5G use cases,for example enhanced mobile broadband(eMBB),massive machine-type communications(mMTC),and an ultra-reliable low latency communication(URLLC),need a network architecture capable of sustaining stringent lat...5G use cases,for example enhanced mobile broadband(eMBB),massive machine-type communications(mMTC),and an ultra-reliable low latency communication(URLLC),need a network architecture capable of sustaining stringent latency and bandwidth requirements;thus,it should be extremely flexible and dynamic.Slicing enables service providers to develop various network slice architectures.As users travel from one coverage region to another area,the callmust be routed to a slice thatmeets the same or different expectations.This research aims to develop and evaluate an algorithm to make handover decisions appearing in 5G sliced networks.Rules of thumb which indicates the accuracy regarding the training data classification schemes within machine learning should be considered for validation and selection of the appropriate machine learning strategies.Therefore,this study discusses the network model’s design and implementation of self-optimization Fuzzy Qlearning of the decision-making algorithm for slice handover.The algorithm’s performance is assessed by means of connection-level metrics considering the Quality of Service(QoS),specifically the probability of the new call to be blocked and the probability of a handoff call being dropped.Hence,within the network model,the call admission control(AC)method is modeled by leveraging supervised learning algorithm as prior knowledge of additional capacity.Moreover,to mitigate high complexity,the integration of fuzzy logic as well as Fuzzy Q-Learning is used to discretize state and the corresponding action spaces.The results generated from our proposal surpass the traditional methods without the use of supervised learning and fuzzy-Q learning.展开更多
The concept of semantic communication provides a novel approach for applications in scenarios with limited communication resources.In this paper,we propose an end-to-end(E2E)semantic molecular communication system,aim...The concept of semantic communication provides a novel approach for applications in scenarios with limited communication resources.In this paper,we propose an end-to-end(E2E)semantic molecular communication system,aiming to enhance the efficiency of molecular communication systems by reducing the transmitted information.Specifically,following the joint source channel coding paradigm,the network is designed to encode the task-relevant information into the concentration of the information molecules,which is robust to the degradation of the molecular communication channel.Furthermore,we propose a channel network to enable the E2E learning over the non-differentiable molecular channel.Experimental results demonstrate the superior performance of the semantic molecular communication system over the conventional methods in classification tasks.展开更多
Industrial Internet combines the industrial system with Internet connectivity to build a new manufacturing and service system covering the entire industry chain and value chain.Its highly heterogeneous network structu...Industrial Internet combines the industrial system with Internet connectivity to build a new manufacturing and service system covering the entire industry chain and value chain.Its highly heterogeneous network structure and diversified application requirements call for the applying of network slicing technology.Guaranteeing robust network slicing is essential for Industrial Internet,but it faces the challenge of complex slice topologies caused by the intricate interaction relationships among Network Functions(NFs)composing the slice.Existing works have not concerned the strengthening problem of industrial network slicing regarding its complex network properties.Towards this end,we aim to study this issue by intelligently selecting a subset of most valuable NFs with the minimum cost to satisfy the strengthening requirements.State-of-the-art AlphaGo series of algorithms and the advanced graph neural network technology are combined to build the solution.Simulation results demonstrate the superior performance of our scheme compared to the benchmark schemes.展开更多
In this paper,we propose the Two-way Deep Reinforcement Learning(DRL)-Based resource allocation algorithm,which solves the problem of resource allocation in the cognitive downlink network based on the underlay mode.Se...In this paper,we propose the Two-way Deep Reinforcement Learning(DRL)-Based resource allocation algorithm,which solves the problem of resource allocation in the cognitive downlink network based on the underlay mode.Secondary users(SUs)in the cognitive network are multiplexed by a new Power Domain Sparse Code Multiple Access(PD-SCMA)scheme,and the physical resources of the cognitive base station are virtualized into two types of slices:enhanced mobile broadband(eMBB)slice and ultrareliable low latency communication(URLLC)slice.We design the Double Deep Q Network(DDQN)network output the optimal codebook assignment scheme and simultaneously use the Deep Deterministic Policy Gradient(DDPG)network output the optimal power allocation scheme.The objective is to jointly optimize the spectral efficiency of the system and the Quality of Service(QoS)of SUs.Simulation results show that the proposed algorithm outperforms the CNDDQN algorithm and modified JEERA algorithm in terms of spectral efficiency and QoS satisfaction.Additionally,compared with the Power Domain Non-orthogonal Multiple Access(PD-NOMA)slices and the Sparse Code Multiple Access(SCMA)slices,the PD-SCMA slices can dramatically enhance spectral efficiency and increase the number of accessible users.展开更多
Heterogeneous base station deployment enables to provide high capacity and wide area coverage.Network slicing makes it possible to allocate wireless resource for heterogeneous services on demand.These two promising te...Heterogeneous base station deployment enables to provide high capacity and wide area coverage.Network slicing makes it possible to allocate wireless resource for heterogeneous services on demand.These two promising technologies contribute to the unprecedented service in 5G.We establish a multiservice heterogeneous network model,which aims to raise the transmission rate under the delay constraints for active control terminals,and optimize the energy efficiency for passive network terminals.A policygradient-based deep reinforcement learning algorithm is proposed to make decisions on user association and power control in the continuous action space.Simulation results indicate the good convergence of the algorithm,and higher reward is obtained compared with other baselines.展开更多
Person search mainly consists of two submissions,namely Person Detection and Person Re-identification(reID).Existing approaches are primarily based on Faster R-CNN and Convolutional Neural Network(CNN)(e.g.,ResNet).Wh...Person search mainly consists of two submissions,namely Person Detection and Person Re-identification(reID).Existing approaches are primarily based on Faster R-CNN and Convolutional Neural Network(CNN)(e.g.,ResNet).While these structures may detect high-quality bounding boxes,they seem to degrade the performance of re-ID.To address this issue,this paper proposes a Dual-Transformer Head Network(DTHN)for end-to-end person search,which contains two independent Transformer heads,a box head for detecting the bounding box and extracting efficient bounding box feature,and a re-ID head for capturing high-quality re-ID features for the re-ID task.Specifically,after the image goes through the ResNet backbone network to extract features,the Region Proposal Network(RPN)proposes possible bounding boxes.The box head then extracts more efficient features within these bounding boxes for detection.Following this,the re-ID head computes the occluded attention of the features in these bounding boxes and distinguishes them from other persons or backgrounds.Extensive experiments on two widely used benchmark datasets,CUHK-SYSU and PRW,achieve state-of-the-art performance levels,94.9 mAP and 95.3 top-1 scores on the CUHK-SYSU dataset,and 51.6 mAP and 87.6 top-1 scores on the PRW dataset,which demonstrates the advantages of this paper’s approach.The efficiency comparison also shows our method is highly efficient in both time and space.展开更多
The functions studied in the paper are the quaternion-valued functions of a quaternionic variable.It is shown that the left slice regular functions and right slice regular functions are related by a particular involut...The functions studied in the paper are the quaternion-valued functions of a quaternionic variable.It is shown that the left slice regular functions and right slice regular functions are related by a particular involution,and that the intrinsic slice regular functions play a central role in the theory of slice regular functions.The relation between left slice regular functions,right slice regular functions and intrinsic slice regular functions is revealed.As an application,the classical Laplace transform is generalized naturally to quaternions in two different ways,which transform a quaternion-valued function of a real variable to a left or right slice regular function.The usual properties of the classical Laplace transforms are generalized to quaternionic Laplace transforms.展开更多
Environment perception is one of the most critical technology of intelligent transportation systems(ITS).Motion interaction between multiple vehicles in ITS makes it important to perform multi-object tracking(MOT).How...Environment perception is one of the most critical technology of intelligent transportation systems(ITS).Motion interaction between multiple vehicles in ITS makes it important to perform multi-object tracking(MOT).However,most existing MOT algorithms follow the tracking-by-detection framework,which separates detection and tracking into two independent segments and limit the global efciency.Recently,a few algorithms have combined feature extraction into one network;however,the tracking portion continues to rely on data association,and requires com‑plex post-processing for life cycle management.Those methods do not combine detection and tracking efciently.This paper presents a novel network to realize joint multi-object detection and tracking in an end-to-end manner for ITS,named as global correlation network(GCNet).Unlike most object detection methods,GCNet introduces a global correlation layer for regression of absolute size and coordinates of bounding boxes,instead of ofsetting predictions.The pipeline of detection and tracking in GCNet is conceptually simple,and does not require compli‑cated tracking strategies such as non-maximum suppression and data association.GCNet was evaluated on a multivehicle tracking dataset,UA-DETRAC,demonstrating promising performance compared to state-of-the-art detectors and trackers.展开更多
Interdisciplinary applications between information technology and geriatrics have been accelerated in recent years by the advancement of artificial intelligence,cloud computing,and 5G technology,among others.Meanwhile...Interdisciplinary applications between information technology and geriatrics have been accelerated in recent years by the advancement of artificial intelligence,cloud computing,and 5G technology,among others.Meanwhile,applications developed by using the above technologies make it possible to predict the risk of age-related diseases early,which can give caregivers time to intervene and reduce the risk,potentially improving the health span of the elderly.However,the popularity of these applications is still limited for several reasons.For example,many older people are unable or unwilling to use mobile applications or devices(e.g.smartphones)because they are relatively complex operations or time-consuming for older people.In this work,we design and implement an end-to-end framework and integrate it with the WeChat platform to make it easily accessible to elders.In this work,multifactorial geriatric assessment data can be collected.Then,stacked machine learning models are trained to assess and predict the incidence of common diseases in the elderly.Experimental results show that our framework can not only provide more accurate prediction(precision:0.8713,recall:0.8212)for several common elderly diseases,but also very low timeconsuming(28.6 s)within a workflow compared to some existing similar applications.展开更多
The end-to-end separation algorithm with superior performance in the field of speech separation has not been effectively used in music separation.Moreover,since music signals are often dual channel data with a high sa...The end-to-end separation algorithm with superior performance in the field of speech separation has not been effectively used in music separation.Moreover,since music signals are often dual channel data with a high sampling rate,how to model longsequence data and make rational use of the relevant information between channels is also an urgent problem to be solved.In order to solve the above problems,the performance of the end-to-end music separation algorithm is enhanced by improving the network structure.Our main contributions include the following:(1)A more reasonable densely connected U-Net is designed to capture the long-term characteristics of music,such as main melody,tone and so on.(2)On this basis,the multi-head attention and dualpath transformer are introduced in the separation module.Channel attention units are applied recursively on the feature map of each layer of the network,enabling the network to perform long-sequence separation.Experimental results show that after the introduction of the channel attention,the performance of the proposed algorithm has a stable improvement compared with the baseline system.On the MUSDB18 dataset,the average score of the separated audio exceeds that of the current best-performing music separation algorithm based on the time-frequency domain(T-F domain).展开更多
Network slicing is envisioned as one of the key techniques to meet the extremely diversified service requirements of the Internet of Things(IoT)as it provides an enhanced user experience and elastic resource configura...Network slicing is envisioned as one of the key techniques to meet the extremely diversified service requirements of the Internet of Things(IoT)as it provides an enhanced user experience and elastic resource configuration.In the context of slicing enhanced IoT networks,both the Service Provider(SP)and Infrastructure Provider(InP)face challenges of ensuring efficient slice construction and high profit in dynamic environments.These challenges arise from randomly generated and departed slice requests from end-users,uncertain resource availability,and multidimensional resource allocation.Admission and resource allocation for distinct demands of slice requests are the key issues in addressing these challenges and should be handled effectively in dynamic environments.To this end,we propose an Opportunistic Admission and Resource allocation(OAR)policy to deal with the issues of random slicing requests,uncertain resource availability,and heterogeneous multi-resources.The key idea of OAR is to allow the SP to decide whether to accept slice requests immediately or defer them according to the load and price of resources.To cope with the random slice requests and uncertain resource availability,we formulated this issue as a Markov Decision Process(MDP)to obtain the optimal admission policy,with the aim of maximizing the system reward.Furthermore,the buyer-seller game theory approach was adopted to realize the optimal resource allocation,while motivating each SP and InP to maximize their rewards.Our numerical results show that the proposed OAR policy can make reasonable decisions effectively and steadily,and outperforms the baseline schemes in terms of the system reward.展开更多
With the rapid development of deep learning methods, the data-driven approach has shown powerful advantages over the model-driven one. In this paper, we propose an end-to-end autoencoder communication system based on ...With the rapid development of deep learning methods, the data-driven approach has shown powerful advantages over the model-driven one. In this paper, we propose an end-to-end autoencoder communication system based on Deep Residual Shrinkage Networks (DRSNs), where neural networks (DNNs) are used to implement the coding, decoding, modulation and demodulation functions of the communication system. Our proposed autoencoder communication system can better reduce the signal noise by adding an “attention mechanism” and “soft thresholding” modules and has better performance at various signal-to-noise ratios (SNR). Also, we have shown through comparative experiments that the system can operate at moderate block lengths and support different throughputs. It has been shown to work efficiently in the AWGN channel. Simulation results show that our model has a higher Bit-Error-Rate (BER) gain and greatly improved decoding performance compared to conventional modulation and classical autoencoder systems at various signal-to-noise ratios.展开更多
基金This work was supported partially by the BK21 FOUR program of the National Research Foundation of Korea funded by the Ministry of Education(NRF5199991514504)by theMSIT(Ministry of Science and ICT),Korea,under the ITRC(Information Technology Research Center)support program(IITP-2023-2018-0-01431)supervised by the IITP(Institute for Information&Communications Technology Planning&Evaluation).
文摘5G use cases,for example enhanced mobile broadband(eMBB),massive machine-type communications(mMTC),and an ultra-reliable low latency communication(URLLC),need a network architecture capable of sustaining stringent latency and bandwidth requirements;thus,it should be extremely flexible and dynamic.Slicing enables service providers to develop various network slice architectures.As users travel from one coverage region to another area,the callmust be routed to a slice thatmeets the same or different expectations.This research aims to develop and evaluate an algorithm to make handover decisions appearing in 5G sliced networks.Rules of thumb which indicates the accuracy regarding the training data classification schemes within machine learning should be considered for validation and selection of the appropriate machine learning strategies.Therefore,this study discusses the network model’s design and implementation of self-optimization Fuzzy Qlearning of the decision-making algorithm for slice handover.The algorithm’s performance is assessed by means of connection-level metrics considering the Quality of Service(QoS),specifically the probability of the new call to be blocked and the probability of a handoff call being dropped.Hence,within the network model,the call admission control(AC)method is modeled by leveraging supervised learning algorithm as prior knowledge of additional capacity.Moreover,to mitigate high complexity,the integration of fuzzy logic as well as Fuzzy Q-Learning is used to discretize state and the corresponding action spaces.The results generated from our proposal surpass the traditional methods without the use of supervised learning and fuzzy-Q learning.
基金supported by the Beijing Natural Science Foundation(L211012)the Natural Science Foundation of China(62122012,62221001)the Fundamental Research Funds for the Central Universities(2022JBQY004)。
文摘The concept of semantic communication provides a novel approach for applications in scenarios with limited communication resources.In this paper,we propose an end-to-end(E2E)semantic molecular communication system,aiming to enhance the efficiency of molecular communication systems by reducing the transmitted information.Specifically,following the joint source channel coding paradigm,the network is designed to encode the task-relevant information into the concentration of the information molecules,which is robust to the degradation of the molecular communication channel.Furthermore,we propose a channel network to enable the E2E learning over the non-differentiable molecular channel.Experimental results demonstrate the superior performance of the semantic molecular communication system over the conventional methods in classification tasks.
基金supported by National Key R&D Program of China(2022YFB3104200)in part by National Natural Science Foundation of China(62202386)+2 种基金in part by Basic Research Programs of Taicang(TC2021JC31)in part by Fundamental Research Funds for the Central Universities(D5000210817)in part by Xi’an Unmanned System Security and Intelligent Communications ISTC Center,and in part by Special Funds for Central Universities Construction of World-Class Universities(Disciplines)and Special Development Guidance(0639022GH0202237 and 0639022SH0201237).
文摘Industrial Internet combines the industrial system with Internet connectivity to build a new manufacturing and service system covering the entire industry chain and value chain.Its highly heterogeneous network structure and diversified application requirements call for the applying of network slicing technology.Guaranteeing robust network slicing is essential for Industrial Internet,but it faces the challenge of complex slice topologies caused by the intricate interaction relationships among Network Functions(NFs)composing the slice.Existing works have not concerned the strengthening problem of industrial network slicing regarding its complex network properties.Towards this end,we aim to study this issue by intelligently selecting a subset of most valuable NFs with the minimum cost to satisfy the strengthening requirements.State-of-the-art AlphaGo series of algorithms and the advanced graph neural network technology are combined to build the solution.Simulation results demonstrate the superior performance of our scheme compared to the benchmark schemes.
基金supported by the National Natural Science Foundation of China(Grant No.61971057).
文摘In this paper,we propose the Two-way Deep Reinforcement Learning(DRL)-Based resource allocation algorithm,which solves the problem of resource allocation in the cognitive downlink network based on the underlay mode.Secondary users(SUs)in the cognitive network are multiplexed by a new Power Domain Sparse Code Multiple Access(PD-SCMA)scheme,and the physical resources of the cognitive base station are virtualized into two types of slices:enhanced mobile broadband(eMBB)slice and ultrareliable low latency communication(URLLC)slice.We design the Double Deep Q Network(DDQN)network output the optimal codebook assignment scheme and simultaneously use the Deep Deterministic Policy Gradient(DDPG)network output the optimal power allocation scheme.The objective is to jointly optimize the spectral efficiency of the system and the Quality of Service(QoS)of SUs.Simulation results show that the proposed algorithm outperforms the CNDDQN algorithm and modified JEERA algorithm in terms of spectral efficiency and QoS satisfaction.Additionally,compared with the Power Domain Non-orthogonal Multiple Access(PD-NOMA)slices and the Sparse Code Multiple Access(SCMA)slices,the PD-SCMA slices can dramatically enhance spectral efficiency and increase the number of accessible users.
基金supported by the National Natural Science Foundation of China under Grant No.61971057。
文摘Heterogeneous base station deployment enables to provide high capacity and wide area coverage.Network slicing makes it possible to allocate wireless resource for heterogeneous services on demand.These two promising technologies contribute to the unprecedented service in 5G.We establish a multiservice heterogeneous network model,which aims to raise the transmission rate under the delay constraints for active control terminals,and optimize the energy efficiency for passive network terminals.A policygradient-based deep reinforcement learning algorithm is proposed to make decisions on user association and power control in the continuous action space.Simulation results indicate the good convergence of the algorithm,and higher reward is obtained compared with other baselines.
基金supported by the Natural Science Foundation of Shanghai under Grant 21ZR1426500the National Natural Science Foundation of China under Grant 61873160.
文摘Person search mainly consists of two submissions,namely Person Detection and Person Re-identification(reID).Existing approaches are primarily based on Faster R-CNN and Convolutional Neural Network(CNN)(e.g.,ResNet).While these structures may detect high-quality bounding boxes,they seem to degrade the performance of re-ID.To address this issue,this paper proposes a Dual-Transformer Head Network(DTHN)for end-to-end person search,which contains two independent Transformer heads,a box head for detecting the bounding box and extracting efficient bounding box feature,and a re-ID head for capturing high-quality re-ID features for the re-ID task.Specifically,after the image goes through the ResNet backbone network to extract features,the Region Proposal Network(RPN)proposes possible bounding boxes.The box head then extracts more efficient features within these bounding boxes for detection.Following this,the re-ID head computes the occluded attention of the features in these bounding boxes and distinguishes them from other persons or backgrounds.Extensive experiments on two widely used benchmark datasets,CUHK-SYSU and PRW,achieve state-of-the-art performance levels,94.9 mAP and 95.3 top-1 scores on the CUHK-SYSU dataset,and 51.6 mAP and 87.6 top-1 scores on the PRW dataset,which demonstrates the advantages of this paper’s approach.The efficiency comparison also shows our method is highly efficient in both time and space.
基金supported by NSFC(12071422)Zhejiang Province Science Foundation of China(LY14A010018)。
文摘The functions studied in the paper are the quaternion-valued functions of a quaternionic variable.It is shown that the left slice regular functions and right slice regular functions are related by a particular involution,and that the intrinsic slice regular functions play a central role in the theory of slice regular functions.The relation between left slice regular functions,right slice regular functions and intrinsic slice regular functions is revealed.As an application,the classical Laplace transform is generalized naturally to quaternions in two different ways,which transform a quaternion-valued function of a real variable to a left or right slice regular function.The usual properties of the classical Laplace transforms are generalized to quaternionic Laplace transforms.
基金Supported by National Key Research and Development Program of China(Grant No.2021YFB1600402)National Natural Science Foundation of China(Grant No.52072212)+1 种基金Dongfeng USharing Technology Co.,Ltd.,China Intelli‑gent and Connected Vehicles(Beijing)Research Institute Co.,Ltd.“Shuimu Tsinghua Scholarship”of Tsinghua University of China.
文摘Environment perception is one of the most critical technology of intelligent transportation systems(ITS).Motion interaction between multiple vehicles in ITS makes it important to perform multi-object tracking(MOT).However,most existing MOT algorithms follow the tracking-by-detection framework,which separates detection and tracking into two independent segments and limit the global efciency.Recently,a few algorithms have combined feature extraction into one network;however,the tracking portion continues to rely on data association,and requires com‑plex post-processing for life cycle management.Those methods do not combine detection and tracking efciently.This paper presents a novel network to realize joint multi-object detection and tracking in an end-to-end manner for ITS,named as global correlation network(GCNet).Unlike most object detection methods,GCNet introduces a global correlation layer for regression of absolute size and coordinates of bounding boxes,instead of ofsetting predictions.The pipeline of detection and tracking in GCNet is conceptually simple,and does not require compli‑cated tracking strategies such as non-maximum suppression and data association.GCNet was evaluated on a multivehicle tracking dataset,UA-DETRAC,demonstrating promising performance compared to state-of-the-art detectors and trackers.
基金supported by Xi’an University of Finance and Economics Scientific Research Support Program(No.21FCZD03)Shaanxi Education Department Research Program(No.22JK0077)National Statistical Science Research Project(Nos.2021LZ40,2022LZ38)。
文摘Interdisciplinary applications between information technology and geriatrics have been accelerated in recent years by the advancement of artificial intelligence,cloud computing,and 5G technology,among others.Meanwhile,applications developed by using the above technologies make it possible to predict the risk of age-related diseases early,which can give caregivers time to intervene and reduce the risk,potentially improving the health span of the elderly.However,the popularity of these applications is still limited for several reasons.For example,many older people are unable or unwilling to use mobile applications or devices(e.g.smartphones)because they are relatively complex operations or time-consuming for older people.In this work,we design and implement an end-to-end framework and integrate it with the WeChat platform to make it easily accessible to elders.In this work,multifactorial geriatric assessment data can be collected.Then,stacked machine learning models are trained to assess and predict the incidence of common diseases in the elderly.Experimental results show that our framework can not only provide more accurate prediction(precision:0.8713,recall:0.8212)for several common elderly diseases,but also very low timeconsuming(28.6 s)within a workflow compared to some existing similar applications.
基金National Natural Science Foundation of China,Grant/Award Number:62071039Beijing Natural Science Foundation,Grant/Award Number:L223033。
文摘The end-to-end separation algorithm with superior performance in the field of speech separation has not been effectively used in music separation.Moreover,since music signals are often dual channel data with a high sampling rate,how to model longsequence data and make rational use of the relevant information between channels is also an urgent problem to be solved.In order to solve the above problems,the performance of the end-to-end music separation algorithm is enhanced by improving the network structure.Our main contributions include the following:(1)A more reasonable densely connected U-Net is designed to capture the long-term characteristics of music,such as main melody,tone and so on.(2)On this basis,the multi-head attention and dualpath transformer are introduced in the separation module.Channel attention units are applied recursively on the feature map of each layer of the network,enabling the network to perform long-sequence separation.Experimental results show that after the introduction of the channel attention,the performance of the proposed algorithm has a stable improvement compared with the baseline system.On the MUSDB18 dataset,the average score of the separated audio exceeds that of the current best-performing music separation algorithm based on the time-frequency domain(T-F domain).
基金This work was supported in part by the Chongqing Technological Innovation and Application Development Projects under Grant cstc2019jscx-msxm1322,in part by the Zhejiang Lab under Grant 2021KF0AB03in part by the National Natural Science Foundation of China under Grant 62071091.
文摘Network slicing is envisioned as one of the key techniques to meet the extremely diversified service requirements of the Internet of Things(IoT)as it provides an enhanced user experience and elastic resource configuration.In the context of slicing enhanced IoT networks,both the Service Provider(SP)and Infrastructure Provider(InP)face challenges of ensuring efficient slice construction and high profit in dynamic environments.These challenges arise from randomly generated and departed slice requests from end-users,uncertain resource availability,and multidimensional resource allocation.Admission and resource allocation for distinct demands of slice requests are the key issues in addressing these challenges and should be handled effectively in dynamic environments.To this end,we propose an Opportunistic Admission and Resource allocation(OAR)policy to deal with the issues of random slicing requests,uncertain resource availability,and heterogeneous multi-resources.The key idea of OAR is to allow the SP to decide whether to accept slice requests immediately or defer them according to the load and price of resources.To cope with the random slice requests and uncertain resource availability,we formulated this issue as a Markov Decision Process(MDP)to obtain the optimal admission policy,with the aim of maximizing the system reward.Furthermore,the buyer-seller game theory approach was adopted to realize the optimal resource allocation,while motivating each SP and InP to maximize their rewards.Our numerical results show that the proposed OAR policy can make reasonable decisions effectively and steadily,and outperforms the baseline schemes in terms of the system reward.
文摘With the rapid development of deep learning methods, the data-driven approach has shown powerful advantages over the model-driven one. In this paper, we propose an end-to-end autoencoder communication system based on Deep Residual Shrinkage Networks (DRSNs), where neural networks (DNNs) are used to implement the coding, decoding, modulation and demodulation functions of the communication system. Our proposed autoencoder communication system can better reduce the signal noise by adding an “attention mechanism” and “soft thresholding” modules and has better performance at various signal-to-noise ratios (SNR). Also, we have shown through comparative experiments that the system can operate at moderate block lengths and support different throughputs. It has been shown to work efficiently in the AWGN channel. Simulation results show that our model has a higher Bit-Error-Rate (BER) gain and greatly improved decoding performance compared to conventional modulation and classical autoencoder systems at various signal-to-noise ratios.