Morphine is a frequently used analgesic that activates the mu-opioid receptor(MOR),which has prominent side effects of tolerance.Although the inefficiency of morphine in inducing the endocytosis of MOR underlies the d...Morphine is a frequently used analgesic that activates the mu-opioid receptor(MOR),which has prominent side effects of tolerance.Although the inefficiency of morphine in inducing the endocytosis of MOR underlies the development of morphine tolerance,currently,there is no effective therapy to treat morphine tolerance.In the current study,we aimed to develop a monoclonal antibody(mAb)precisely targeting MOR and to determine its therapeutic efficacy on morphine tolerance and the underlying molecular mechanisms.We successfully prepared a mAb targeting MOR,named 3A5C7,by hybridoma technique using a strategy of deoxyribonucleic acid immunization combined with cell immunization,and identified it as an immunoglobulin G mAb with high specificity and affinity for MOR and binding ability to antigens with spatial conformation.Treatment of two cell lines,HEK293T and SH-SY5Y,with 3A5C7 enhanced morphine-induced MOR endocytosis via a G protein-coupled receptor kinase 2(GRK2)/b-arrestin2-dependent mechanism,as demonstrated by immunofluorescence staining,flow cytometry,Western blotting,coimmunoprecipitation,and small interfering ribonucleic acid(siRNA)-based knockdown.This mAb also allowed MOR recycling from cytoplasm to plasma membrane and attenuated morphine-induced phosphorylation of MOR.We established an in vitro morphine tolerance model using differentiated SH-SY5Y cells induced by retinoic acid.Western blot,enzyme-linked immunosorbent assays,and siRNA-based knockdown revealed that 3A5C7 mAb diminished hyperactivation of adenylate cyclase,the in vitro biomarker of morphine tolerance,via the GRK2/b-arrestin2 pathway.Furthermore,in vivo hotplate test demonstrated that chronic intrathecal administration of 3A5C7 significantly alleviated morphine tolerance in mice,and withdrawal jumping test revealed that both chronic and acute 3A5C7 intrathecal administration attenuated morphine dependence.Finally,intrathecal electroporation of silencing short hairpin RNA illustrated that the in vivo anti-tolerance and anti-dependence efficacy of 3A5C7 was mediated by enhanced morphine-induced MOR endocytosis via GRK2/b-arrestin2 pathway.Collectively,our study provided a therapeutic mAb,3A5C7,targeting MOR to treat morphine tolerance,mediated by enhancing morphine-induced MOR endocytosis.The mAb 3A5C7 demonstrates promising translational value to treat clinical morphine tolerance.展开更多
Parkinson's disease is characterized by the selective degeneration of dopamine neurons in the nigrostriatal pathway and dopamine deficiency in the striatum.The precise reasons behind the specific degeneration of t...Parkinson's disease is characterized by the selective degeneration of dopamine neurons in the nigrostriatal pathway and dopamine deficiency in the striatum.The precise reasons behind the specific degeneration of these dopamine neurons remain largely elusive.Genetic investigations have identified over 20 causative PARK genes and 90 genomic risk loci associated with both familial and sporadic Parkinson's disease.Notably,several of these genes are linked to the synaptic vesicle recycling process,particularly the clathrinmediated endocytosis pathway.This suggests that impaired synaptic vesicle recycling might represent an early feature of Parkinson's disease,followed by axonal degeneration and the eventual loss of dopamine cell bodies in the midbrain via a"dying back"mechanism.Recently,several new animal and cellular models with Parkinson's disease-linked mutations affecting the endocytic pathway have been created and extensively characterized.These models faithfully recapitulate certain Parkinson's disease-like features at the animal,circuit,and cellular levels,and exhibit defects in synaptic membrane trafficking,further supporting the findings from human genetics and clinical studies.In this review,we will first summarize the cellular and molecular findings from the models of two Parkinson's disease-linked clathrin uncoating proteins:auxilin(DNAJC6/PARK19)and synaptojanin 1(SYNJ1/PARK20).The mouse models carrying these two PARK gene mutations phenocopy each other with specific dopamine terminal pathology and display a potent synergistic effect.Subsequently,we will delve into the involvement of several clathrin-mediated endocytosis-related proteins(GAK,endophilin A1,SAC2/INPP5 F,synaptotagmin-11),identified as Parkinson's disease risk factors through genome-wide association studies,in Parkinson's disease pathogenesis.We will also explore the direct or indirect roles of some common Parkinson's disease-linked proteins(alpha-synuclein(PARK1/4),Parkin(PARK2),and LRRK2(PARK8))in synaptic endocytic trafficking.Additionally,we will discuss the emerging novel functions of these endocytic proteins in downstream membrane traffic pathways,particularly autophagy.Given that synaptic dysfunction is considered as an early event in Parkinson's disease,a deeper understanding of the cellular mechanisms underlying synaptic vesicle endocytic trafficking may unveil novel to rgets for early diagnosis and the development of interventional therapies for Parkinson's disease.Future research should aim to elucidate why generalized synaptic endocytic dysfunction leads to the selective degeneration of nigrostriatal dopamine neurons in Parkinson's disease.展开更多
Many types of plastic products,including polystyrene,have long been used in commercial and industrial applications.Microplastics and nanoplastics,plastic particles derived from these plastic products,are emerging as e...Many types of plastic products,including polystyrene,have long been used in commercial and industrial applications.Microplastics and nanoplastics,plastic particles derived from these plastic products,are emerging as environmental pollutants that can pose health risks to a wide variety of living organisms,including humans.However,it is not well understood how microplastics and nanoplastics affect cellular functions and induce stress responses.Humans can be exposed to polystyrene-microplastics and polystyrene-nanoplastics through ingestion,inhalation,or skin contact.Most ingested plastics are excreted from the body,but inhaled plastics may accumulate in the lungs and can even reach the brain via the nose-to-brain route.Small-sized polystyrene-nanoplastics can enter cells by endocytosis,accumulate in the cytoplasm,and cause various cellular stresses,such as inflammation with increased pro-inflammatory cytokine production,oxidative stress with generation of reactive oxygen species,and mitochondrial dysfunction.They induce autophagy activation and autophagosome formation,but autophagic flux may be impaired due to lysosomal dysfunction.Unless permanently exposed to polystyrene-nanoplastics,they can be removed from cells by exocytosis and subsequently restore cellular function.However,neurons are very susceptible to this type of stress,thus even acute exposure can lead to neurodegeneration without recovery.This review focuses specifically on recent advances in research on polystyrene-nanoplastic-induced cytotoxicity and neurotoxicity.Furthermore,in this review,based on mechanistic studies of polystyrene-nanoplastics at the cellular level other than neurons,future directions for overcoming the negative effects of polystyrene-nanoplastics on neurons were suggested.展开更多
Streptococcus suis serotype 2(S.suis 2)is a zoonotic pathogen that clinically causes severe swine and human infections(such as meningitis,endocarditis,and septicemia).In order to cause widespread diseases in different...Streptococcus suis serotype 2(S.suis 2)is a zoonotic pathogen that clinically causes severe swine and human infections(such as meningitis,endocarditis,and septicemia).In order to cause widespread diseases in different organs,S.suis 2 must colonize the host,break the blood barrier,and cause exaggerated inflammation.In the last few years,most studies have focused on a single virulence factor and its influences on the host.Membrane vesicles(MVs)can be actively secreted into the extracellular environment contributing to bacteria-host interactions.Gram-negative bacteria-derived outer membrane vesicles(OMVs)were recently shown to activate host Caspase-11-mediated non-canonical inflammasome pathway via deliverance of OMV-bound lipopolysaccharide(LPS),causing host cell pyroptosis.However,little is known about the effect of the MVs from S.suis 2(Gram-positive bacteria without LPS)on cell pyroptosis.Thus,we investigated the molecular mechanism by which S.suis 2 MVs participate in endothelial cell pyroptosis.In this study,we used proteomics,electron scanning microscopy,fluorescence microscope,Western blotting,and bioassays,to investigate the MVs secreted by S.suis 2.First,we demonstrated that S.suis 2 secreted MVs with an average diameter of 72.04 nm,and 200 proteins in MVs were identified.Then,we showed that MVs were transported to cells via mainly dynamin-dependent endocytosis.The S.suis 2 MVs activated NLRP3/Caspase-1/GSDMD canonical inflammasome signaling pathway,resulting in cell pyroptosis,but it did not activate the Caspase-4/-5 pathway.More importantly,endothelial cells produce large amounts of reactive oxygen species(ROS)and lost their mitochondrial membrane potential under induction by S.suis 2 MVs.The results in this study suggest for the first time that MVs from S.suis 2 were internalized by endothelial cells via mainly dynamin-dependent endocytosis and might promote NLRP3/Caspase-1/GSDMD pathway by mitochondrial damage,which produced mtDNA and ROS under induction,leading to the pyroptosis of endothelial cells.展开更多
In eukaryotic cells,organelles in the secretory,lysosomal,and endocytic pathways actively exchange biological materials with each other through intracellular membrane trafficking,which is the process of transporting t...In eukaryotic cells,organelles in the secretory,lysosomal,and endocytic pathways actively exchange biological materials with each other through intracellular membrane trafficking,which is the process of transporting the cargo of proteins,lipids,and other molecules to appropriate compartments via transport vesicles or intermediates.These processes are strictly regulated by various small GTPases such as the RAS-like in rat brain(RAB)protein family,which is the largest subfamily of the RAS superfamily.Dysfunction of membrane trafficking affects tissue homeostasis and leads to a wide range of diseases,including neurological disorders and neurodegenerative diseases.Therefore,it is important to understand the physiological and pathological roles of RAB proteins in brain function.RAB35,a member of the RAB family,is an evolutionarily conserved protein in metazoans.A wide range of studies using cultured mammalian cells and model organisms have revealed that RAB35 mediates various processes such as cytokinesis,endocytic recycling,actin bundling,and cell migration.RAB35 is also involved in neurite outgrowth and turnover of synaptic vesicles.We generated brain-specific Rab35 knockout mice to study the physiological roles of RAB35 in brain development and function.These mice exhibited defects in anxiety-related behaviors and spatial memory.Strikingly,RAB35 is required for the precise positioning of pyramidal neurons during hippocampal development,and thereby for normal hippocampal lamination.In contrast,layer formation in the cerebral cortex occurred superficially,even in the absence of RAB35,suggesting a predominant role for RAB35 in hippocampal development rather than in cerebral cortex development.Recent studies have suggested an association between RAB35 and neurodegenerative diseases,including Parkinson's disease and Alzheimer's disease.In this review,we provide an overview of the current understanding of subcellular functions of RAB35.We also provide insights into the physiological role of RAB35 in mammalian brain development and function,and discuss the involvement of RAB35 dysfunction in neurodegenerative diseases.展开更多
Endocytosis occurs at the cell surface and involves internalization of the plasma membrane (PM) along with its constituent membrane proteins and lipids. Endocytosis is involved in sampling of the extracellular milie...Endocytosis occurs at the cell surface and involves internalization of the plasma membrane (PM) along with its constituent membrane proteins and lipids. Endocytosis is involved in sampling of the extracellular milieu and also serves to regulate various processes initiated at the cell surface. These include nutrient uptake, signaling from cell- surface receptors, and many other processes essential for cell and tissue functioning in metazoans. It is also central to the maintenance of PM lipid and protein homeostasis. There are multiple means of internalization that operate concurrently, at the cell surface. With advancement in high-resolution visualization techniques, it is now possible to track multiple endocytic cargo at the same time, revealing a remarkable diversity of endocytic processes in a single cell. A combination of live cell imaging and efficient genetic manipulations has also aided in understanding the functional hierarchy of molecular players in these mechanisms of internalization. Here we provide an account of various endocytic routes, their mechanisms of operation and occurrence across phyla.展开更多
Nanomedicines employ multiple endocytic pathways to enter cells.Their following fate is interesting,but it is not sufficient understood currently.This review introduces the endocytic pathways,presents new technologies...Nanomedicines employ multiple endocytic pathways to enter cells.Their following fate is interesting,but it is not sufficient understood currently.This review introduces the endocytic pathways,presents new technologies to confirm the specific endocytic pathways and discusses factors for pathway selection.In addition,some intriguing implication about nanomedicine design based on endocytosis will also be discussed at the end.This review may provide new thoughts for the design of novel multifunctional nanomedicines.展开更多
In eukaryotic cells, receptor endocytosis is a key event regulating signaling transduction. Adiponectin receptors belong to a new receptor family that is distinct from G-protein-coupled receptors and has critical role...In eukaryotic cells, receptor endocytosis is a key event regulating signaling transduction. Adiponectin receptors belong to a new receptor family that is distinct from G-protein-coupled receptors and has critical roles in the pathogenesis of diabetes and metabolic syndrome. Here, we analyzed the endocytosis of adiponectin and adiponectin receptor 1 (AdipoR1) and found that they are both internalized into transferrin-positive compartments that follow similar traffic routes. Blocking clathrin-mediated endocytosis by expressing Eps15 mutants or depleting K^+ trapped AdipoR1 at the plasma membrane, and K^+ depletion abolished adiponectin internalization, indicating that the endocytosis of AdipoR1 and adiponectin is clathrin-dependent. Depletion of K^+ and overexpression of Eps15 mutants enhance adiponectin- stimulated AMP-activated protein kinase phosphorylation, suggesting that the endocytosis of AdipoR1 might down-regulate adiponectin signaling. In addition, AdipoR1 colocalizes with the small GTPase Rab5, and a dominant negative Rab5 abrogates AdipoR1 endocytosis. These data indicate that AdipoR1 is internalized through a clathrin- and Rab5- dependent pathway and that endocytosis may play a role in the regulation of adiponectin signaling.展开更多
Epidermal growth factor receptor(EGFR) controls a wide range of cellular processes, and aberrant EGFR signaling as a result of receptor overexpression and/or mutation occurs in many types of cancer. Tumor cells in non...Epidermal growth factor receptor(EGFR) controls a wide range of cellular processes, and aberrant EGFR signaling as a result of receptor overexpression and/or mutation occurs in many types of cancer. Tumor cells in non-small cell lung cancer(NSCLC) patients that harbor EGFR kinase domain mutations exhibit oncogene addiction to mutant EGFR, which confers high sensitivity to tyrosine kinase inhibitors(TKIs). As patients invariably develop resistance to TKIs, it is important to delineate the cell biological basis of mutant EGFR-induced cellular transformation since components of these pathways can serve as alternate therapeutic targets to preempt or overcome resistance. NSCLC-associated EGFR mutants are constitutively-active and induce ligandindependent transformation in nonmalignant cell lines. Emerging data suggest that a number of factors are critical for the mutant EGFR-dependent tumorigenicity, and bypassing the effects of TKIs on these pathways promotes drug resistance. For example, activation of downstream pathways such as Akt, Erk, STAT3 and Src is critical for mutant EGFR-mediated biological processes. It is now well-established that the potency and spatiotemporal features of cellular signaling by receptor tyrosine kinases such as EGFR, as well as the specific pathways activated, is determined by the nature of endocytic traffic pathways through which the active receptors traverse. Recent evidence indicates that NSCLCassociated mutant EGFRs exhibit altered endocytic trafficking and they exhibit reduced Cbl ubiquitin ligasemediated lysosomal downregulation. More recent work has shown that mutant EGFRs undergo ligand-independent traffic into the endocytic recycling compartment, a behavior that plays a key role in Src pathway activation and oncogenesis. These studies are beginning to delineate the close nexus between signaling and endocytic traffic of EGFR mutants as a key driver of oncogenicprocesses. Therefore, in this review, we will discuss the links between mutant EGFR signaling and endocytic properties, and introduce potential mechanisms by which altered endocytic properties of mutant EGFRs may alter signaling and vice versa as well as their implications for NSCLC therapy.展开更多
In this study, a three-dimensional mathematical model was used to study the contribution of clathrins during the process of cellular uptake of spherical nanoparticles under different membrane tensions. The clathrin-co...In this study, a three-dimensional mathematical model was used to study the contribution of clathrins during the process of cellular uptake of spherical nanoparticles under different membrane tensions. The clathrin-coated pit (CCP) that forms around the inward budding of the cell membrane was modeled as a vesicle with bending rigidity. An optimization algorithm was proposed for minimizing the total energy of the system, which comprises the deforming nanoparticle, receptor-ligand bonds, cell membrane, and CCP, in which way, the profile of the system is acquired. The results showed that the CCP enable full wrapping of the nanoparticles at various membrane tensions. When the cell membrane tension increases, the total deformation energy also increases, but the ratio of CCP bending to the minimum value of the total energy of the system decreases. The results also showed that the diameter of the endocytic vesicles determined by the competition between the stretching of the cell membrane and confinement of the coated pits are much larger than the nanoparticles, which is quit different as the results in passive endocytosis that is not facilitated by the CCPs. The present results indicate that variations of tension on cell membranes constitutes a biophysical marker for understanding the size distribution of CCPs observed in experiments. The present results also suggest that the early abortion of endocytosis is related to that the receptor-ligand bonds cannot generate adequate force to wrap the nanoparticles into the cell membrane before the clathrins respond to support the endocytic vesicles. Correspondingly, late abortion may relate to the inability of CCPs to confine the nanoparticles until the occurrence of the necking stage of endocytosis.展开更多
Calcium phosphate nanoparticles(CaPNPs)have good biocompatibility as gene carriers;however,CaPNPs typically exhibit a low transfection efficiency.Cell penetrate peptide(TAT)can increase the uptake of nanoparticles but...Calcium phosphate nanoparticles(CaPNPs)have good biocompatibility as gene carriers;however,CaPNPs typically exhibit a low transfection efficiency.Cell penetrate peptide(TAT)can increase the uptake of nanoparticles but is limited by its non-specificity.Grafting adhesion peptide adhesion peptide on carriers can enhance their targeting.The Plekho1 gene encodes casein kinase-2 interacting protein-1(CKIP-1),which can negatively regulate osteogenic differentiation.Based on the above,we produced a Mg-CaPNPs-RGD-TAT-CKIP-1 siRNA carrier system via hydrothermal synthesis,silanization and adsorption.The effects of this carrier system on cell endocytosis and biological effects were evaluated by cell culture in vitro.The results demonstrate that CaPNPs with 7%Mg(60 nm particle size,short rod shape and good dispersion)were suitable for use as gene carriers.The carrier system boosted the endocytosis of MG63 cells and was helpful for promoting the differentiation of osteoblasts,and the dual-ligand system possessed a synergistic effect.The findings of this study show the tremendous potential of the Mg-CaPNPs-RGD-TAT-CKIP-1 siRNA carrier system for efficient delivery into cells and osteogenesis inducement.展开更多
Mesenchymal stem cells(MSCs)closely interact with the immune system,and they are known to secrete inflammatory cytokines in response to stress stimuli.The biological function of MSC-derived inflammatory cytokines rema...Mesenchymal stem cells(MSCs)closely interact with the immune system,and they are known to secrete inflammatory cytokines in response to stress stimuli.The biological function of MSC-derived inflammatory cytokines remains elusive.Here,we reveal that even under physiological conditions,MSCs produce and release a low level of tumor necrosis factor alpha(TNFα),which is unexpectedly required for preserving the self-renewal and differentiation of MSCs via autocrine/paracrine signaling.Furthermore,TNFαcritically maintains MSC function in vivo during bone homeostasis.Mechanistically,we unexpectedly discovered that physiological levels of TNFαsafeguard MSC homeostasis in a receptor-independent manner through mechanical force-driven endocytosis and that endocytosed TNFαbinds to mammalian target of rapamycin(mTOR)complex 2 and restricts mTOR signaling.Importantly,inhibition of mTOR signaling by rapamycin serves as an effective osteoanabolic therapeutic strategy to protect against TNFαdeficiency and mechanical unloading.Collectively,these findings unravel the physiological framework of the dynamic TNFαshuttlebased mTOR equilibrium that governs MSC and bone homeostasis.展开更多
In this work,a three-dimensional axisymmetric model with nanoparticle,receptor-ligand bonds and cell membrane as a system was used to study the quasi-static receptor-mediated endocytosis process of spherical nanoparti...In this work,a three-dimensional axisymmetric model with nanoparticle,receptor-ligand bonds and cell membrane as a system was used to study the quasi-static receptor-mediated endocytosis process of spherical nanoparticles in drug delivery.The minimization of the system energy function was carried out numerically,and the deformations of nanoparticle,receptor-ligand bonds and cell membrane were predicted.Results show that passive endocytosis may fail due to the rupture of receptor-ligand bonds during the wrapping process,and the size and rigidity of nanoparticles affect the total deformation energy and the terminal wrapping stage.Our results suggest that,in addition to the energy requirement,the success of passive endocytosis also depends on the maximum strength of the receptor-ligand bonds.展开更多
FcαR, the Fc receptor for IgA, is essential for IgA-mediated immune responses. Previous studies have shown that IgA and IgA immune complexes can be rapidly endocytosed by FcαR. However, the underlying mechanism rema...FcαR, the Fc receptor for IgA, is essential for IgA-mediated immune responses. Previous studies have shown that IgA and IgA immune complexes can be rapidly endocytosed by FcαR. However, the underlying mechanism remains unclear. Here, we investigated the endocytic pathway of FcαR in monocytic cell line, U937, that naturally express FcuR and in transfected Chinese hamster ovary (CHO), COS-7 and Hela cells. By using selective chemical inhibitors of different endocytic pathways, overexpression of dominant-negative mutants of Eps15 and knockdown of clathrin heavy chain (CHC) via RNA interference, we demonstrated that endocytosis of FcaR was through a clathrin-mediated pathway. The endocytosed FcαR went into Rab5- and Rabll-positive endosomes. However, endocytosis of FcaR could not be blocked by a dominant-negative mutant of Rab5. We also demonstrated that endocytosis of FcαR was dynamin-dependent by overexpressing a dominant-negative mutant of dynamin. The potential endocytic motif for FcαR was also examined. Unexpectedly, we found that the entire cytoplasmic domain of FcaR was not required for the endocytic process of FcαR. We conclude that endocytosis of FcaR is clathrin- and dynamin-dependent, but is not regulated by RabS, and the endocytic motif is not located in the cytoplasmic domain of FcαR.展开更多
Background:Gram-negative bacterial infections have a major economic impact on both the livestock industry and public health.Toll-like receptor 4(TLR4)plays a crucial role in host defence against Gram-negative bacteria...Background:Gram-negative bacterial infections have a major economic impact on both the livestock industry and public health.Toll-like receptor 4(TLR4)plays a crucial role in host defence against Gram-negative bacteria.Exploring the defence mechanism regulated by TLR4 may provide new targets for treatment of inflammation and control of bacterial infections.In a previous study,we generated transgenic sheep overexpressing TLR4 by microinjection to improve disease resistance.The defence mechanism through which TLR4 overexpression protected these sheep against pathogens is still not fully understood.Results:In the present study,we used Escherichia coli to infect monocytes isolated from peripheral blood of the animal model.The overexpression of TLR4 strongly enhanced the percentage of endocytosis and capacity of elimination in monocytes during the early stages of infection.This phenomenon was mainly due to overexpression of TLR4 promoting caveolae-mediated endocytosis.Pretreatment of the transgenic sheep monocytes with inhibitors of TLR4,Src signalling,or the caveolae-mediated endocytosis pathway reduced the internalization of bacteria,weakened the ability of the monocytes to eliminate the bacteria,and increased the pH of the endosomes.Conclusion:Together,our results reveal the effects of TLR4 on the control of E.coli infection in the innate immunity of sheep and provide crucial evidence of the caveolae-mediated endocytosis pathway required for host resistance to invading bacteria in a large animal model,providing theoretical support for breeding disease resistance in the future.Furthermore,Src and caveolin 1(CAV1)could be potentially valuable targets for the control of infectious diseases.展开更多
In this experiment the morphological changes of mouse peritoneal macrophages in the course of their conjugation with colloidal gold-labelled concanavalin A(ConA-Au) i by the surface receptor and then the endocytosis a...In this experiment the morphological changes of mouse peritoneal macrophages in the course of their conjugation with colloidal gold-labelled concanavalin A(ConA-Au) i by the surface receptor and then the endocytosis and transport of the ConA were observed展开更多
基金supported by the National Basic Research Program of China(Grant No.:2015CB553701)the National Science and Technology Major Project,China(Grant No.:2019ZX09732001).
文摘Morphine is a frequently used analgesic that activates the mu-opioid receptor(MOR),which has prominent side effects of tolerance.Although the inefficiency of morphine in inducing the endocytosis of MOR underlies the development of morphine tolerance,currently,there is no effective therapy to treat morphine tolerance.In the current study,we aimed to develop a monoclonal antibody(mAb)precisely targeting MOR and to determine its therapeutic efficacy on morphine tolerance and the underlying molecular mechanisms.We successfully prepared a mAb targeting MOR,named 3A5C7,by hybridoma technique using a strategy of deoxyribonucleic acid immunization combined with cell immunization,and identified it as an immunoglobulin G mAb with high specificity and affinity for MOR and binding ability to antigens with spatial conformation.Treatment of two cell lines,HEK293T and SH-SY5Y,with 3A5C7 enhanced morphine-induced MOR endocytosis via a G protein-coupled receptor kinase 2(GRK2)/b-arrestin2-dependent mechanism,as demonstrated by immunofluorescence staining,flow cytometry,Western blotting,coimmunoprecipitation,and small interfering ribonucleic acid(siRNA)-based knockdown.This mAb also allowed MOR recycling from cytoplasm to plasma membrane and attenuated morphine-induced phosphorylation of MOR.We established an in vitro morphine tolerance model using differentiated SH-SY5Y cells induced by retinoic acid.Western blot,enzyme-linked immunosorbent assays,and siRNA-based knockdown revealed that 3A5C7 mAb diminished hyperactivation of adenylate cyclase,the in vitro biomarker of morphine tolerance,via the GRK2/b-arrestin2 pathway.Furthermore,in vivo hotplate test demonstrated that chronic intrathecal administration of 3A5C7 significantly alleviated morphine tolerance in mice,and withdrawal jumping test revealed that both chronic and acute 3A5C7 intrathecal administration attenuated morphine dependence.Finally,intrathecal electroporation of silencing short hairpin RNA illustrated that the in vivo anti-tolerance and anti-dependence efficacy of 3A5C7 was mediated by enhanced morphine-induced MOR endocytosis via GRK2/b-arrestin2 pathway.Collectively,our study provided a therapeutic mAb,3A5C7,targeting MOR to treat morphine tolerance,mediated by enhancing morphine-induced MOR endocytosis.The mAb 3A5C7 demonstrates promising translational value to treat clinical morphine tolerance.
文摘Parkinson's disease is characterized by the selective degeneration of dopamine neurons in the nigrostriatal pathway and dopamine deficiency in the striatum.The precise reasons behind the specific degeneration of these dopamine neurons remain largely elusive.Genetic investigations have identified over 20 causative PARK genes and 90 genomic risk loci associated with both familial and sporadic Parkinson's disease.Notably,several of these genes are linked to the synaptic vesicle recycling process,particularly the clathrinmediated endocytosis pathway.This suggests that impaired synaptic vesicle recycling might represent an early feature of Parkinson's disease,followed by axonal degeneration and the eventual loss of dopamine cell bodies in the midbrain via a"dying back"mechanism.Recently,several new animal and cellular models with Parkinson's disease-linked mutations affecting the endocytic pathway have been created and extensively characterized.These models faithfully recapitulate certain Parkinson's disease-like features at the animal,circuit,and cellular levels,and exhibit defects in synaptic membrane trafficking,further supporting the findings from human genetics and clinical studies.In this review,we will first summarize the cellular and molecular findings from the models of two Parkinson's disease-linked clathrin uncoating proteins:auxilin(DNAJC6/PARK19)and synaptojanin 1(SYNJ1/PARK20).The mouse models carrying these two PARK gene mutations phenocopy each other with specific dopamine terminal pathology and display a potent synergistic effect.Subsequently,we will delve into the involvement of several clathrin-mediated endocytosis-related proteins(GAK,endophilin A1,SAC2/INPP5 F,synaptotagmin-11),identified as Parkinson's disease risk factors through genome-wide association studies,in Parkinson's disease pathogenesis.We will also explore the direct or indirect roles of some common Parkinson's disease-linked proteins(alpha-synuclein(PARK1/4),Parkin(PARK2),and LRRK2(PARK8))in synaptic endocytic trafficking.Additionally,we will discuss the emerging novel functions of these endocytic proteins in downstream membrane traffic pathways,particularly autophagy.Given that synaptic dysfunction is considered as an early event in Parkinson's disease,a deeper understanding of the cellular mechanisms underlying synaptic vesicle endocytic trafficking may unveil novel to rgets for early diagnosis and the development of interventional therapies for Parkinson's disease.Future research should aim to elucidate why generalized synaptic endocytic dysfunction leads to the selective degeneration of nigrostriatal dopamine neurons in Parkinson's disease.
基金supported by the Basic Study and Interdisciplinary R&D Foundation of the University of Seoul(2019)grants,Nos.201910021035202006251003(both to KYR and JC)。
文摘Many types of plastic products,including polystyrene,have long been used in commercial and industrial applications.Microplastics and nanoplastics,plastic particles derived from these plastic products,are emerging as environmental pollutants that can pose health risks to a wide variety of living organisms,including humans.However,it is not well understood how microplastics and nanoplastics affect cellular functions and induce stress responses.Humans can be exposed to polystyrene-microplastics and polystyrene-nanoplastics through ingestion,inhalation,or skin contact.Most ingested plastics are excreted from the body,but inhaled plastics may accumulate in the lungs and can even reach the brain via the nose-to-brain route.Small-sized polystyrene-nanoplastics can enter cells by endocytosis,accumulate in the cytoplasm,and cause various cellular stresses,such as inflammation with increased pro-inflammatory cytokine production,oxidative stress with generation of reactive oxygen species,and mitochondrial dysfunction.They induce autophagy activation and autophagosome formation,but autophagic flux may be impaired due to lysosomal dysfunction.Unless permanently exposed to polystyrene-nanoplastics,they can be removed from cells by exocytosis and subsequently restore cellular function.However,neurons are very susceptible to this type of stress,thus even acute exposure can lead to neurodegeneration without recovery.This review focuses specifically on recent advances in research on polystyrene-nanoplastic-induced cytotoxicity and neurotoxicity.Furthermore,in this review,based on mechanistic studies of polystyrene-nanoplastics at the cellular level other than neurons,future directions for overcoming the negative effects of polystyrene-nanoplastics on neurons were suggested.
基金supported by the National Natural Science Foundation of China(U22A20520)the Innovation Team Project of Modern Agricultural Industrial Technology System of Guangdong Province,China(2023KJ119)the Natural Science Foundation Program of Guangdong Province,China(2023A1515012206)。
文摘Streptococcus suis serotype 2(S.suis 2)is a zoonotic pathogen that clinically causes severe swine and human infections(such as meningitis,endocarditis,and septicemia).In order to cause widespread diseases in different organs,S.suis 2 must colonize the host,break the blood barrier,and cause exaggerated inflammation.In the last few years,most studies have focused on a single virulence factor and its influences on the host.Membrane vesicles(MVs)can be actively secreted into the extracellular environment contributing to bacteria-host interactions.Gram-negative bacteria-derived outer membrane vesicles(OMVs)were recently shown to activate host Caspase-11-mediated non-canonical inflammasome pathway via deliverance of OMV-bound lipopolysaccharide(LPS),causing host cell pyroptosis.However,little is known about the effect of the MVs from S.suis 2(Gram-positive bacteria without LPS)on cell pyroptosis.Thus,we investigated the molecular mechanism by which S.suis 2 MVs participate in endothelial cell pyroptosis.In this study,we used proteomics,electron scanning microscopy,fluorescence microscope,Western blotting,and bioassays,to investigate the MVs secreted by S.suis 2.First,we demonstrated that S.suis 2 secreted MVs with an average diameter of 72.04 nm,and 200 proteins in MVs were identified.Then,we showed that MVs were transported to cells via mainly dynamin-dependent endocytosis.The S.suis 2 MVs activated NLRP3/Caspase-1/GSDMD canonical inflammasome signaling pathway,resulting in cell pyroptosis,but it did not activate the Caspase-4/-5 pathway.More importantly,endothelial cells produce large amounts of reactive oxygen species(ROS)and lost their mitochondrial membrane potential under induction by S.suis 2 MVs.The results in this study suggest for the first time that MVs from S.suis 2 were internalized by endothelial cells via mainly dynamin-dependent endocytosis and might promote NLRP3/Caspase-1/GSDMD pathway by mitochondrial damage,which produced mtDNA and ROS under induction,leading to the pyroptosis of endothelial cells.
基金supported by the Japan Society for the Promotion of Science KAKENHI(grant Nos.23K05678 to IM,19H05711 and 20H00466 to KS)the Joint Research Program of Institute for Molecular and Cellular Regulation,Gunma University(to KS)。
文摘In eukaryotic cells,organelles in the secretory,lysosomal,and endocytic pathways actively exchange biological materials with each other through intracellular membrane trafficking,which is the process of transporting the cargo of proteins,lipids,and other molecules to appropriate compartments via transport vesicles or intermediates.These processes are strictly regulated by various small GTPases such as the RAS-like in rat brain(RAB)protein family,which is the largest subfamily of the RAS superfamily.Dysfunction of membrane trafficking affects tissue homeostasis and leads to a wide range of diseases,including neurological disorders and neurodegenerative diseases.Therefore,it is important to understand the physiological and pathological roles of RAB proteins in brain function.RAB35,a member of the RAB family,is an evolutionarily conserved protein in metazoans.A wide range of studies using cultured mammalian cells and model organisms have revealed that RAB35 mediates various processes such as cytokinesis,endocytic recycling,actin bundling,and cell migration.RAB35 is also involved in neurite outgrowth and turnover of synaptic vesicles.We generated brain-specific Rab35 knockout mice to study the physiological roles of RAB35 in brain development and function.These mice exhibited defects in anxiety-related behaviors and spatial memory.Strikingly,RAB35 is required for the precise positioning of pyramidal neurons during hippocampal development,and thereby for normal hippocampal lamination.In contrast,layer formation in the cerebral cortex occurred superficially,even in the absence of RAB35,suggesting a predominant role for RAB35 in hippocampal development rather than in cerebral cortex development.Recent studies have suggested an association between RAB35 and neurodegenerative diseases,including Parkinson's disease and Alzheimer's disease.In this review,we provide an overview of the current understanding of subcellular functions of RAB35.We also provide insights into the physiological role of RAB35 in mammalian brain development and function,and discuss the involvement of RAB35 dysfunction in neurodegenerative diseases.
文摘Endocytosis occurs at the cell surface and involves internalization of the plasma membrane (PM) along with its constituent membrane proteins and lipids. Endocytosis is involved in sampling of the extracellular milieu and also serves to regulate various processes initiated at the cell surface. These include nutrient uptake, signaling from cell- surface receptors, and many other processes essential for cell and tissue functioning in metazoans. It is also central to the maintenance of PM lipid and protein homeostasis. There are multiple means of internalization that operate concurrently, at the cell surface. With advancement in high-resolution visualization techniques, it is now possible to track multiple endocytic cargo at the same time, revealing a remarkable diversity of endocytic processes in a single cell. A combination of live cell imaging and efficient genetic manipulations has also aided in understanding the functional hierarchy of molecular players in these mechanisms of internalization. Here we provide an account of various endocytic routes, their mechanisms of operation and occurrence across phyla.
文摘Nanomedicines employ multiple endocytic pathways to enter cells.Their following fate is interesting,but it is not sufficient understood currently.This review introduces the endocytic pathways,presents new technologies to confirm the specific endocytic pathways and discusses factors for pathway selection.In addition,some intriguing implication about nanomedicine design based on endocytosis will also be discussed at the end.This review may provide new thoughts for the design of novel multifunctional nanomedicines.
文摘In eukaryotic cells, receptor endocytosis is a key event regulating signaling transduction. Adiponectin receptors belong to a new receptor family that is distinct from G-protein-coupled receptors and has critical roles in the pathogenesis of diabetes and metabolic syndrome. Here, we analyzed the endocytosis of adiponectin and adiponectin receptor 1 (AdipoR1) and found that they are both internalized into transferrin-positive compartments that follow similar traffic routes. Blocking clathrin-mediated endocytosis by expressing Eps15 mutants or depleting K^+ trapped AdipoR1 at the plasma membrane, and K^+ depletion abolished adiponectin internalization, indicating that the endocytosis of AdipoR1 and adiponectin is clathrin-dependent. Depletion of K^+ and overexpression of Eps15 mutants enhance adiponectin- stimulated AMP-activated protein kinase phosphorylation, suggesting that the endocytosis of AdipoR1 might down-regulate adiponectin signaling. In addition, AdipoR1 colocalizes with the small GTPase Rab5, and a dominant negative Rab5 abrogates AdipoR1 endocytosis. These data indicate that AdipoR1 is internalized through a clathrin- and Rab5- dependent pathway and that endocytosis may play a role in the regulation of adiponectin signaling.
基金Supported by the NIH grant to Band H,No.CA99163,CA87986,CA105489 and CA116552a Department of Defense grant to Band H,No.W81WH-11-1-0167+4 种基金the NIH grant to Band V,No.CA96844 and CA144027Department of Defense grant to Band V,No.W81XWH-07-1-0351 and W81XWH-11-1-0171the Nebraska Department of Health and Human Services LB-506 grant to Band H,No.2014-01the NCI Core Support Grant to the UNMC Buffett Cancer CenterBielecki TA was a predoctoral trainee under the NCI Institutional Cancer Biology Training Grant,No.CA009476
文摘Epidermal growth factor receptor(EGFR) controls a wide range of cellular processes, and aberrant EGFR signaling as a result of receptor overexpression and/or mutation occurs in many types of cancer. Tumor cells in non-small cell lung cancer(NSCLC) patients that harbor EGFR kinase domain mutations exhibit oncogene addiction to mutant EGFR, which confers high sensitivity to tyrosine kinase inhibitors(TKIs). As patients invariably develop resistance to TKIs, it is important to delineate the cell biological basis of mutant EGFR-induced cellular transformation since components of these pathways can serve as alternate therapeutic targets to preempt or overcome resistance. NSCLC-associated EGFR mutants are constitutively-active and induce ligandindependent transformation in nonmalignant cell lines. Emerging data suggest that a number of factors are critical for the mutant EGFR-dependent tumorigenicity, and bypassing the effects of TKIs on these pathways promotes drug resistance. For example, activation of downstream pathways such as Akt, Erk, STAT3 and Src is critical for mutant EGFR-mediated biological processes. It is now well-established that the potency and spatiotemporal features of cellular signaling by receptor tyrosine kinases such as EGFR, as well as the specific pathways activated, is determined by the nature of endocytic traffic pathways through which the active receptors traverse. Recent evidence indicates that NSCLCassociated mutant EGFRs exhibit altered endocytic trafficking and they exhibit reduced Cbl ubiquitin ligasemediated lysosomal downregulation. More recent work has shown that mutant EGFRs undergo ligand-independent traffic into the endocytic recycling compartment, a behavior that plays a key role in Src pathway activation and oncogenesis. These studies are beginning to delineate the close nexus between signaling and endocytic traffic of EGFR mutants as a key driver of oncogenicprocesses. Therefore, in this review, we will discuss the links between mutant EGFR signaling and endocytic properties, and introduce potential mechanisms by which altered endocytic properties of mutant EGFRs may alter signaling and vice versa as well as their implications for NSCLC therapy.
基金the National Natural Science Foundation of China (Grant 11872040)the Natural Science and Engineering Research Council of Canada.
文摘In this study, a three-dimensional mathematical model was used to study the contribution of clathrins during the process of cellular uptake of spherical nanoparticles under different membrane tensions. The clathrin-coated pit (CCP) that forms around the inward budding of the cell membrane was modeled as a vesicle with bending rigidity. An optimization algorithm was proposed for minimizing the total energy of the system, which comprises the deforming nanoparticle, receptor-ligand bonds, cell membrane, and CCP, in which way, the profile of the system is acquired. The results showed that the CCP enable full wrapping of the nanoparticles at various membrane tensions. When the cell membrane tension increases, the total deformation energy also increases, but the ratio of CCP bending to the minimum value of the total energy of the system decreases. The results also showed that the diameter of the endocytic vesicles determined by the competition between the stretching of the cell membrane and confinement of the coated pits are much larger than the nanoparticles, which is quit different as the results in passive endocytosis that is not facilitated by the CCPs. The present results indicate that variations of tension on cell membranes constitutes a biophysical marker for understanding the size distribution of CCPs observed in experiments. The present results also suggest that the early abortion of endocytosis is related to that the receptor-ligand bonds cannot generate adequate force to wrap the nanoparticles into the cell membrane before the clathrins respond to support the endocytic vesicles. Correspondingly, late abortion may relate to the inability of CCPs to confine the nanoparticles until the occurrence of the necking stage of endocytosis.
基金Project(81571021)supported by the National Natural Science Foundation of ChinaProject(2018zzts944)supported by the Graduate Student Independent Exploration Innovation Fund of the Central South University,China+1 种基金Projects(2015WK3012,2018SK2017)supported by the Hunan Provincial Science and Technology Department,ChinaProject(20160301)supported by New Talent Project of the Third Xiangya Hospital of Central South University,China。
文摘Calcium phosphate nanoparticles(CaPNPs)have good biocompatibility as gene carriers;however,CaPNPs typically exhibit a low transfection efficiency.Cell penetrate peptide(TAT)can increase the uptake of nanoparticles but is limited by its non-specificity.Grafting adhesion peptide adhesion peptide on carriers can enhance their targeting.The Plekho1 gene encodes casein kinase-2 interacting protein-1(CKIP-1),which can negatively regulate osteogenic differentiation.Based on the above,we produced a Mg-CaPNPs-RGD-TAT-CKIP-1 siRNA carrier system via hydrothermal synthesis,silanization and adsorption.The effects of this carrier system on cell endocytosis and biological effects were evaluated by cell culture in vitro.The results demonstrate that CaPNPs with 7%Mg(60 nm particle size,short rod shape and good dispersion)were suitable for use as gene carriers.The carrier system boosted the endocytosis of MG63 cells and was helpful for promoting the differentiation of osteoblasts,and the dual-ligand system possessed a synergistic effect.The findings of this study show the tremendous potential of the Mg-CaPNPs-RGD-TAT-CKIP-1 siRNA carrier system for efficient delivery into cells and osteogenesis inducement.
基金This work was supported by grants from the National Institute of Dental and Craniofacial Research,National Institutes of Health,Department of Health and Human Services(K99E025915 to C.C.)a Schoenleber Pilot Research Grant(to S.S.)from the University of Pennsylvania School of Dental Medicine,the Guangdong Financial Fund for High-Caliber Hospital Construction,the Postdoctoral Innovative Talents Support Program of China(BX20190380 to B.S.)the General Program of the China Postdoctoral Science Foundation(2019M663986 to B.S.).
文摘Mesenchymal stem cells(MSCs)closely interact with the immune system,and they are known to secrete inflammatory cytokines in response to stress stimuli.The biological function of MSC-derived inflammatory cytokines remains elusive.Here,we reveal that even under physiological conditions,MSCs produce and release a low level of tumor necrosis factor alpha(TNFα),which is unexpectedly required for preserving the self-renewal and differentiation of MSCs via autocrine/paracrine signaling.Furthermore,TNFαcritically maintains MSC function in vivo during bone homeostasis.Mechanistically,we unexpectedly discovered that physiological levels of TNFαsafeguard MSC homeostasis in a receptor-independent manner through mechanical force-driven endocytosis and that endocytosed TNFαbinds to mammalian target of rapamycin(mTOR)complex 2 and restricts mTOR signaling.Importantly,inhibition of mTOR signaling by rapamycin serves as an effective osteoanabolic therapeutic strategy to protect against TNFαdeficiency and mechanical unloading.Collectively,these findings unravel the physiological framework of the dynamic TNFαshuttlebased mTOR equilibrium that governs MSC and bone homeostasis.
基金This work was supported by the National Natural Science Foundations of China(11372191,11232010)the Natural Science and Engineering Research Council of Canada.
文摘In this work,a three-dimensional axisymmetric model with nanoparticle,receptor-ligand bonds and cell membrane as a system was used to study the quasi-static receptor-mediated endocytosis process of spherical nanoparticles in drug delivery.The minimization of the system energy function was carried out numerically,and the deformations of nanoparticle,receptor-ligand bonds and cell membrane were predicted.Results show that passive endocytosis may fail due to the rupture of receptor-ligand bonds during the wrapping process,and the size and rigidity of nanoparticles affect the total deformation energy and the terminal wrapping stage.Our results suggest that,in addition to the energy requirement,the success of passive endocytosis also depends on the maximum strength of the receptor-ligand bonds.
文摘FcαR, the Fc receptor for IgA, is essential for IgA-mediated immune responses. Previous studies have shown that IgA and IgA immune complexes can be rapidly endocytosed by FcαR. However, the underlying mechanism remains unclear. Here, we investigated the endocytic pathway of FcαR in monocytic cell line, U937, that naturally express FcuR and in transfected Chinese hamster ovary (CHO), COS-7 and Hela cells. By using selective chemical inhibitors of different endocytic pathways, overexpression of dominant-negative mutants of Eps15 and knockdown of clathrin heavy chain (CHC) via RNA interference, we demonstrated that endocytosis of FcaR was through a clathrin-mediated pathway. The endocytosed FcαR went into Rab5- and Rabll-positive endosomes. However, endocytosis of FcaR could not be blocked by a dominant-negative mutant of Rab5. We also demonstrated that endocytosis of FcαR was dynamin-dependent by overexpressing a dominant-negative mutant of dynamin. The potential endocytic motif for FcαR was also examined. Unexpectedly, we found that the entire cytoplasmic domain of FcaR was not required for the endocytic process of FcαR. We conclude that endocytosis of FcaR is clathrin- and dynamin-dependent, but is not regulated by RabS, and the endocytic motif is not located in the cytoplasmic domain of FcαR.
基金supported by National Science and Technology Major Project of China(2016ZX08008-003).
文摘Background:Gram-negative bacterial infections have a major economic impact on both the livestock industry and public health.Toll-like receptor 4(TLR4)plays a crucial role in host defence against Gram-negative bacteria.Exploring the defence mechanism regulated by TLR4 may provide new targets for treatment of inflammation and control of bacterial infections.In a previous study,we generated transgenic sheep overexpressing TLR4 by microinjection to improve disease resistance.The defence mechanism through which TLR4 overexpression protected these sheep against pathogens is still not fully understood.Results:In the present study,we used Escherichia coli to infect monocytes isolated from peripheral blood of the animal model.The overexpression of TLR4 strongly enhanced the percentage of endocytosis and capacity of elimination in monocytes during the early stages of infection.This phenomenon was mainly due to overexpression of TLR4 promoting caveolae-mediated endocytosis.Pretreatment of the transgenic sheep monocytes with inhibitors of TLR4,Src signalling,or the caveolae-mediated endocytosis pathway reduced the internalization of bacteria,weakened the ability of the monocytes to eliminate the bacteria,and increased the pH of the endosomes.Conclusion:Together,our results reveal the effects of TLR4 on the control of E.coli infection in the innate immunity of sheep and provide crucial evidence of the caveolae-mediated endocytosis pathway required for host resistance to invading bacteria in a large animal model,providing theoretical support for breeding disease resistance in the future.Furthermore,Src and caveolin 1(CAV1)could be potentially valuable targets for the control of infectious diseases.
文摘In this experiment the morphological changes of mouse peritoneal macrophages in the course of their conjugation with colloidal gold-labelled concanavalin A(ConA-Au) i by the surface receptor and then the endocytosis and transport of the ConA were observed