As drug-resistant bacterial infections escalate and antimicrobial resources become insufficient,new alternative therapies are critical.The emergence of nano drug delivery system,in addition to giving drugs sustained,t...As drug-resistant bacterial infections escalate and antimicrobial resources become insufficient,new alternative therapies are critical.The emergence of nano drug delivery system,in addition to giving drugs sustained,targeted or longer half-life characteristics,also plays an important role in improving the therapeutic effect and reducing the toxic side effects of conventional drugs.Despite its potential benefits,the traditional nanomedical drug delivery system has some practical limitations,including incomplete and slow drug release,as well as insufficient accumulation at infection sites.Stimuli responsive nanoplatforms are hence developed to overcome the disadvantages of conventional nanoparticles,which can provide several advantages like:enhancing the pharmacokinetics and biodistribution of antimicrobial drugs,increasing their effective bioavailability,reducing their dosage frequency,and improving their antimicrobial efficacy against biofilm-related infections,while slowing down the development of antimicrobial resistance,which is expected to trigger a medical revolution in the field of human health,thus bringing huge clinical benefits.In this review,we provide an extensive review of the recent progress of endogenous and exogenous stimuli-responsive nanoplatforms in the antibacterial area.Using specific infectious microenvironments(pH,enzymes,reactive oxygen species and toxins),this review systematically presents the design principles of nano delivery systems and the mechanisms by which endogenous stimuli induce changes in the morphology or properties of delivery systems to achieve programmed drug release.Furthermore,exogenous stimuli such as light,heat,and magnetic fields can also control the release of drugs.Last but not least,we discussed the challenges and opportunities for future clinical translation of stimuli-responsive nanoplatforms in bacterial infections.展开更多
The endogenous GAs, ABA and IAA in the shoot apices of 8-year-old Chinese pines, flowered, non-flowered and non-flowered but treated with GA4/7 were analyzed by GC-MS-SIM.The results demonstrated that GA3 and GA9 leve...The endogenous GAs, ABA and IAA in the shoot apices of 8-year-old Chinese pines, flowered, non-flowered and non-flowered but treated with GA4/7 were analyzed by GC-MS-SIM.The results demonstrated that GA3 and GA9 levels were obviously higher in flowered plants than in non-flowered. A peak value of GA3 in flowered plants occurred after appearance of the earliest auxiliary bud primorda which had the possibility of transforming into male cone bud primordia and before the morphological initiation of male cone bud primordia. Exogenously applied GA4/7 could enhance the endogenous GA3 and GA9, this may benefit the promotion of male cone buds in Chinese pine. The relations among ex-ogenously applied GA4/7 endogenous GAs, ABA and IAA in the shoot apices, and the initiation of male cone bud are discussed.展开更多
Reproducing the spatial cognition of animals using computational models that make agents navigate autonomously has attracted much attention. Many biologically inspired models for spatial cognition focus mainly on the ...Reproducing the spatial cognition of animals using computational models that make agents navigate autonomously has attracted much attention. Many biologically inspired models for spatial cognition focus mainly on the simulation of the hippocampus and only consider the effect of external environmental information(i.e., exogenous information) on the hippocampal coding. However, neurophysiological studies have shown that the striatum, which is closely related to the hippocampus, also plays an important role in spatial cognition and that information inside animals(i.e., endogenous information) also affects the encoding of the hippocampus. Inspired by the progress made in neurophysiological studies, we propose a new spatial cognitive model that consists of analogies between the hippocampus and striatum. This model takes into consideration how both exogenous and endogenous information affects coding by the environment. We carried out a series of navigation experiments that simulated a water maze and compared our model with other models. Our model is self-adaptable and robust and has better performance in navigation path length. We also discuss the possible reasons for the results and how our findings may help us understand real mechanisms in the spatial cognition of animals.展开更多
Sensitive skin is a clinical syndrome characterized by a hyper-reactive state of the skin,primarily on the face.It is accompanied by subjective symptoms such as burning,stinging,itching,and tightness when exposed to p...Sensitive skin is a clinical syndrome characterized by a hyper-reactive state of the skin,primarily on the face.It is accompanied by subjective symptoms such as burning,stinging,itching,and tightness when exposed to physical,chemical,or psychological stimuli.Objective signs,such as erythema,scales,and dilated blood vessels,may or may not be present.The discomfort associated with sensitive skin can be triggered by various endogenous and exogenous factors,which usually have no significant effect on the individual and do not induce irritant reactions.Sensitive skin often presents as a subjective state without clinical signs and exhibits diversity,posing challenges in sensitive skin research and care.This review summarizes the prevalence,key factors,pathophysiological mechanisms,diagnosis,and progress in daily care for sensitive skin.The aim is to provide a clearer and more systematic understanding of sensitive skin and offer guidance for sensitive skin care.展开更多
基金the Natural Science Foundation of Hubei Province,China(2021CFB468)Sci-tech Innovation Foundation of Huazhong Agriculture University(2662020LXPY007)National Key Research and Development Program of China(2021YFD1400800).
文摘As drug-resistant bacterial infections escalate and antimicrobial resources become insufficient,new alternative therapies are critical.The emergence of nano drug delivery system,in addition to giving drugs sustained,targeted or longer half-life characteristics,also plays an important role in improving the therapeutic effect and reducing the toxic side effects of conventional drugs.Despite its potential benefits,the traditional nanomedical drug delivery system has some practical limitations,including incomplete and slow drug release,as well as insufficient accumulation at infection sites.Stimuli responsive nanoplatforms are hence developed to overcome the disadvantages of conventional nanoparticles,which can provide several advantages like:enhancing the pharmacokinetics and biodistribution of antimicrobial drugs,increasing their effective bioavailability,reducing their dosage frequency,and improving their antimicrobial efficacy against biofilm-related infections,while slowing down the development of antimicrobial resistance,which is expected to trigger a medical revolution in the field of human health,thus bringing huge clinical benefits.In this review,we provide an extensive review of the recent progress of endogenous and exogenous stimuli-responsive nanoplatforms in the antibacterial area.Using specific infectious microenvironments(pH,enzymes,reactive oxygen species and toxins),this review systematically presents the design principles of nano delivery systems and the mechanisms by which endogenous stimuli induce changes in the morphology or properties of delivery systems to achieve programmed drug release.Furthermore,exogenous stimuli such as light,heat,and magnetic fields can also control the release of drugs.Last but not least,we discussed the challenges and opportunities for future clinical translation of stimuli-responsive nanoplatforms in bacterial infections.
基金The research was funded by the National Natural Science Foundation of China
文摘The endogenous GAs, ABA and IAA in the shoot apices of 8-year-old Chinese pines, flowered, non-flowered and non-flowered but treated with GA4/7 were analyzed by GC-MS-SIM.The results demonstrated that GA3 and GA9 levels were obviously higher in flowered plants than in non-flowered. A peak value of GA3 in flowered plants occurred after appearance of the earliest auxiliary bud primorda which had the possibility of transforming into male cone bud primordia and before the morphological initiation of male cone bud primordia. Exogenously applied GA4/7 could enhance the endogenous GA3 and GA9, this may benefit the promotion of male cone buds in Chinese pine. The relations among ex-ogenously applied GA4/7 endogenous GAs, ABA and IAA in the shoot apices, and the initiation of male cone bud are discussed.
基金by National Natural Science Foundation of China(Nos.61773027 and 62076014)National Key Research and Development Program Project(No.2020YFB1005903)Industrial Internet Innovation and Development Project(No.135060009002).
文摘Reproducing the spatial cognition of animals using computational models that make agents navigate autonomously has attracted much attention. Many biologically inspired models for spatial cognition focus mainly on the simulation of the hippocampus and only consider the effect of external environmental information(i.e., exogenous information) on the hippocampal coding. However, neurophysiological studies have shown that the striatum, which is closely related to the hippocampus, also plays an important role in spatial cognition and that information inside animals(i.e., endogenous information) also affects the encoding of the hippocampus. Inspired by the progress made in neurophysiological studies, we propose a new spatial cognitive model that consists of analogies between the hippocampus and striatum. This model takes into consideration how both exogenous and endogenous information affects coding by the environment. We carried out a series of navigation experiments that simulated a water maze and compared our model with other models. Our model is self-adaptable and robust and has better performance in navigation path length. We also discuss the possible reasons for the results and how our findings may help us understand real mechanisms in the spatial cognition of animals.
基金supported by the Key-Area Research and Development Program of Guangdong Province[grant numbers 21202107201900005,21202107201900003].
文摘Sensitive skin is a clinical syndrome characterized by a hyper-reactive state of the skin,primarily on the face.It is accompanied by subjective symptoms such as burning,stinging,itching,and tightness when exposed to physical,chemical,or psychological stimuli.Objective signs,such as erythema,scales,and dilated blood vessels,may or may not be present.The discomfort associated with sensitive skin can be triggered by various endogenous and exogenous factors,which usually have no significant effect on the individual and do not induce irritant reactions.Sensitive skin often presents as a subjective state without clinical signs and exhibits diversity,posing challenges in sensitive skin research and care.This review summarizes the prevalence,key factors,pathophysiological mechanisms,diagnosis,and progress in daily care for sensitive skin.The aim is to provide a clearer and more systematic understanding of sensitive skin and offer guidance for sensitive skin care.