging mission. The motivation for this study is to find the shortest path of behavioral change propagation (BCP), minimize the BCP, access to the special behavioral elements in order to better managing the BCP and classifying the behavioral attribute of the elements in terms of their relationship to change by betweenness centrality coefficient (BNCC), clustering coefficient (CLC), reachability coefficient (RC) and change propagation index (CPI). In this article, the procedure of managerial decision-making is proposed by combining system restrictions in behavioral clustering design structure matrix (BCDSM) with optimization algorithms. The practicality of suggested method is verified in redesign procedure of a phantom drone camera stabilizer as a case study. The results, indicate that the absorption of change by behavioral elements is dominant in the mechanical (63.9%), electrical (61.1%) and thermal (38.9%) behaviors of the drone camera stabilizer system in redesign process. These elements are best candidates for reducing the cost and time of behavioral changes in the system redesign and are desirable for the designer.