期刊文献+
共找到437篇文章
< 1 2 22 >
每页显示 20 50 100
Monoclonal antibody targeting mu-opioid receptor attenuates morphine tolerance via enhancing morphine-induced receptor endocytosis
1
作者 Jia-Jia Zhang Chang-Geng Song +11 位作者 Miao Wang Gai-Qin Zhang Bin Wang Xi Chen Peng Lin Yu-Meng Zhu Zhi-Chuan Sun Ya-Zhou Wang Jian-Li Jiang Ling Li Xiang-Min Yang Zhi-Nan Chen 《Journal of Pharmaceutical Analysis》 SCIE CAS CSCD 2023年第10期1135-1152,共18页
Morphine is a frequently used analgesic that activates the mu-opioid receptor(MOR),which has prominent side effects of tolerance.Although the inefficiency of morphine in inducing the endocytosis of MOR underlies the d... Morphine is a frequently used analgesic that activates the mu-opioid receptor(MOR),which has prominent side effects of tolerance.Although the inefficiency of morphine in inducing the endocytosis of MOR underlies the development of morphine tolerance,currently,there is no effective therapy to treat morphine tolerance.In the current study,we aimed to develop a monoclonal antibody(mAb)precisely targeting MOR and to determine its therapeutic efficacy on morphine tolerance and the underlying molecular mechanisms.We successfully prepared a mAb targeting MOR,named 3A5C7,by hybridoma technique using a strategy of deoxyribonucleic acid immunization combined with cell immunization,and identified it as an immunoglobulin G mAb with high specificity and affinity for MOR and binding ability to antigens with spatial conformation.Treatment of two cell lines,HEK293T and SH-SY5Y,with 3A5C7 enhanced morphine-induced MOR endocytosis via a G protein-coupled receptor kinase 2(GRK2)/b-arrestin2-dependent mechanism,as demonstrated by immunofluorescence staining,flow cytometry,Western blotting,coimmunoprecipitation,and small interfering ribonucleic acid(siRNA)-based knockdown.This mAb also allowed MOR recycling from cytoplasm to plasma membrane and attenuated morphine-induced phosphorylation of MOR.We established an in vitro morphine tolerance model using differentiated SH-SY5Y cells induced by retinoic acid.Western blot,enzyme-linked immunosorbent assays,and siRNA-based knockdown revealed that 3A5C7 mAb diminished hyperactivation of adenylate cyclase,the in vitro biomarker of morphine tolerance,via the GRK2/b-arrestin2 pathway.Furthermore,in vivo hotplate test demonstrated that chronic intrathecal administration of 3A5C7 significantly alleviated morphine tolerance in mice,and withdrawal jumping test revealed that both chronic and acute 3A5C7 intrathecal administration attenuated morphine dependence.Finally,intrathecal electroporation of silencing short hairpin RNA illustrated that the in vivo anti-tolerance and anti-dependence efficacy of 3A5C7 was mediated by enhanced morphine-induced MOR endocytosis via GRK2/b-arrestin2 pathway.Collectively,our study provided a therapeutic mAb,3A5C7,targeting MOR to treat morphine tolerance,mediated by enhancing morphine-induced MOR endocytosis.The mAb 3A5C7 demonstrates promising translational value to treat clinical morphine tolerance. 展开更多
关键词 Morphine tolerance Mu-opioid receptor endocytosis Monoclonal antibody Physical dependence
下载PDF
猪繁殖与呼吸综合征病毒入侵宿主细胞途径研究进展 被引量:2
2
作者 李睿 乔松林 张改平 《中国兽医杂志》 CAS 北大核心 2024年第3期80-83,共4页
病毒入侵宿主细胞是其完成自身复制周期的首要步骤。全面解析病毒入侵宿主细胞途径可深入揭示病毒感染及其致病机制,有助于制定更为有效的抗病毒策略。猪繁殖与呼吸综合征病毒(PRRSV)是具有囊膜的单股正链RNA病毒,对全球养猪业造成巨大... 病毒入侵宿主细胞是其完成自身复制周期的首要步骤。全面解析病毒入侵宿主细胞途径可深入揭示病毒感染及其致病机制,有助于制定更为有效的抗病毒策略。猪繁殖与呼吸综合征病毒(PRRSV)是具有囊膜的单股正链RNA病毒,对全球养猪业造成巨大的经济损失。以往研究报道PRRSV主要通过网格蛋白介导的内吞途径(CME)入侵宿主细胞。近年来研究发现,除CME外,PRRSV还会采取其他途径入侵宿主细胞。本文通过总结PRRSV入侵宿主细胞途径的最新研究进展,以期加深人们对PRRSV的认识,并为防控该病毒提供新的思路。 展开更多
关键词 猪繁殖与呼吸综合征病毒(PRRSV) 入侵 内吞 巨胞饮 膜融合
下载PDF
Dysfunction of synaptic endocytic trafficking in Parkinson's disease 被引量:1
3
作者 Xin Yi Ng Mian Cao 《Neural Regeneration Research》 SCIE CAS CSCD 2024年第12期2649-2660,共12页
Parkinson's disease is characterized by the selective degeneration of dopamine neurons in the nigrostriatal pathway and dopamine deficiency in the striatum.The precise reasons behind the specific degeneration of t... Parkinson's disease is characterized by the selective degeneration of dopamine neurons in the nigrostriatal pathway and dopamine deficiency in the striatum.The precise reasons behind the specific degeneration of these dopamine neurons remain largely elusive.Genetic investigations have identified over 20 causative PARK genes and 90 genomic risk loci associated with both familial and sporadic Parkinson's disease.Notably,several of these genes are linked to the synaptic vesicle recycling process,particularly the clathrinmediated endocytosis pathway.This suggests that impaired synaptic vesicle recycling might represent an early feature of Parkinson's disease,followed by axonal degeneration and the eventual loss of dopamine cell bodies in the midbrain via a"dying back"mechanism.Recently,several new animal and cellular models with Parkinson's disease-linked mutations affecting the endocytic pathway have been created and extensively characterized.These models faithfully recapitulate certain Parkinson's disease-like features at the animal,circuit,and cellular levels,and exhibit defects in synaptic membrane trafficking,further supporting the findings from human genetics and clinical studies.In this review,we will first summarize the cellular and molecular findings from the models of two Parkinson's disease-linked clathrin uncoating proteins:auxilin(DNAJC6/PARK19)and synaptojanin 1(SYNJ1/PARK20).The mouse models carrying these two PARK gene mutations phenocopy each other with specific dopamine terminal pathology and display a potent synergistic effect.Subsequently,we will delve into the involvement of several clathrin-mediated endocytosis-related proteins(GAK,endophilin A1,SAC2/INPP5 F,synaptotagmin-11),identified as Parkinson's disease risk factors through genome-wide association studies,in Parkinson's disease pathogenesis.We will also explore the direct or indirect roles of some common Parkinson's disease-linked proteins(alpha-synuclein(PARK1/4),Parkin(PARK2),and LRRK2(PARK8))in synaptic endocytic trafficking.Additionally,we will discuss the emerging novel functions of these endocytic proteins in downstream membrane traffic pathways,particularly autophagy.Given that synaptic dysfunction is considered as an early event in Parkinson's disease,a deeper understanding of the cellular mechanisms underlying synaptic vesicle endocytic trafficking may unveil novel to rgets for early diagnosis and the development of interventional therapies for Parkinson's disease.Future research should aim to elucidate why generalized synaptic endocytic dysfunction leads to the selective degeneration of nigrostriatal dopamine neurons in Parkinson's disease. 展开更多
关键词 AUTOPHAGY auxilin/PARK19 clathrin-mediated endocytosis dopamine neurons NEURODEGENERATION nigrostriatal pathway Parkinson's disease synaptic vesicle recycling synaptojanin1/PARK20
下载PDF
内吞作用相关基因FCHO2在乳腺癌中的表达及功能分析
4
作者 冯雪飞 郝艳龙 +4 位作者 孟小燕 郭艳琳 翟元芳 邹斌斌 张玲 《中国肿瘤生物治疗杂志》 CAS CSCD 北大核心 2024年第6期598-606,共9页
目的:探讨内吞作用相关基因FCHO2在各亚型乳腺癌中的表达及其与乳腺癌患者的预后和免疫细胞浸润的相关性。方法:应用免疫组化法和bc-GenExMinerv5.0数据库数据分析FCHO2在各亚型乳腺癌组织中的表达,通过GEO和TIMER数据库数据分析FCHO2... 目的:探讨内吞作用相关基因FCHO2在各亚型乳腺癌中的表达及其与乳腺癌患者的预后和免疫细胞浸润的相关性。方法:应用免疫组化法和bc-GenExMinerv5.0数据库数据分析FCHO2在各亚型乳腺癌组织中的表达,通过GEO和TIMER数据库数据分析FCHO2与各亚型乳腺癌患者预后和免疫细胞浸润的关系,利用STRING和GEPIA数据库数据分析与FCHO2的互作蛋白网络和其与互作蛋白的相关性,通过UALCAN和DAVID数据库数据对乳腺癌组织中FCHO2表达相关基因进行KEGG和GO分析。结果:免疫组化法结果显示,FCHO2在管腔型和HER2+乳腺癌组织中均呈高表达(均P<0.05),且与HER2和Ki67表达有关联(P=0.03和P=0.007)。FCHO2高表达的管腔型乳腺癌患者总生存期(OS)和无复发生存期(RFS)均明显缩短(均P<0.05)。FCHO2蛋白与EPS15等多种蛋白表达相关且构成蛋白-蛋白互作网络。KEGG和GO分析显示,乳腺癌组织中FCHO2相关表达基因主要与昼夜节律、自噬等生物学过程有关,涉及叉头框蛋白O(FoxO)和TGF-β等信号通路。FCHO2表达与各亚型乳腺癌组织中的免疫细胞浸润相关(均P<0.05)。结论:FCHO2在管腔型、HER2+乳腺癌组织中呈高表达,且与管腔型乳腺癌患者预后及免疫细胞浸润相关,其可能成为乳腺癌治疗的潜在靶点。 展开更多
关键词 FCHO2 内吞作用 乳腺癌 预后 免疫细胞浸润 生物信息学分析
下载PDF
Recent progress and future directions of the research on nanoplastic-induced neurotoxicity
5
作者 Seung-Woo Han Jinhee Choi Kwon-Yul Ryu 《Neural Regeneration Research》 SCIE CAS CSCD 2024年第2期331-335,共5页
Many types of plastic products,including polystyrene,have long been used in commercial and industrial applications.Microplastics and nanoplastics,plastic particles derived from these plastic products,are emerging as e... Many types of plastic products,including polystyrene,have long been used in commercial and industrial applications.Microplastics and nanoplastics,plastic particles derived from these plastic products,are emerging as environmental pollutants that can pose health risks to a wide variety of living organisms,including humans.However,it is not well understood how microplastics and nanoplastics affect cellular functions and induce stress responses.Humans can be exposed to polystyrene-microplastics and polystyrene-nanoplastics through ingestion,inhalation,or skin contact.Most ingested plastics are excreted from the body,but inhaled plastics may accumulate in the lungs and can even reach the brain via the nose-to-brain route.Small-sized polystyrene-nanoplastics can enter cells by endocytosis,accumulate in the cytoplasm,and cause various cellular stresses,such as inflammation with increased pro-inflammatory cytokine production,oxidative stress with generation of reactive oxygen species,and mitochondrial dysfunction.They induce autophagy activation and autophagosome formation,but autophagic flux may be impaired due to lysosomal dysfunction.Unless permanently exposed to polystyrene-nanoplastics,they can be removed from cells by exocytosis and subsequently restore cellular function.However,neurons are very susceptible to this type of stress,thus even acute exposure can lead to neurodegeneration without recovery.This review focuses specifically on recent advances in research on polystyrene-nanoplastic-induced cytotoxicity and neurotoxicity.Furthermore,in this review,based on mechanistic studies of polystyrene-nanoplastics at the cellular level other than neurons,future directions for overcoming the negative effects of polystyrene-nanoplastics on neurons were suggested. 展开更多
关键词 AUTOPHAGY cellular stress CYTOTOXICITY endocytosis EXOCYTOSIS inflammation microplastics nanoplastics NEUROTOXICITY oxidative stress POLYSTYRENE
下载PDF
Membrane vesicles derived from Streptococcus suis serotype 2 induce cell pyroptosis in endothelial cells via the NLRP3/Caspase-1/GSDMD pathway
6
作者 Keda Shi Yan Li +4 位作者 Minsheng Xu Kunli Zhang Hongchao Gou Chunling Li Shaolun Zhai 《Journal of Integrative Agriculture》 SCIE CAS CSCD 2024年第4期1338-1353,共16页
Streptococcus suis serotype 2(S.suis 2)is a zoonotic pathogen that clinically causes severe swine and human infections(such as meningitis,endocarditis,and septicemia).In order to cause widespread diseases in different... Streptococcus suis serotype 2(S.suis 2)is a zoonotic pathogen that clinically causes severe swine and human infections(such as meningitis,endocarditis,and septicemia).In order to cause widespread diseases in different organs,S.suis 2 must colonize the host,break the blood barrier,and cause exaggerated inflammation.In the last few years,most studies have focused on a single virulence factor and its influences on the host.Membrane vesicles(MVs)can be actively secreted into the extracellular environment contributing to bacteria-host interactions.Gram-negative bacteria-derived outer membrane vesicles(OMVs)were recently shown to activate host Caspase-11-mediated non-canonical inflammasome pathway via deliverance of OMV-bound lipopolysaccharide(LPS),causing host cell pyroptosis.However,little is known about the effect of the MVs from S.suis 2(Gram-positive bacteria without LPS)on cell pyroptosis.Thus,we investigated the molecular mechanism by which S.suis 2 MVs participate in endothelial cell pyroptosis.In this study,we used proteomics,electron scanning microscopy,fluorescence microscope,Western blotting,and bioassays,to investigate the MVs secreted by S.suis 2.First,we demonstrated that S.suis 2 secreted MVs with an average diameter of 72.04 nm,and 200 proteins in MVs were identified.Then,we showed that MVs were transported to cells via mainly dynamin-dependent endocytosis.The S.suis 2 MVs activated NLRP3/Caspase-1/GSDMD canonical inflammasome signaling pathway,resulting in cell pyroptosis,but it did not activate the Caspase-4/-5 pathway.More importantly,endothelial cells produce large amounts of reactive oxygen species(ROS)and lost their mitochondrial membrane potential under induction by S.suis 2 MVs.The results in this study suggest for the first time that MVs from S.suis 2 were internalized by endothelial cells via mainly dynamin-dependent endocytosis and might promote NLRP3/Caspase-1/GSDMD pathway by mitochondrial damage,which produced mtDNA and ROS under induction,leading to the pyroptosis of endothelial cells. 展开更多
关键词 Streptococcus suis serotype 2 membrane vesicles endocytosis PYROPTOSIS NLRP3 inflammasomes mitochondrial damage endothelial cell
下载PDF
New aspects of a small GTPase RAB35 in brain development and function
7
作者 Ikuko Maejima Ken Sato 《Neural Regeneration Research》 SCIE CAS 2025年第7期1971-1980,共10页
In eukaryotic cells,organelles in the secretory,lysosomal,and endocytic pathways actively exchange biological materials with each other through intracellular membrane trafficking,which is the process of transporting t... In eukaryotic cells,organelles in the secretory,lysosomal,and endocytic pathways actively exchange biological materials with each other through intracellular membrane trafficking,which is the process of transporting the cargo of proteins,lipids,and other molecules to appropriate compartments via transport vesicles or intermediates.These processes are strictly regulated by various small GTPases such as the RAS-like in rat brain(RAB)protein family,which is the largest subfamily of the RAS superfamily.Dysfunction of membrane trafficking affects tissue homeostasis and leads to a wide range of diseases,including neurological disorders and neurodegenerative diseases.Therefore,it is important to understand the physiological and pathological roles of RAB proteins in brain function.RAB35,a member of the RAB family,is an evolutionarily conserved protein in metazoans.A wide range of studies using cultured mammalian cells and model organisms have revealed that RAB35 mediates various processes such as cytokinesis,endocytic recycling,actin bundling,and cell migration.RAB35 is also involved in neurite outgrowth and turnover of synaptic vesicles.We generated brain-specific Rab35 knockout mice to study the physiological roles of RAB35 in brain development and function.These mice exhibited defects in anxiety-related behaviors and spatial memory.Strikingly,RAB35 is required for the precise positioning of pyramidal neurons during hippocampal development,and thereby for normal hippocampal lamination.In contrast,layer formation in the cerebral cortex occurred superficially,even in the absence of RAB35,suggesting a predominant role for RAB35 in hippocampal development rather than in cerebral cortex development.Recent studies have suggested an association between RAB35 and neurodegenerative diseases,including Parkinson's disease and Alzheimer's disease.In this review,we provide an overview of the current understanding of subcellular functions of RAB35.We also provide insights into the physiological role of RAB35 in mammalian brain development and function,and discuss the involvement of RAB35 dysfunction in neurodegenerative diseases. 展开更多
关键词 endocytosis ENDOSOMES hippocampal development neurodegenerative diseases RAB35
下载PDF
发动蛋白及其蛋白超家族的功能
8
作者 杨紫雁 蒋昭泓 +1 位作者 周倩仪 陈志明 《生物化学与生物物理进展》 SCIE CAS CSCD 北大核心 2024年第11期2821-2831,共11页
发动蛋白(dynamin)作为一种复杂的多结构域蛋白质,因其在促进内吞囊泡形成和断裂,诱导囊泡从质膜脱离过程中发挥重要功能而广为人知。其经典功能是在网格蛋白介导型胞吞作用中发挥“膜剪刀”的作用,但是由于其结构和功能的多样性,不同... 发动蛋白(dynamin)作为一种复杂的多结构域蛋白质,因其在促进内吞囊泡形成和断裂,诱导囊泡从质膜脱离过程中发挥重要功能而广为人知。其经典功能是在网格蛋白介导型胞吞作用中发挥“膜剪刀”的作用,但是由于其结构和功能的多样性,不同同源异构体间具有组织表达和分布差异性,促使其广泛参与细胞内重要的生理过程,因此具有重要的研究价值。近期研究揭示了发动蛋白的一些非经典功能,包括参与调控网格蛋白介导型胞吞作用(clathrin-mediated endocytosis,CME)的早期阶段、影响肌动蛋白细胞骨架和细胞分裂等。本文主要综述了发动蛋白在CME膜剪切过程中发挥经典功能的最新进展,总结了其非经典功能的挖掘现状,同时阐述了其他发动蛋白超家族蛋白(dynamin superfamily protein,DSP)成员的功能,如抵抗病原体入侵、参与调控线粒体、过氧化物酶体、液泡膜的分裂,以及线粒体、内质网、液泡、过氧化物酶体膜的融合,此外,DSP成员也在调节细胞器间的物质运输,介导细菌胞质分裂和囊泡分泌等方面发挥功能。本综述通过对DSP成员功能的总结和梳理,将为人类疾病相关的分子机制研究提供思路。 展开更多
关键词 发动蛋白 胞吞作用 膜剪刀 发动蛋白超家族蛋白
下载PDF
脂质纳米粒递送DNA细胞内转运过程
9
作者 罗成枝 彭保卫 《广东化工》 CAS 2024年第20期89-91,共3页
通过PCR和免疫荧光技术实现生物素-链霉亲和素-异硫氰酸荧光素标记核酸,同时用0.1%(摩尔百分比)ATTO 647 DOPE标记LNP(SM-102∶DSPC∶Cholesterol∶PEG2000-DMG=50∶10∶38.5∶1.5,摩尔百分比),对制成的LNP-DNA制剂的理化性质及包封进... 通过PCR和免疫荧光技术实现生物素-链霉亲和素-异硫氰酸荧光素标记核酸,同时用0.1%(摩尔百分比)ATTO 647 DOPE标记LNP(SM-102∶DSPC∶Cholesterol∶PEG2000-DMG=50∶10∶38.5∶1.5,摩尔百分比),对制成的LNP-DNA制剂的理化性质及包封进行考察,并进行了体外细胞(Hela)实验,使用特异性抗体标记内涵体/溶酶体等内吞途径中相关囊泡,在倒置荧光显微镜或高内涵显微镜下考察LNP内吞过程及其在细胞内的转运情况。以GFP表达质粒作为递送货物,考察转染后绿色荧光蛋白表达效率。结果表明,祼DNA在被细胞内吞后,在细胞外周和表面形成内涵体颗粒且不会被进一步转运到细胞内。转染时间是影响LNP-DNA转染效率的主要因素之一,LNP-DNA通过内吞途径进入细胞,大部分被早期内涵体摄取形成LNP-DNA内涵体,随后转运至细胞核周围,部分转运至溶酶体,转运过程实现DNA的逃逸。 展开更多
关键词 脂质纳米颗粒 细胞内吞 生物素-链霉亲和素 LNP追踪 内涵体逃逸
下载PDF
Endocytosis unplugged: multiple ways to enter the cell 被引量:21
10
作者 Sudha Kumari Swetha MG Satyajit Mayor 《Cell Research》 SCIE CAS CSCD 2010年第3期256-275,共20页
Endocytosis occurs at the cell surface and involves internalization of the plasma membrane (PM) along with its constituent membrane proteins and lipids. Endocytosis is involved in sampling of the extracellular milie... Endocytosis occurs at the cell surface and involves internalization of the plasma membrane (PM) along with its constituent membrane proteins and lipids. Endocytosis is involved in sampling of the extracellular milieu and also serves to regulate various processes initiated at the cell surface. These include nutrient uptake, signaling from cell- surface receptors, and many other processes essential for cell and tissue functioning in metazoans. It is also central to the maintenance of PM lipid and protein homeostasis. There are multiple means of internalization that operate concurrently, at the cell surface. With advancement in high-resolution visualization techniques, it is now possible to track multiple endocytic cargo at the same time, revealing a remarkable diversity of endocytic processes in a single cell. A combination of live cell imaging and efficient genetic manipulations has also aided in understanding the functional hierarchy of molecular players in these mechanisms of internalization. Here we provide an account of various endocytic routes, their mechanisms of operation and occurrence across phyla. 展开更多
关键词 endocytosis TRAFFICKING membrane CLATHRIN DYNAMIN ACTIN .
下载PDF
The endocytosis and intracellular fate of nanomedicines: Implication for rational design 被引量:11
11
作者 Longfa Kou Jin Sun +1 位作者 Yinglei Zhai Zhonggui He 《Asian Journal of Pharmaceutical Sciences》 SCIE CAS 2013年第1期1-10,共10页
Nanomedicines employ multiple endocytic pathways to enter cells.Their following fate is interesting,but it is not sufficient understood currently.This review introduces the endocytic pathways,presents new technologies... Nanomedicines employ multiple endocytic pathways to enter cells.Their following fate is interesting,but it is not sufficient understood currently.This review introduces the endocytic pathways,presents new technologies to confirm the specific endocytic pathways and discusses factors for pathway selection.In addition,some intriguing implication about nanomedicine design based on endocytosis will also be discussed at the end.This review may provide new thoughts for the design of novel multifunctional nanomedicines. 展开更多
关键词 NANOMEDICINES endocytosis TRANSCYTOSIS Organelle target CLATHRIN CAVEOLAE
下载PDF
Endocytosis of adiponectin receptor I through a clathrin- and Rab5-dependent pathway 被引量:4
12
作者 Qiurong Ding Zhenzhen Wang Yan Chen 《Cell Research》 SCIE CAS CSCD 2009年第3期317-327,共11页
In eukaryotic cells, receptor endocytosis is a key event regulating signaling transduction. Adiponectin receptors belong to a new receptor family that is distinct from G-protein-coupled receptors and has critical role... In eukaryotic cells, receptor endocytosis is a key event regulating signaling transduction. Adiponectin receptors belong to a new receptor family that is distinct from G-protein-coupled receptors and has critical roles in the pathogenesis of diabetes and metabolic syndrome. Here, we analyzed the endocytosis of adiponectin and adiponectin receptor 1 (AdipoR1) and found that they are both internalized into transferrin-positive compartments that follow similar traffic routes. Blocking clathrin-mediated endocytosis by expressing Eps15 mutants or depleting K^+ trapped AdipoR1 at the plasma membrane, and K^+ depletion abolished adiponectin internalization, indicating that the endocytosis of AdipoR1 and adiponectin is clathrin-dependent. Depletion of K^+ and overexpression of Eps15 mutants enhance adiponectin- stimulated AMP-activated protein kinase phosphorylation, suggesting that the endocytosis of AdipoR1 might down-regulate adiponectin signaling. In addition, AdipoR1 colocalizes with the small GTPase Rab5, and a dominant negative Rab5 abrogates AdipoR1 endocytosis. These data indicate that AdipoR1 is internalized through a clathrin- and Rab5- dependent pathway and that endocytosis may play a role in the regulation of adiponectin signaling. 展开更多
关键词 ADIPONECTIN adiponectin receptors CLATHRIN endocytosis Rab5
下载PDF
Nexus of signaling and endocytosis in oncogenesis driven by non-small cell lung cancer-associated epidermal growth factor receptor mutants 被引量:3
13
作者 Byung Min Chung Eric Tom +3 位作者 Neha Zutshi Timothy Alan Bielecki Vimla Band Hamid Band 《World Journal of Clinical Oncology》 CAS 2014年第5期806-823,共18页
Epidermal growth factor receptor(EGFR) controls a wide range of cellular processes, and aberrant EGFR signaling as a result of receptor overexpression and/or mutation occurs in many types of cancer. Tumor cells in non... Epidermal growth factor receptor(EGFR) controls a wide range of cellular processes, and aberrant EGFR signaling as a result of receptor overexpression and/or mutation occurs in many types of cancer. Tumor cells in non-small cell lung cancer(NSCLC) patients that harbor EGFR kinase domain mutations exhibit oncogene addiction to mutant EGFR, which confers high sensitivity to tyrosine kinase inhibitors(TKIs). As patients invariably develop resistance to TKIs, it is important to delineate the cell biological basis of mutant EGFR-induced cellular transformation since components of these pathways can serve as alternate therapeutic targets to preempt or overcome resistance. NSCLC-associated EGFR mutants are constitutively-active and induce ligandindependent transformation in nonmalignant cell lines. Emerging data suggest that a number of factors are critical for the mutant EGFR-dependent tumorigenicity, and bypassing the effects of TKIs on these pathways promotes drug resistance. For example, activation of downstream pathways such as Akt, Erk, STAT3 and Src is critical for mutant EGFR-mediated biological processes. It is now well-established that the potency and spatiotemporal features of cellular signaling by receptor tyrosine kinases such as EGFR, as well as the specific pathways activated, is determined by the nature of endocytic traffic pathways through which the active receptors traverse. Recent evidence indicates that NSCLCassociated mutant EGFRs exhibit altered endocytic trafficking and they exhibit reduced Cbl ubiquitin ligasemediated lysosomal downregulation. More recent work has shown that mutant EGFRs undergo ligand-independent traffic into the endocytic recycling compartment, a behavior that plays a key role in Src pathway activation and oncogenesis. These studies are beginning to delineate the close nexus between signaling and endocytic traffic of EGFR mutants as a key driver of oncogenicprocesses. Therefore, in this review, we will discuss the links between mutant EGFR signaling and endocytic properties, and introduce potential mechanisms by which altered endocytic properties of mutant EGFRs may alter signaling and vice versa as well as their implications for NSCLC therapy. 展开更多
关键词 NON-SMALL cell lung cancer EPIDERMAL growth factor receptor SIGNALING endocytosis Src Cbl UBIQUITINATION
下载PDF
Numerical study of clathrin-mediated endocytosis of nanoparticles by cells under tension 被引量:2
14
作者 Xinyue Liu Hongwei Yang +2 位作者 Yunqiao Liu Xiaobo Gong Huaxiong Huang 《Acta Mechanica Sinica》 SCIE EI CAS CSCD 2019年第3期691-701,共11页
In this study, a three-dimensional mathematical model was used to study the contribution of clathrins during the process of cellular uptake of spherical nanoparticles under different membrane tensions. The clathrin-co... In this study, a three-dimensional mathematical model was used to study the contribution of clathrins during the process of cellular uptake of spherical nanoparticles under different membrane tensions. The clathrin-coated pit (CCP) that forms around the inward budding of the cell membrane was modeled as a vesicle with bending rigidity. An optimization algorithm was proposed for minimizing the total energy of the system, which comprises the deforming nanoparticle, receptor-ligand bonds, cell membrane, and CCP, in which way, the profile of the system is acquired. The results showed that the CCP enable full wrapping of the nanoparticles at various membrane tensions. When the cell membrane tension increases, the total deformation energy also increases, but the ratio of CCP bending to the minimum value of the total energy of the system decreases. The results also showed that the diameter of the endocytic vesicles determined by the competition between the stretching of the cell membrane and confinement of the coated pits are much larger than the nanoparticles, which is quit different as the results in passive endocytosis that is not facilitated by the CCPs. The present results indicate that variations of tension on cell membranes constitutes a biophysical marker for understanding the size distribution of CCPs observed in experiments. The present results also suggest that the early abortion of endocytosis is related to that the receptor-ligand bonds cannot generate adequate force to wrap the nanoparticles into the cell membrane before the clathrins respond to support the endocytic vesicles. Correspondingly, late abortion may relate to the inability of CCPs to confine the nanoparticles until the occurrence of the necking stage of endocytosis. 展开更多
关键词 endocytosis Minimum energy method Membrane tension Clathrin-coated PIT Receptor-ligand BOND
下载PDF
Effects of grafting cell penetrate peptide and RGD on endocytosis and biological effects of Mg-CaPNPs-CKIP-1 siRNA carrier system in vitro 被引量:2
15
作者 YI Man-fei CHEN Liang-jian +3 位作者 HE Hui-li SHI Lei SHAO Chun-sheng ZHANG Bo 《Journal of Central South University》 SCIE EI CAS CSCD 2021年第5期1291-1304,共14页
Calcium phosphate nanoparticles(CaPNPs)have good biocompatibility as gene carriers;however,CaPNPs typically exhibit a low transfection efficiency.Cell penetrate peptide(TAT)can increase the uptake of nanoparticles but... Calcium phosphate nanoparticles(CaPNPs)have good biocompatibility as gene carriers;however,CaPNPs typically exhibit a low transfection efficiency.Cell penetrate peptide(TAT)can increase the uptake of nanoparticles but is limited by its non-specificity.Grafting adhesion peptide adhesion peptide on carriers can enhance their targeting.The Plekho1 gene encodes casein kinase-2 interacting protein-1(CKIP-1),which can negatively regulate osteogenic differentiation.Based on the above,we produced a Mg-CaPNPs-RGD-TAT-CKIP-1 siRNA carrier system via hydrothermal synthesis,silanization and adsorption.The effects of this carrier system on cell endocytosis and biological effects were evaluated by cell culture in vitro.The results demonstrate that CaPNPs with 7%Mg(60 nm particle size,short rod shape and good dispersion)were suitable for use as gene carriers.The carrier system boosted the endocytosis of MG63 cells and was helpful for promoting the differentiation of osteoblasts,and the dual-ligand system possessed a synergistic effect.The findings of this study show the tremendous potential of the Mg-CaPNPs-RGD-TAT-CKIP-1 siRNA carrier system for efficient delivery into cells and osteogenesis inducement. 展开更多
关键词 calcium phosphate nanoparticles adhesion peptide cell penetrate peptide endocytosis SIRNA
下载PDF
Mechanical force-driven TNFαendocytosis governs stem cell homeostasis 被引量:2
16
作者 Wenjing Yu Chider Chen +6 位作者 Xiaoxing Kou Bingdong Sui Tingting Yu Dawei Liu Runci Wang Jun Wang Songtao Shi 《Bone Research》 SCIE CAS CSCD 2021年第1期37-49,共13页
Mesenchymal stem cells(MSCs)closely interact with the immune system,and they are known to secrete inflammatory cytokines in response to stress stimuli.The biological function of MSC-derived inflammatory cytokines rema... Mesenchymal stem cells(MSCs)closely interact with the immune system,and they are known to secrete inflammatory cytokines in response to stress stimuli.The biological function of MSC-derived inflammatory cytokines remains elusive.Here,we reveal that even under physiological conditions,MSCs produce and release a low level of tumor necrosis factor alpha(TNFα),which is unexpectedly required for preserving the self-renewal and differentiation of MSCs via autocrine/paracrine signaling.Furthermore,TNFαcritically maintains MSC function in vivo during bone homeostasis.Mechanistically,we unexpectedly discovered that physiological levels of TNFαsafeguard MSC homeostasis in a receptor-independent manner through mechanical force-driven endocytosis and that endocytosed TNFαbinds to mammalian target of rapamycin(mTOR)complex 2 and restricts mTOR signaling.Importantly,inhibition of mTOR signaling by rapamycin serves as an effective osteoanabolic therapeutic strategy to protect against TNFαdeficiency and mechanical unloading.Collectively,these findings unravel the physiological framework of the dynamic TNFαshuttlebased mTOR equilibrium that governs MSC and bone homeostasis. 展开更多
关键词 HOMEOSTASIS MAINTAIN endocytosis
下载PDF
A Numerical Study of Passive Receptor-Mediated Endocytosis of Nanoparticles:The Effect of Mechanical Properties 被引量:1
17
作者 Xinyue Liu Yunqiao Liu +1 位作者 Xiaobo Gong Huaxiong Huang 《Computer Modeling in Engineering & Sciences》 SCIE EI 2018年第8期281-300,共20页
In this work,a three-dimensional axisymmetric model with nanoparticle,receptor-ligand bonds and cell membrane as a system was used to study the quasi-static receptor-mediated endocytosis process of spherical nanoparti... In this work,a three-dimensional axisymmetric model with nanoparticle,receptor-ligand bonds and cell membrane as a system was used to study the quasi-static receptor-mediated endocytosis process of spherical nanoparticles in drug delivery.The minimization of the system energy function was carried out numerically,and the deformations of nanoparticle,receptor-ligand bonds and cell membrane were predicted.Results show that passive endocytosis may fail due to the rupture of receptor-ligand bonds during the wrapping process,and the size and rigidity of nanoparticles affect the total deformation energy and the terminal wrapping stage.Our results suggest that,in addition to the energy requirement,the success of passive endocytosis also depends on the maximum strength of the receptor-ligand bonds. 展开更多
关键词 RECEPTOR-MEDIATED endocytosis NANOPARTICLE UPTAKE optimization method receptor-ligand BONDS drug delivery
下载PDF
Endocytosis of FcαR is clathrin and dynamin dependent, but its cytoplasmic domain is not required 被引量:1
18
作者 Min Peng Na Yin Wei Zhang 《Cell Research》 SCIE CAS CSCD 2010年第2期223-237,共15页
FcαR, the Fc receptor for IgA, is essential for IgA-mediated immune responses. Previous studies have shown that IgA and IgA immune complexes can be rapidly endocytosed by FcαR. However, the underlying mechanism rema... FcαR, the Fc receptor for IgA, is essential for IgA-mediated immune responses. Previous studies have shown that IgA and IgA immune complexes can be rapidly endocytosed by FcαR. However, the underlying mechanism remains unclear. Here, we investigated the endocytic pathway of FcαR in monocytic cell line, U937, that naturally express FcuR and in transfected Chinese hamster ovary (CHO), COS-7 and Hela cells. By using selective chemical inhibitors of different endocytic pathways, overexpression of dominant-negative mutants of Eps15 and knockdown of clathrin heavy chain (CHC) via RNA interference, we demonstrated that endocytosis of FcaR was through a clathrin-mediated pathway. The endocytosed FcαR went into Rab5- and Rabll-positive endosomes. However, endocytosis of FcaR could not be blocked by a dominant-negative mutant of Rab5. We also demonstrated that endocytosis of FcαR was dynamin-dependent by overexpressing a dominant-negative mutant of dynamin. The potential endocytic motif for FcαR was also examined. Unexpectedly, we found that the entire cytoplasmic domain of FcaR was not required for the endocytic process of FcαR. We conclude that endocytosis of FcaR is clathrin- and dynamin-dependent, but is not regulated by RabS, and the endocytic motif is not located in the cytoplasmic domain of FcαR. 展开更多
关键词 IgA Fc receptor endocytosis CLATHRIN DYNAMIN
下载PDF
Overexpression of Toll-like receptor 4 contributes to the internalization and elimination of Escherichia coli in sheep by enhancing caveolae-dependent endocytosis 被引量:1
19
作者 Yao Li Yue Zhao +6 位作者 Xueling Xu Rui Zhang Jinlong Zhang Xiaosheng Zhang Yan Li Shoulong Deng Zhengxing Lian 《Journal of Animal Science and Biotechnology》 SCIE CAS CSCD 2021年第4期1323-1338,共16页
Background:Gram-negative bacterial infections have a major economic impact on both the livestock industry and public health.Toll-like receptor 4(TLR4)plays a crucial role in host defence against Gram-negative bacteria... Background:Gram-negative bacterial infections have a major economic impact on both the livestock industry and public health.Toll-like receptor 4(TLR4)plays a crucial role in host defence against Gram-negative bacteria.Exploring the defence mechanism regulated by TLR4 may provide new targets for treatment of inflammation and control of bacterial infections.In a previous study,we generated transgenic sheep overexpressing TLR4 by microinjection to improve disease resistance.The defence mechanism through which TLR4 overexpression protected these sheep against pathogens is still not fully understood.Results:In the present study,we used Escherichia coli to infect monocytes isolated from peripheral blood of the animal model.The overexpression of TLR4 strongly enhanced the percentage of endocytosis and capacity of elimination in monocytes during the early stages of infection.This phenomenon was mainly due to overexpression of TLR4 promoting caveolae-mediated endocytosis.Pretreatment of the transgenic sheep monocytes with inhibitors of TLR4,Src signalling,or the caveolae-mediated endocytosis pathway reduced the internalization of bacteria,weakened the ability of the monocytes to eliminate the bacteria,and increased the pH of the endosomes.Conclusion:Together,our results reveal the effects of TLR4 on the control of E.coli infection in the innate immunity of sheep and provide crucial evidence of the caveolae-mediated endocytosis pathway required for host resistance to invading bacteria in a large animal model,providing theoretical support for breeding disease resistance in the future.Furthermore,Src and caveolin 1(CAV1)could be potentially valuable targets for the control of infectious diseases. 展开更多
关键词 Caveolae-dependent endocytosis Host defence infection Inflammatory responses MONOCYTES Toll-like receptor 4
下载PDF
The relationship between endocytosis of peritoneal macrophages induced by concanavalin A and intracellular free calcium in mouse 被引量:1
20
作者 任向荣 朴英杰 +2 位作者 鲍永耀 张薇 罗深秋 《Journal of Medical Colleges of PLA(China)》 CAS 1995年第2期148-151,共4页
In this experiment the morphological changes of mouse peritoneal macrophages in the course of their conjugation with colloidal gold-labelled concanavalin A(ConA-Au) i by the surface receptor and then the endocytosis a... In this experiment the morphological changes of mouse peritoneal macrophages in the course of their conjugation with colloidal gold-labelled concanavalin A(ConA-Au) i by the surface receptor and then the endocytosis and transport of the ConA were observed 展开更多
关键词 CONA MACROPHAGE endocytosis:intracellular Ca ̄(2+) ACAS570
下载PDF
上一页 1 2 22 下一页 到第
使用帮助 返回顶部