The successful encapsulation of dysprosium(Dy) into fullerene cages by activating the Dy2O3, containing graphite rods in situ 'back-burning' carbonarc evaporation with a high-yield of pyridine extraction techn...The successful encapsulation of dysprosium(Dy) into fullerene cages by activating the Dy2O3, containing graphite rods in situ 'back-burning' carbonarc evaporation with a high-yield of pyridine extraction technique is reported.展开更多
The adsorption and molecular orientation of Dy@Cs2 isomer I on Au(111) has been investigated using ultrahigh-vacuum scanning tunneling microscopy at 80 K. At low coverages, the Dy@Cs2 molecules tend to grow along th...The adsorption and molecular orientation of Dy@Cs2 isomer I on Au(111) has been investigated using ultrahigh-vacuum scanning tunneling microscopy at 80 K. At low coverages, the Dy@Cs2 molecules tend to grow along the step edges of Au(111), forming small clusters and molecular chains. Adsorption of Dy@Cs2 on the edges is dominated by the fullerene-substrate interaction and presents various molecular orientations. At higher coverages, the Dy@Cs2 is found to form ordered islands consisting of small domains of equally oriented molecules. The Dy@Cs2 molecules in the islands prefer the adsorption configurations with the major C2 axis being approximately parallel to the surface of the substrate. Three preferable orientations of the Dy@Cs2 molecules are found in a two-dimensional hexagonal close packed overlayer. These observations are attributed to the interplay of the fullerene-substrate interaction and dipole-dipole interaction between the metallofullerenes.展开更多
The isolation of multiple-isomers of Sc2@C80 (I, II, III) endohedral metallofullerenes is reported for the first time. The new C80-based Sc-metallofullerenes are characterized by UV-Vis-NIR absorption spectroscopy and...The isolation of multiple-isomers of Sc2@C80 (I, II, III) endohedral metallofullerenes is reported for the first time. The new C80-based Sc-metallofullerenes are characterized by UV-Vis-NIR absorption spectroscopy and detailed chromatographic retention time data. A close relationship between the isomer structure and the corresponding HPLC retention time of the metallofullerenes is presented.展开更多
Fullerene derivatives have a wide range of applications in perovskite solar cells(PSCs),such as electron transport layers(ETLs),interfacial modifiers,and additives.However,there have been few studies of the use of end...Fullerene derivatives have a wide range of applications in perovskite solar cells(PSCs),such as electron transport layers(ETLs),interfacial modifiers,and additives.However,there have been few studies of the use of endohedral metallofullerenes(EMFs)to improve the performance of PSCs.Here,a novel EMF(Y_(3)N@C_(80))was synthesized and used as an interfacial modifier in PSC devices based on a SnO_(2)ETL.Energy level mismatches and detrimental carrier recombination have been observed in devices with a pristine SnO_(2)ETL,but these issues are alleviated with the assistance of Y_(3)N@C_(80).A significant increase in open-circuit voltage from 1.106 V(SnO_(2))to 1.14 V(SnO_(2)-Y_(3)N@C_(80)),an increase in power conversion efficiency from 20.59%to 21.66%,and a marked reduction in hysteresis were observed,which were attributed to the more suitable conduction band energy levels and more effective electron extraction at the SnO_(2)-Y_(3)N@C_(80)/perovskite interface.In addition,the stability of the target devices was improved,which may be due to the hydrophobicity of Y_(3)N@C_(80)and a reduction in trap states.展开更多
文摘The successful encapsulation of dysprosium(Dy) into fullerene cages by activating the Dy2O3, containing graphite rods in situ 'back-burning' carbonarc evaporation with a high-yield of pyridine extraction technique is reported.
基金V. ACKNOWLEDGMENTS We thank Professor Shi-he Yang from the Hong Kong University of Science and Technology for supplying Dy@Cs2. This work is supported by the National Natural Science Foundation of China (No.10825415).
文摘The adsorption and molecular orientation of Dy@Cs2 isomer I on Au(111) has been investigated using ultrahigh-vacuum scanning tunneling microscopy at 80 K. At low coverages, the Dy@Cs2 molecules tend to grow along the step edges of Au(111), forming small clusters and molecular chains. Adsorption of Dy@Cs2 on the edges is dominated by the fullerene-substrate interaction and presents various molecular orientations. At higher coverages, the Dy@Cs2 is found to form ordered islands consisting of small domains of equally oriented molecules. The Dy@Cs2 molecules in the islands prefer the adsorption configurations with the major C2 axis being approximately parallel to the surface of the substrate. Three preferable orientations of the Dy@Cs2 molecules are found in a two-dimensional hexagonal close packed overlayer. These observations are attributed to the interplay of the fullerene-substrate interaction and dipole-dipole interaction between the metallofullerenes.
文摘The isolation of multiple-isomers of Sc2@C80 (I, II, III) endohedral metallofullerenes is reported for the first time. The new C80-based Sc-metallofullerenes are characterized by UV-Vis-NIR absorption spectroscopy and detailed chromatographic retention time data. A close relationship between the isomer structure and the corresponding HPLC retention time of the metallofullerenes is presented.
基金supported by Sichuan Science and Technology Program(2022YFSY0040)the Science Project of Southwest Petroleum University(2021JBGS08)。
文摘Fullerene derivatives have a wide range of applications in perovskite solar cells(PSCs),such as electron transport layers(ETLs),interfacial modifiers,and additives.However,there have been few studies of the use of endohedral metallofullerenes(EMFs)to improve the performance of PSCs.Here,a novel EMF(Y_(3)N@C_(80))was synthesized and used as an interfacial modifier in PSC devices based on a SnO_(2)ETL.Energy level mismatches and detrimental carrier recombination have been observed in devices with a pristine SnO_(2)ETL,but these issues are alleviated with the assistance of Y_(3)N@C_(80).A significant increase in open-circuit voltage from 1.106 V(SnO_(2))to 1.14 V(SnO_(2)-Y_(3)N@C_(80)),an increase in power conversion efficiency from 20.59%to 21.66%,and a marked reduction in hysteresis were observed,which were attributed to the more suitable conduction band energy levels and more effective electron extraction at the SnO_(2)-Y_(3)N@C_(80)/perovskite interface.In addition,the stability of the target devices was improved,which may be due to the hydrophobicity of Y_(3)N@C_(80)and a reduction in trap states.