We previously reported that miR-124-3p is markedly upregulated in microglia-derived exosomes following repetitive mild traumatic brain injury.However,its impact on neuronal endoplasmic reticulum stress following repet...We previously reported that miR-124-3p is markedly upregulated in microglia-derived exosomes following repetitive mild traumatic brain injury.However,its impact on neuronal endoplasmic reticulum stress following repetitive mild traumatic brain injury remains unclear.In this study,we first used an HT22 scratch injury model to mimic traumatic brain injury,then co-cultured the HT22 cells with BV2 microglia expressing high levels of miR-124-3p.We found that exosomes containing high levels of miR-124-3p attenuated apoptosis and endoplasmic reticulum stress.Furthermore,luciferase reporter assay analysis confirmed that miR-124-3p bound specifically to the endoplasmic reticulum stress-related protein IRE1α,while an IRE1αfunctional salvage experiment confirmed that miR-124-3p targeted IRE1αand reduced its expression,thereby inhibiting endoplasmic reticulum stress in injured neurons.Finally,we delivered microglia-derived exosomes containing miR-124-3p intranasally to a mouse model of repetitive mild traumatic brain injury and found that endoplasmic reticulum stress and apoptosis levels in hippocampal neurons were significantly reduced.These findings suggest that,after repetitive mild traumatic brain injury,miR-124-3 can be transferred from microglia-derived exosomes to injured neurons,where it exerts a neuroprotective effect by inhibiting endoplasmic reticulum stress.Therefore,microglia-derived exosomes containing miR-124-3p may represent a novel therapeutic strategy for repetitive mild traumatic brain injury.展开更多
AIM:To explore the effect of silent information regulator factor 2-related enzyme 1(SIRT1)on modulating apoptosis of human lens epithelial cells(HLECs)and alleviating lens opacification of rats through suppressing end...AIM:To explore the effect of silent information regulator factor 2-related enzyme 1(SIRT1)on modulating apoptosis of human lens epithelial cells(HLECs)and alleviating lens opacification of rats through suppressing endoplasmic reticulum(ER)stress.METHODS:HLECs(SRA01/04)were treated with varying concentrations of tunicamycin(TM)for 24h,and the expression of SIRT1 and C/EBP homologous protein(CHOP)was assessed using real-time quantitative polymerase chain reaction(RT-PCR),Western blotting,and immunofluorescence.Cell morphology and proliferation was evaluated using an inverted microscope and cell counting kit-8(CCK-8)assay,respectively.In the SRA01/04 cell apoptosis model,which underwent siRNA transfection for SIRT1 knockdown and SRT1720 treatment for its activation,the expression levels of SIRT1,CHOP,glucose regulated protein 78(GRP78),and activating transcription factor 4(ATF4)were examined.The potential reversal of SIRT1 knockdown effects by 4-phenyl butyric acid(4-PBA;an ER stress inhibitor)was investigated.In vivo,age-related cataract(ARC)rat models were induced by sodium selenite injection,and the protective role of SIRT1,activated by SRT1720 intraperitoneal injections,was evaluated through morphology observation,hematoxylin and eosin(H&E)staining,Western blotting,and RT-PCR.RESULTS:SIRT1 expression was downregulated in TMinduced SRA01/04 cells.Besides,in SRA01/04 cells,both cell apoptosis and CHOP expression increased with the rising doses of TM.ER stress was stimulated by TM,as evidenced by the increased GRP78 and ATF4 in the SRA01/04 cell apoptosis model.Inhibition of SIRT1 by siRNA knockdown increased ER stress activation,whereas SRT1720 treatment had opposite results.4-PBA partly reverse the adverse effect of SIRT1 knockdown on apoptosis.In vivo,SRT1720 attenuated the lens opacification and weakened the ER stress activation in ARC rat models.CONCLUSION:SIRT1 plays a protective role against TM-induced apoptosis in HLECs and slows the progression of cataract in rats by inhibiting ER stress.These findings suggest a novel strategy for cataract treatment focused on targeting ER stress,highlighting the therapeutic potential of SIRT1 modulation in ARC development.展开更多
β-Sitosterol is a type of phytosterol that occurs naturally in plants.Previous studies have shown that it has anti-oxidant,anti-hyperlipidemic,anti-inflammatory,immunomodulatory,and anti-tumor effects,but it is unkno...β-Sitosterol is a type of phytosterol that occurs naturally in plants.Previous studies have shown that it has anti-oxidant,anti-hyperlipidemic,anti-inflammatory,immunomodulatory,and anti-tumor effects,but it is unknown whetherβ-sitosterol treatment reduces the effects of ischemic stroke.Here we found that,in a mouse model of ischemic stroke induced by middle cerebral artery occlusion,β-sitosterol reduced the volume of cerebral infarction and brain edema,reduced neuronal apoptosis in brain tissue,and alleviated neurological dysfunction;moreover,β-sitosterol increased the activity of oxygen-and glucose-deprived cerebral cortex neurons and reduced apoptosis.Further investigation showed that the neuroprotective effects ofβ-sitosterol may be related to inhibition of endoplasmic reticulum stress caused by intracellular cholesterol accumulation after ischemic stroke.In addition,β-sitosterol showed high affinity for NPC1L1,a key transporter of cholesterol,and antagonized its activity.In conclusion,β-sitosterol may help treat ischemic stroke by inhibiting neuronal intracellular cholesterol overload/endoplasmic reticulum stress/apoptosis signaling pathways.展开更多
Selective clearance of organelles,including endoplasmic reticulum(ER)and mitochondria,by autophagy plays an important role in cell health.Here,we describe a developmentally programmed selective ER clearance by autopha...Selective clearance of organelles,including endoplasmic reticulum(ER)and mitochondria,by autophagy plays an important role in cell health.Here,we describe a developmentally programmed selective ER clearance by autophagy.We show that Parkinson's disease-associated PINK1,as well as Atl,Rtnl1,and Trp1 receptors,regulate ER clearance by autophagy.展开更多
While the Bushen Yizhi Formula can treat Alzheimer’s disease(AD),the yet to be ascertained specific mechanism of action was explored in this work.Methods:Different concentrations of the Bushen Yizhi Formula and amylo...While the Bushen Yizhi Formula can treat Alzheimer’s disease(AD),the yet to be ascertained specific mechanism of action was explored in this work.Methods:Different concentrations of the Bushen Yizhi Formula and amyloid-beta peptide(Aβ)were used to treat rat pheochromocytoma cells(P12)and human neuroblastoma cells(SH-SY5Y).Cell morphological changes were observed to determine the in vitro cell damage.Cell Counting Kit(CCK)-8 assay and flow cytometry were employed to identify cell viability and apoptosis/cell cycle,respectively.Western blotting and immunohistochemistry were employed to measure the expressions of endoplasmic reticulum stress(ERS)-related proteins(GRP78 and CHOP),p-IRE1α,IRE1α,ASK1,p-JNK,JNK,Bax,Bcl-2,XBP-1,and Bim.Fura 2-acetoxymethyl ester(Fura-2/AM)was used to determine the intracellular calcium(Ca^(2+))concentration.Also,an AD model was constructed by injecting Aβinto the CA1 area of the hippocampus in Sprague Dawley rats.AD model rats were gavaged with different concentrations of Bushen Yizhi Formula for 14 consecutive days.The Morris water maze experiment was conducted to test the learning and memory of rats.Hematoxylin&Eosin(H&E)and Terminal-deoxynucleotidyl Transferase(TdT)-mediated dUTP Nick-End Labeling(TUNEL)staining were done to determine histopathological changes in the brain.Results:Bushen Yizhi Formula relieved the Aβ-induced effects including cell injury,decreased viability,increased apoptosis,G0/G1 phase cell cycle arrest,upregulation of GRP78,CHOP,p-IRE1α,p-JNK,Bax,XBP-1 and Bim,as well as down-regulation of Bcl-2.These results were also seen with IRE1αsilencing.While Aβsuppressed the learning and memory abilities of rats,the Bushen Yizhi Formula alleviated these effects of Aβ.Brain nerve cell injury induced by Aβcould also be treated with Bushen Yizhi Formula.Conclusion:Bushen Yizhi Formula could influence ERS through the IRE1αsignaling pathway to achieve its therapeutic effects on AD.展开更多
BACKGROUND Sirtuin 1(SIRT1)is a nicotinamide adenine dinucleotide(NAD+)-dependent protein deacetylase that is involved in various diseases,including cancers,metabolic diseases,and inflammation-associated diseases.Howe...BACKGROUND Sirtuin 1(SIRT1)is a nicotinamide adenine dinucleotide(NAD+)-dependent protein deacetylase that is involved in various diseases,including cancers,metabolic diseases,and inflammation-associated diseases.However,the role of SIRT1 in ulcerative colitis(UC)is still confusing.AIM To investigate the role of SIRT1 in intestinal epithelial cells(IECs)in UC and further explore the underlying mechanisms.METHODS We developed a coculture model using macrophages and Caco-2 cells.After treatment with the SIRT1 activator SRT1720 or inhibitor nicotinamide(NAM),the expression of occludin and zona occludens 1(ZO-1)was assessed by Western blot analysis.Annexin V-APC/7-AAD assays were performed to evaluate Caco-2 apoptosis.Dextran sodium sulfate(DSS)-induced colitis mice were exposed to SRT1720 or NAM for 7 d.Transferase-mediated dUTP nick-end labeling(TUNEL)assays were conducted to assess apoptosis in colon tissues.The expression levels of glucose-regulated protein 78(GRP78),CCAAT/enhancerbinding protein homologous protein(CHOP),caspase-12,caspase-9,and caspase-3 in Caco-2 cells and the colon tissues of treated mice were examined by quantitative real-time PCR and Western blot.RESULTS SRT1720 treatment increased the protein levels of occludin and ZO-1 and inhibited Caco-2 apoptosis,whereas NAM administration caused the opposite effects.DSS-induced colitis mice treated with SRT1720 had a lower disease activity index(P<0.01),histological score(P<0.001),inflammatory cytokine levels(P<0.01),and apoptotic cell rate(P<0.01),while exposure to NAM caused the opposite effects.Moreover,SIRT1 activation reduced the expression levels of GRP78,CHOP,cleaved caspase-12,cleaved caspase-9,and cleaved caspase-3 in Caco-2 cells and the colon tissues of treated mice.CONCLUSION SIRT1 activation reduces apoptosis of IECs via the suppression of endoplasmic reticulum stress-mediated apoptosis-associated molecules CHOP and caspase-12.SIRT1 activation may be a potential therapeutic strategy for UC.展开更多
AIM To investigate the therapeutic effect of hydrogen-rich water(HRW) on inflammatory bowel disease(IBD) and to explore the potential mechanisms involved.METHODS Male mice were randomly divided into the following four...AIM To investigate the therapeutic effect of hydrogen-rich water(HRW) on inflammatory bowel disease(IBD) and to explore the potential mechanisms involved.METHODS Male mice were randomly divided into the following four groups: control group, in which the mice received equivalent volumes of normal saline(NS) intraperitoneally(ip); dextran sulfate sodium(DSS) group, in which the mice received NS ip(5 m L/kg body weight, twice per day at 8 am and 5 pm) for 7 consecutive days after IBD modeling; DSS + HRW group, in which the mice received HRW(in the same volume as the NS treatment) for 7 consecutive days after IBD modeling; and DSS + HRW + Zn PP group, in which the mice received HRW(in the same volume as the NS treatment) and ZnP P [a heme oxygenase-1(HO-1) inhibitor, 25 mg/kg] for 7 consecutive days after IBD modeling. IBD was induced by feeding DSS to the mice, and blood and colon tissues were collected on the 7th d after IBD modeling to determine clinical symptoms, colonic inflammation and the potential mechanisms involved.RESULTS The DSS + HRW group exhibited significantly attenuated weight loss and a lower extent of disease activity index compared with the DSS group on the 7th d(P < 0.05). HRW exerted protective effects against colon shortening and colonic wall thickening in contrast to the DSS group(P < 0.05). The histological study demonstrated milder inflammation in the DSS + HRW group, which was similar to normal inflammatory levels, and the macroscopic and microcosmic damage scores were lower in this group than in the DSS group(P < 0.05). The oxidative stress parameters, including MDA and MPO in the colon, were significantly decreased in the DSS + HRW group compared with the DSS group(P < 0.05). Simultaneously, the protective indicators, superoxide dismutase and glutathione, were markedly increased with the use of HRW. Inflammatory factors were assessed, and the results showed that the DSS + HRW group exhibited significantly reduced levels of TNF-α, IL-6 and IL-1β compared with the DSS group(P < 0.05). In addition, the pivotal proteins involved in endoplasmic reticulum(ER) stress, including p-e IF2α, ATF4, XBP1 s and CHOP, were dramatically reduced after HRW treatment in contrast to the control group(P < 0.05). Furthermore, HRW treatment markedly up-regulated HO-1 expression, and the use of Zn PP obviously reversed the protective role of HRW. In the DSS + HRW + ZnP P group, colon shortening and colonic wall thickening were significantly aggravated, and the macroscopic damage scores were similar to those of the DSS + HRW group(P < 0.05). The histological study also showed more serious colonic damage that was similar to the DSS group.CONCLUSION HRW has a significant therapeutic potential in IBD by inhibiting inflammatory factors, oxidative stress and ER stress and by up-regulating HO-1 expression.展开更多
Studies have confirmed a strong association between activation of the endoplasmic reticulum stress pathway and cerebral ischemia/reperfusion(I/R) injury.In this study,three key proteins in the endoplasmic reticulum st...Studies have confirmed a strong association between activation of the endoplasmic reticulum stress pathway and cerebral ischemia/reperfusion(I/R) injury.In this study,three key proteins in the endoplasmic reticulum stress pathway(glucose-regulated protein 78,caspase-12,and C/EBP homologous protein) were selected to examine the potential mechanism of endoplasmic reticulum stress in the neuroprotective effect of G protein-coupled estrogen receptor.Female Sprague-Dawley rats received ovariectomy(OVX),and then cerebral I/R rat models(OVX+ I/R) were established by middle cerebral artery occlusion.Immediately after I/R,rat models were injected with 100 μg/kg E2(OVX + I/R +E2),or 100 μg/kg G protein-coupled estrogen receptor agonist G1(OVX + I/R + G1) in the lateral ventricle.Longa scoring was used to detect neurobehavioral changes in each group.Infarct volumes were measured by 2,3,5-triphenyltetrazolium chloride staining.Morphological changes in neurons were observed by Nissl staining.Terminal dexynucleotidyl transferase-mediated nick end-labeling staining revealed that compared with the OVX + I/R group,neurological function was remarkably improved,infarct volume was reduced,number of normal Nissl bodies was dramatically increased,and number of apoptotic neurons in the hippocampus was decreased after E2 and G1 intervention.To detect the expression and distribution of endoplasmic reticulum stress-related proteins in the endoplasmic reticulum,caspase-12 distribution and expression were detected by immunofluorescence,and mRNA and protein levels of glucose-regulated protein 78,caspase-12,and C/EBP homologous protein were determined by polymerase chain reaction and western blot assay.The results showed that compared with the OVX+ I/R group,E2 and G1 treatment obviously decreased mRNA and protein expression levels of glucose-regulated protein 78,C/EBP homologous protein,and caspase-12.However,the G protein-coupled estrogen receptor antagonist G15(OVX + I/R + E2 + G15) could eliminate the effect of E2 on cerebral I/R injury.These results confirm that E2 and G protein-coupled estrogen receptor can inhibit the expression of endoplasmic reticulum stress-related proteins and neuronal apoptosis in the hippocampus,thereby improving dysfunction caused by cerebral I/R injury.Every experimental protocol was approved by the Institutional Ethics Review Board at the First Affiliated Hospital of Shihezi University School of Medicine,China(approval No.SHZ A2017-171) on February 27,2017.展开更多
Objective The goal of this study is to investigate the role and mechanism of endoplasmic reticulum stress and apoptosis regulated by thrombospondin 1(TSP1)in human renal tubular epithelial cells(HK-2 cells).Methods HK...Objective The goal of this study is to investigate the role and mechanism of endoplasmic reticulum stress and apoptosis regulated by thrombospondin 1(TSP1)in human renal tubular epithelial cells(HK-2 cells).Methods HK-2 cells were exposed to high concentrations of glucose(HG).The endoplasmic reticulum stress inhibitor 4-phenylbutyric acid(4-PBA)was administered by transfecting TSP1 or an empty vector to explore the mechanism of the endoplasmic reticulum response regulated by TSP1 and stress in renal cell apoptosis.The effects of TSP1 and 4-PBA on the proliferation and apoptosis of HK-2 cells under HG conditions were assessed using Cell counting kit-8 and flow cytometry.Western blotting was used to detect the apoptosis-and endoplasmic reticulum stress-related protein expression regulated by TSP1 and 4-PBA.Results HG treatment induced high cell apoptosis,abundantly expressed TSP1 level and restrained viability in HK-2 cells.Overexpression of TSP1 significantly inhibited the proliferation of and facilitated apoptosis of HK-2 cells under HG conditions.Administration of endoplasmic reticulum stress inhibitor 4-PBA after overexpression of TSP1 antagonized the inhibitory proliferation and promoted apoptosis rate in HG-triggered HK-2 cells induced by TSP1 overexpression.4-PBA treatment significantly hindered the expression of endoplasmic reticulum stress markers,such as PERK,ATF4,ATF6,p-eIF2α,IRE1,CHOP and XBP1,suggesting that the administration of 4-PBA was successful.Conclusion Overexpression of TSP1 activated endoplasmic reticulum stress by regulating the ATF6-CHOP axis.TSP1 restrained cell proliferation,and promoted apoptosis and endoplasmic reticulum stress by activating the ATF6-CHOP axis.展开更多
BACKGROUND: Studies have demonstrated that β-amyloid peptide (Aβ), a characteristic pathological product of Alzheimer's disease (AD), results in neuronal endoplasmic reticulum stress (ERS). However, the mech...BACKGROUND: Studies have demonstrated that β-amyloid peptide (Aβ), a characteristic pathological product of Alzheimer's disease (AD), results in neuronal endoplasmic reticulum stress (ERS). However, the mechanisms of traditional Chinese medicine against ERS in AD are poorly understood. OBJECTIVE: To measure expression levels of protective proteins (GRP78 and GRP94) of ER molecular partners and pro-apoptotic Caspase-12 ER membrane expression following application of traditional Chinese medicine natural cerebrolysin (NC) to treat Aβ1-40-induced ERS. DESIGN, TIME AND SETTING: A parallel-controlled study was performed at the Institute of Integrated Western and Traditional Chinese Medicine, Shenzhen Hospital of Southern Medical University between September 2006 and November 2008. MATERIALS: Sprague Dawley male rats, 6-8 weeks old, were used to harvest tibial and femoral bone marrow. Isolation and purification of mesenchymal stem cells (MSCs) were established from the whole bone marrow by removing non-adherent cells in primary and passage cultures. Aβ1-40 was provided by Sigma, USA. NC was provided by Shenzhen Institute of Integrated Chinese and Western Medicine, China. NC was predominantly composed of Renshen (Radix Ginseng), Tianma (Rhizoma Gastrodiae), and Yinxingye (Ginkgo Leaf) in a proportion of 1 : 2: 2. Following conventional water extraction technology, an extract (1 : 20) was prepared. Six adult, male, New Zealand rabbits underwent intragastric administration of NC extract (0.976 g/kg per day) for 1 month to prepare NC-positive serum, and the remaining 6 rabbits received intragastric administration of physiological saline to prepare normal blank serum. METHODS: A total of 500 nmol/L Aβ1-40 was used to establish ERS models of primary cultured MSCs. AD cell models were incubated with different doses of NC-positive serum (2.5%, 5%, and 10%). MSCs treated with normal blank serum served as normal blank controls. MAIN OUTCOME MEASURES: Reverse transcription-polymerase chain reaction and fluorescent immunocytochemistry were respectively used to measure mRNA and protein expression levels of GRP78, GRP94, and Caspase-12 in MSCs. RESULTS: Following Aβ1-40 exposure, mRNA and protein expression levels of GRP78 and GRP94, as well as Caspase-12, significantly increased (P 〈 0.05), suggesting successful establishment of ERS models. Following NC-positive serum application, mRNA and protein expression levels of GRP78 and GRP94 in MSCs significantly increased (P 〈 0.05 or P 〈 0.01). However, mRNA and protein expression levels of Caspase-12 significantly decreased (P 〈 0.05, or P 〈 0.01) compared with the ERS model group. These effects were dose-dependent. CONCLUSION: NC downregulated Caspase-12 expression and upregulated GRP78 and GRP94 expression in MSCs in a dose-dependent manner under the state of Aβ1-40-induced ERS.展开更多
1-methyl-4-phenylpyridinium ion (MPP^+) induces endoplasmic reticulum stress and activates caspase-12 in PC12 cells, leading to neuronal apoptosis. However, the underlying molecular mechanism remains unknown. The p...1-methyl-4-phenylpyridinium ion (MPP^+) induces endoplasmic reticulum stress and activates caspase-12 in PC12 cells, leading to neuronal apoptosis. However, the underlying molecular mechanism remains unknown. The present study investigated the regulatory effects of nerve growth factor (Akt activator) and lithium chloride (glycogen synthase kinase-3β inhibitor) on the endoplasmic reticulum stress signaling pathway. The results revealed that MPP+ induced expression of Bip and C/EBP homologous protein. The upregulation of Bip and C/EBP homologous protein, as well as the decreased pro-caspase-12 level induced by MPP^+ were inhibited by pretreatment of the nerve growth factor or lithium chloride. These results suggest that the phosphatidylinositol 3 kinase-Aktglycogen synthase kinase-3β pathway is involved in MPP-induced endoplasmic reticulum stress.展开更多
The serine proteinase inhibitor α-1 antitrypsin(AAT) is produced principally by the liver at the rate of 2 g/d.It is secreted into the circulation and provides an antiprotease protective screen throughout the body bu...The serine proteinase inhibitor α-1 antitrypsin(AAT) is produced principally by the liver at the rate of 2 g/d.It is secreted into the circulation and provides an antiprotease protective screen throughout the body but most importantly in the lung,where it can neutralise the activity of the serine protease neutrophil elastase.Mutations leading to def iciency in AAT are associated with liver and lung disease.The most notable is the Z AAT mutation,which encodes a misfolded variant of the AAT protein in which the glutamic acid at position 342 is replaced by a lysine.More than 95% of all individuals with AAT def iciency carry at least one Z allele.ZAAT protein is not secreted effectively and accumulates intracellularly in the endoplasmic reticulum(ER) of hepatocytes and other AAT-producing cells.This results in a loss of function associated with decreased circulating and intrapulmonary levels of AAT.However,the misfolded protein acquires a toxic gain of function that impacts on the ER.A major function of the ER is to ensure correct protein folding.ZAAT interferes with this function and promotes ER stress responses and inflammation.Here the signalling pathways activated during ER stress in response to accumulation of ZAAT are described and therapeutic strategies that can potentially relieve ER stress are discussed.展开更多
Previous studies have shown that resveratrol,a bioactive substance found in many plants,can reduce early brain injury after subarachnoid hemorrhage,but how it acts is still unclear.This study explored the mechanism us...Previous studies have shown that resveratrol,a bioactive substance found in many plants,can reduce early brain injury after subarachnoid hemorrhage,but how it acts is still unclear.This study explored the mechanism using the experimental subarachnoid hemorrhage rat model established by injecting autologous blood into the cerebellomedullary cistern.Rat models were treated with an intraperitoneal injection of 60 mg/kg resveratrol 2,6,24 and 46 hours after injury.At 48 hours after injury,their neurological function was assessed using a modified Garcia score.Brain edema was measured by the wet-dry method.Neuronal apoptosis in the prefrontal cortex was detected by terminal deoxyribonucleotidyl transferase-mediated biotin-16-dUTP nick-end labeling assay.Levels of reactive oxygen species and malondialdehyde in the prefrontal cortex were determined by colorimetry.CHOP,glucose-regulated protein 78,nuclear factor-erythroid2-related factor 2 and heme oxygenase-1 mRNA expression levels in the prefrontal cortex were measured by reverse transcription polymerase chain reaction.Tumor necrosis factor-alpha content in the prefrontal cortex was detected by enzyme linked immunosorbent assay.Immunohistochemical staining was used to detect the number of positive cells of nuclear factor-erythroid 2-related factor 2,heme oxygenase 1,glucose-regulated protein 78,CHOP and glial fibrillary acidic protein.Western blot assay was utilized to analyze the expression levels of nuclear factor-erythroid 2-related factor 2,heme oxygenase 1,glucose-regulated protein 78 and CHOP protein expression levels in the prefrontal cortex.The results showed that resveratrol treatment markedly alleviated neurological deficits and brain edema in experimental subarachnoid hemorrhage rats,and reduced neuronal apoptosis in the prefrontal cortex.Resveratrol reduced the levels of reactive oxygen species and malondialdehyde,and increased the expression of nuclear factor-erythroid 2-related factor 2,heme oxygenase-1 mRNA and protein in the prefrontal cortex.Resveratrol decreased glucose-regulated protein 78,CHOP mRNA and protein expression and tumor necrosis factor-alpha level.It also activated astrocytes.The results suggest that resveratrol exerted neuroprotective effect on subarachnoid hemorrhage by reducing oxidative damage,endoplasmic reticulum stress and neuroinflammation.The study was approved by the Animals Ethics Committee of Shandong University,China on February 22,2016(approval No.LL-201602022).展开更多
BACKGROUND Uridine diphosphate glucuronosyltransferase 1A1(UGT1A1)plays a crucial role in metabolizing and detoxifying endogenous and exogenous substances.However,its contribution to the progression of liver damage re...BACKGROUND Uridine diphosphate glucuronosyltransferase 1A1(UGT1A1)plays a crucial role in metabolizing and detoxifying endogenous and exogenous substances.However,its contribution to the progression of liver damage remains unclear.AIM To determine the role and mechanism of UGT1A1 in liver damage progression.METHODS We investigated the relationship between UGT1A1 expression and liver injury through clinical research.Additionally,the impact and mechanism of UGT1A1 on the progression of liver injury was analyzed through a mouse model study.RESULTS Patients with UGT1A1 gene mutations showed varying degrees of liver damage,while patients with acute-onchronic liver failure(ACLF)exhibited relatively reduced levels of UGT1A1 protein in the liver as compared to patients with chronic hepatitis.This suggests that low UGT1A1 levels may be associated with the progression of liver damage.In mouse models of liver injury induced by carbon tetrachloride(CCl_(4))and concanavalin A(ConA),the hepatic levels of UGT1A1 protein were found to be increased.In mice with lipopolysaccharide or liver steatosis-mediated liver-injury progression,the hepatic protein levels of UGT1A1 were decreased,which is consistent with the observations in patients with ACLF.UGT1A1 knockout exacerbated CCl_(4)-and ConA-induced liver injury,hepatocyte apoptosis and necroptosis in mice,intensified hepatocyte endoplasmic reticulum(ER)stress and oxidative stress,and disrupted lipid metabolism.CONCLUSION UGT1A1 is upregulated as a compensatory response during liver injury,and interference with this upregulation process may worsen liver injury.UGT1A1 reduces ER stress,oxidative stress,and lipid metabolism disorder,thereby mitigating hepatocyte apoptosis and necroptosis.展开更多
Injury to central nervous system axons is a common early characteristic of neurodegenerative diseases. Depending on its location and the type of neuron, axon injury often leads to axon degeneration, retrograde neurona...Injury to central nervous system axons is a common early characteristic of neurodegenerative diseases. Depending on its location and the type of neuron, axon injury often leads to axon degeneration, retrograde neuronal cell death and progressive permanent loss of vital neuronal functions. Although these sequential events are clearly connected, ample evidence indicates that neuronal soma and axon degenerations are active autonomous processes with distinct molecular mechanisms. By exploiting the anatomical and techni- cal advantages of the retinal ganglion cell (RGC)/optic nerve (ON) system, we demonstrated that inhibition of the PERK-eIF2a-CHOP pathway and activation of the X-box binding protein 1 pathway synergistically protect RGC soma and axon, and preserve visual function, in both acute ON traumatic injury and chronic glaucomatous neuropathy. The autonomous endoplasmic reticulum (ER) stress pathway in neurons has been implicated in several other neurodegenerative diseases. In addition to the emerging role of ER mor- phology in axon maintenance, we propose that ER stress is a common upstream signal for disturbances in axon integrity, and that it leads to a retrograde signal that can subsequently induce neuronal soma death. Therefore manipulation of the ER stress pathway may be a key step toward developing the effective neuro- protectants that are greatly needed in the clinic.展开更多
AIM: To explore the changes of X-box binding protein 1splicing(XBP1s) and inflammatory cytokine expression in patients with ulcerative colitis(UC) in response to endoplasmic reticulum stress(ERS).METHODS: Reverse tran...AIM: To explore the changes of X-box binding protein 1splicing(XBP1s) and inflammatory cytokine expression in patients with ulcerative colitis(UC) in response to endoplasmic reticulum stress(ERS).METHODS: Reverse transcription polymerase chain reaction and quantitative polymerase chain reaction were performed to detect the forms of XBP1 s and the expression of interleukin(IL)-2, interferon(IFN)-γ, and IL-17α. Differences between patients with UC and normal subjects were then determined.RESULTS: Mononuclear cells of the peripheral blood of normal subjects and UC patients with were stimulated with no drugs(control), phytohemagglutinin(PHA), thapsigargin(TG), or both PHA and TG. XBP1 s in patients with UC exhibited splicing, which was greater with co-stimulation than single stimulation. Costimulation increased the expression level of IL-2, IFN-γ, and IL-17α.CONCLUSION: The T lymphocytes of both normal subjects and patients with UC responded to ERS by activating the XBP1s-mediated signalling pathway, upregulating the expression of inflammatory cytokines, and increasing the occurrence of inflammation. The mononuclear cells in the peripheral blood of patients with UC were more sensitive to ERS than those in the peripheral blood of normal subjects.展开更多
基金supported by the Haihe Laboratory of Cell Ecosystem Innovation Fund,No.22HHXBSS00047(to PL)the National Natural Science Foundation of China,Nos.82072166(to PL),82071394(to XG)+4 种基金Science and Technology Planning Project of Tianjin,No.20YFZCSY00030(to PL)Science and Technology Project of Tianjin Municipal Health Commission,No.TJWJ2021QN005(to XG)Tianjin Key Medical Discipline(Specialty)Construction Project,No.TJYXZDXK-006ATianjin Municipal Education Commission Scientific Research Program Project,No.2020KJ164(to JZ)China Postdoctoral Science Foundation,No.2022M712392(to ZY).
文摘We previously reported that miR-124-3p is markedly upregulated in microglia-derived exosomes following repetitive mild traumatic brain injury.However,its impact on neuronal endoplasmic reticulum stress following repetitive mild traumatic brain injury remains unclear.In this study,we first used an HT22 scratch injury model to mimic traumatic brain injury,then co-cultured the HT22 cells with BV2 microglia expressing high levels of miR-124-3p.We found that exosomes containing high levels of miR-124-3p attenuated apoptosis and endoplasmic reticulum stress.Furthermore,luciferase reporter assay analysis confirmed that miR-124-3p bound specifically to the endoplasmic reticulum stress-related protein IRE1α,while an IRE1αfunctional salvage experiment confirmed that miR-124-3p targeted IRE1αand reduced its expression,thereby inhibiting endoplasmic reticulum stress in injured neurons.Finally,we delivered microglia-derived exosomes containing miR-124-3p intranasally to a mouse model of repetitive mild traumatic brain injury and found that endoplasmic reticulum stress and apoptosis levels in hippocampal neurons were significantly reduced.These findings suggest that,after repetitive mild traumatic brain injury,miR-124-3 can be transferred from microglia-derived exosomes to injured neurons,where it exerts a neuroprotective effect by inhibiting endoplasmic reticulum stress.Therefore,microglia-derived exosomes containing miR-124-3p may represent a novel therapeutic strategy for repetitive mild traumatic brain injury.
基金Supported by National Natural Science Foundation for Young Scientists of China(No.82101097)National Natural Science Foundation of China(No.82070937).
文摘AIM:To explore the effect of silent information regulator factor 2-related enzyme 1(SIRT1)on modulating apoptosis of human lens epithelial cells(HLECs)and alleviating lens opacification of rats through suppressing endoplasmic reticulum(ER)stress.METHODS:HLECs(SRA01/04)were treated with varying concentrations of tunicamycin(TM)for 24h,and the expression of SIRT1 and C/EBP homologous protein(CHOP)was assessed using real-time quantitative polymerase chain reaction(RT-PCR),Western blotting,and immunofluorescence.Cell morphology and proliferation was evaluated using an inverted microscope and cell counting kit-8(CCK-8)assay,respectively.In the SRA01/04 cell apoptosis model,which underwent siRNA transfection for SIRT1 knockdown and SRT1720 treatment for its activation,the expression levels of SIRT1,CHOP,glucose regulated protein 78(GRP78),and activating transcription factor 4(ATF4)were examined.The potential reversal of SIRT1 knockdown effects by 4-phenyl butyric acid(4-PBA;an ER stress inhibitor)was investigated.In vivo,age-related cataract(ARC)rat models were induced by sodium selenite injection,and the protective role of SIRT1,activated by SRT1720 intraperitoneal injections,was evaluated through morphology observation,hematoxylin and eosin(H&E)staining,Western blotting,and RT-PCR.RESULTS:SIRT1 expression was downregulated in TMinduced SRA01/04 cells.Besides,in SRA01/04 cells,both cell apoptosis and CHOP expression increased with the rising doses of TM.ER stress was stimulated by TM,as evidenced by the increased GRP78 and ATF4 in the SRA01/04 cell apoptosis model.Inhibition of SIRT1 by siRNA knockdown increased ER stress activation,whereas SRT1720 treatment had opposite results.4-PBA partly reverse the adverse effect of SIRT1 knockdown on apoptosis.In vivo,SRT1720 attenuated the lens opacification and weakened the ER stress activation in ARC rat models.CONCLUSION:SIRT1 plays a protective role against TM-induced apoptosis in HLECs and slows the progression of cataract in rats by inhibiting ER stress.These findings suggest a novel strategy for cataract treatment focused on targeting ER stress,highlighting the therapeutic potential of SIRT1 modulation in ARC development.
基金supported by the National Natural Science Foundation of China,Nos.82104158(to XT),31800887(to LY),31972902(to LY),82001422(to YL)China Postdoctoral Science Foundation,No.2020M683750(to LY)partially by Young Talent Fund of University Association for Science and Technology in Shaanxi Province of China,No.20200307(to LY).
文摘β-Sitosterol is a type of phytosterol that occurs naturally in plants.Previous studies have shown that it has anti-oxidant,anti-hyperlipidemic,anti-inflammatory,immunomodulatory,and anti-tumor effects,but it is unknown whetherβ-sitosterol treatment reduces the effects of ischemic stroke.Here we found that,in a mouse model of ischemic stroke induced by middle cerebral artery occlusion,β-sitosterol reduced the volume of cerebral infarction and brain edema,reduced neuronal apoptosis in brain tissue,and alleviated neurological dysfunction;moreover,β-sitosterol increased the activity of oxygen-and glucose-deprived cerebral cortex neurons and reduced apoptosis.Further investigation showed that the neuroprotective effects ofβ-sitosterol may be related to inhibition of endoplasmic reticulum stress caused by intracellular cholesterol accumulation after ischemic stroke.In addition,β-sitosterol showed high affinity for NPC1L1,a key transporter of cholesterol,and antagonized its activity.In conclusion,β-sitosterol may help treat ischemic stroke by inhibiting neuronal intracellular cholesterol overload/endoplasmic reticulum stress/apoptosis signaling pathways.
文摘Selective clearance of organelles,including endoplasmic reticulum(ER)and mitochondria,by autophagy plays an important role in cell health.Here,we describe a developmentally programmed selective ER clearance by autophagy.We show that Parkinson's disease-associated PINK1,as well as Atl,Rtnl1,and Trp1 receptors,regulate ER clearance by autophagy.
基金supported by the National Natural Science Foundation of China[81904266,82004309].
文摘While the Bushen Yizhi Formula can treat Alzheimer’s disease(AD),the yet to be ascertained specific mechanism of action was explored in this work.Methods:Different concentrations of the Bushen Yizhi Formula and amyloid-beta peptide(Aβ)were used to treat rat pheochromocytoma cells(P12)and human neuroblastoma cells(SH-SY5Y).Cell morphological changes were observed to determine the in vitro cell damage.Cell Counting Kit(CCK)-8 assay and flow cytometry were employed to identify cell viability and apoptosis/cell cycle,respectively.Western blotting and immunohistochemistry were employed to measure the expressions of endoplasmic reticulum stress(ERS)-related proteins(GRP78 and CHOP),p-IRE1α,IRE1α,ASK1,p-JNK,JNK,Bax,Bcl-2,XBP-1,and Bim.Fura 2-acetoxymethyl ester(Fura-2/AM)was used to determine the intracellular calcium(Ca^(2+))concentration.Also,an AD model was constructed by injecting Aβinto the CA1 area of the hippocampus in Sprague Dawley rats.AD model rats were gavaged with different concentrations of Bushen Yizhi Formula for 14 consecutive days.The Morris water maze experiment was conducted to test the learning and memory of rats.Hematoxylin&Eosin(H&E)and Terminal-deoxynucleotidyl Transferase(TdT)-mediated dUTP Nick-End Labeling(TUNEL)staining were done to determine histopathological changes in the brain.Results:Bushen Yizhi Formula relieved the Aβ-induced effects including cell injury,decreased viability,increased apoptosis,G0/G1 phase cell cycle arrest,upregulation of GRP78,CHOP,p-IRE1α,p-JNK,Bax,XBP-1 and Bim,as well as down-regulation of Bcl-2.These results were also seen with IRE1αsilencing.While Aβsuppressed the learning and memory abilities of rats,the Bushen Yizhi Formula alleviated these effects of Aβ.Brain nerve cell injury induced by Aβcould also be treated with Bushen Yizhi Formula.Conclusion:Bushen Yizhi Formula could influence ERS through the IRE1αsignaling pathway to achieve its therapeutic effects on AD.
基金Supported by the National Nature Science Foundation of China,No.81600414the Natural Science Foundation of Zhejiang Province,No.LQ16H030001Zhejiang TCM Science and Technology Project,No.2016ZA123 and No.2018ZA013
文摘BACKGROUND Sirtuin 1(SIRT1)is a nicotinamide adenine dinucleotide(NAD+)-dependent protein deacetylase that is involved in various diseases,including cancers,metabolic diseases,and inflammation-associated diseases.However,the role of SIRT1 in ulcerative colitis(UC)is still confusing.AIM To investigate the role of SIRT1 in intestinal epithelial cells(IECs)in UC and further explore the underlying mechanisms.METHODS We developed a coculture model using macrophages and Caco-2 cells.After treatment with the SIRT1 activator SRT1720 or inhibitor nicotinamide(NAM),the expression of occludin and zona occludens 1(ZO-1)was assessed by Western blot analysis.Annexin V-APC/7-AAD assays were performed to evaluate Caco-2 apoptosis.Dextran sodium sulfate(DSS)-induced colitis mice were exposed to SRT1720 or NAM for 7 d.Transferase-mediated dUTP nick-end labeling(TUNEL)assays were conducted to assess apoptosis in colon tissues.The expression levels of glucose-regulated protein 78(GRP78),CCAAT/enhancerbinding protein homologous protein(CHOP),caspase-12,caspase-9,and caspase-3 in Caco-2 cells and the colon tissues of treated mice were examined by quantitative real-time PCR and Western blot.RESULTS SRT1720 treatment increased the protein levels of occludin and ZO-1 and inhibited Caco-2 apoptosis,whereas NAM administration caused the opposite effects.DSS-induced colitis mice treated with SRT1720 had a lower disease activity index(P<0.01),histological score(P<0.001),inflammatory cytokine levels(P<0.01),and apoptotic cell rate(P<0.01),while exposure to NAM caused the opposite effects.Moreover,SIRT1 activation reduced the expression levels of GRP78,CHOP,cleaved caspase-12,cleaved caspase-9,and cleaved caspase-3 in Caco-2 cells and the colon tissues of treated mice.CONCLUSION SIRT1 activation reduces apoptosis of IECs via the suppression of endoplasmic reticulum stress-mediated apoptosis-associated molecules CHOP and caspase-12.SIRT1 activation may be a potential therapeutic strategy for UC.
基金Supported by the Project of Innovative Research Team for Key Science and Technology in Shaanxi Province,No.2013KCJ-23the Fundamental Research Funds for the Central Universities,No.1191320114the National Natural Science Foundation of China,No.81601672
文摘AIM To investigate the therapeutic effect of hydrogen-rich water(HRW) on inflammatory bowel disease(IBD) and to explore the potential mechanisms involved.METHODS Male mice were randomly divided into the following four groups: control group, in which the mice received equivalent volumes of normal saline(NS) intraperitoneally(ip); dextran sulfate sodium(DSS) group, in which the mice received NS ip(5 m L/kg body weight, twice per day at 8 am and 5 pm) for 7 consecutive days after IBD modeling; DSS + HRW group, in which the mice received HRW(in the same volume as the NS treatment) for 7 consecutive days after IBD modeling; and DSS + HRW + Zn PP group, in which the mice received HRW(in the same volume as the NS treatment) and ZnP P [a heme oxygenase-1(HO-1) inhibitor, 25 mg/kg] for 7 consecutive days after IBD modeling. IBD was induced by feeding DSS to the mice, and blood and colon tissues were collected on the 7th d after IBD modeling to determine clinical symptoms, colonic inflammation and the potential mechanisms involved.RESULTS The DSS + HRW group exhibited significantly attenuated weight loss and a lower extent of disease activity index compared with the DSS group on the 7th d(P < 0.05). HRW exerted protective effects against colon shortening and colonic wall thickening in contrast to the DSS group(P < 0.05). The histological study demonstrated milder inflammation in the DSS + HRW group, which was similar to normal inflammatory levels, and the macroscopic and microcosmic damage scores were lower in this group than in the DSS group(P < 0.05). The oxidative stress parameters, including MDA and MPO in the colon, were significantly decreased in the DSS + HRW group compared with the DSS group(P < 0.05). Simultaneously, the protective indicators, superoxide dismutase and glutathione, were markedly increased with the use of HRW. Inflammatory factors were assessed, and the results showed that the DSS + HRW group exhibited significantly reduced levels of TNF-α, IL-6 and IL-1β compared with the DSS group(P < 0.05). In addition, the pivotal proteins involved in endoplasmic reticulum(ER) stress, including p-e IF2α, ATF4, XBP1 s and CHOP, were dramatically reduced after HRW treatment in contrast to the control group(P < 0.05). Furthermore, HRW treatment markedly up-regulated HO-1 expression, and the use of Zn PP obviously reversed the protective role of HRW. In the DSS + HRW + ZnP P group, colon shortening and colonic wall thickening were significantly aggravated, and the macroscopic damage scores were similar to those of the DSS + HRW group(P < 0.05). The histological study also showed more serious colonic damage that was similar to the DSS group.CONCLUSION HRW has a significant therapeutic potential in IBD by inhibiting inflammatory factors, oxidative stress and ER stress and by up-regulating HO-1 expression.
基金supported by the National Natural Science Foundation of China,No.81560175,81260159(both to LL)
文摘Studies have confirmed a strong association between activation of the endoplasmic reticulum stress pathway and cerebral ischemia/reperfusion(I/R) injury.In this study,three key proteins in the endoplasmic reticulum stress pathway(glucose-regulated protein 78,caspase-12,and C/EBP homologous protein) were selected to examine the potential mechanism of endoplasmic reticulum stress in the neuroprotective effect of G protein-coupled estrogen receptor.Female Sprague-Dawley rats received ovariectomy(OVX),and then cerebral I/R rat models(OVX+ I/R) were established by middle cerebral artery occlusion.Immediately after I/R,rat models were injected with 100 μg/kg E2(OVX + I/R +E2),or 100 μg/kg G protein-coupled estrogen receptor agonist G1(OVX + I/R + G1) in the lateral ventricle.Longa scoring was used to detect neurobehavioral changes in each group.Infarct volumes were measured by 2,3,5-triphenyltetrazolium chloride staining.Morphological changes in neurons were observed by Nissl staining.Terminal dexynucleotidyl transferase-mediated nick end-labeling staining revealed that compared with the OVX + I/R group,neurological function was remarkably improved,infarct volume was reduced,number of normal Nissl bodies was dramatically increased,and number of apoptotic neurons in the hippocampus was decreased after E2 and G1 intervention.To detect the expression and distribution of endoplasmic reticulum stress-related proteins in the endoplasmic reticulum,caspase-12 distribution and expression were detected by immunofluorescence,and mRNA and protein levels of glucose-regulated protein 78,caspase-12,and C/EBP homologous protein were determined by polymerase chain reaction and western blot assay.The results showed that compared with the OVX+ I/R group,E2 and G1 treatment obviously decreased mRNA and protein expression levels of glucose-regulated protein 78,C/EBP homologous protein,and caspase-12.However,the G protein-coupled estrogen receptor antagonist G15(OVX + I/R + E2 + G15) could eliminate the effect of E2 on cerebral I/R injury.These results confirm that E2 and G protein-coupled estrogen receptor can inhibit the expression of endoplasmic reticulum stress-related proteins and neuronal apoptosis in the hippocampus,thereby improving dysfunction caused by cerebral I/R injury.Every experimental protocol was approved by the Institutional Ethics Review Board at the First Affiliated Hospital of Shihezi University School of Medicine,China(approval No.SHZ A2017-171) on February 27,2017.
基金This study was supported by a grant from Chinese Society of Nephrology(No.14050430580).
文摘Objective The goal of this study is to investigate the role and mechanism of endoplasmic reticulum stress and apoptosis regulated by thrombospondin 1(TSP1)in human renal tubular epithelial cells(HK-2 cells).Methods HK-2 cells were exposed to high concentrations of glucose(HG).The endoplasmic reticulum stress inhibitor 4-phenylbutyric acid(4-PBA)was administered by transfecting TSP1 or an empty vector to explore the mechanism of the endoplasmic reticulum response regulated by TSP1 and stress in renal cell apoptosis.The effects of TSP1 and 4-PBA on the proliferation and apoptosis of HK-2 cells under HG conditions were assessed using Cell counting kit-8 and flow cytometry.Western blotting was used to detect the apoptosis-and endoplasmic reticulum stress-related protein expression regulated by TSP1 and 4-PBA.Results HG treatment induced high cell apoptosis,abundantly expressed TSP1 level and restrained viability in HK-2 cells.Overexpression of TSP1 significantly inhibited the proliferation of and facilitated apoptosis of HK-2 cells under HG conditions.Administration of endoplasmic reticulum stress inhibitor 4-PBA after overexpression of TSP1 antagonized the inhibitory proliferation and promoted apoptosis rate in HG-triggered HK-2 cells induced by TSP1 overexpression.4-PBA treatment significantly hindered the expression of endoplasmic reticulum stress markers,such as PERK,ATF4,ATF6,p-eIF2α,IRE1,CHOP and XBP1,suggesting that the administration of 4-PBA was successful.Conclusion Overexpression of TSP1 activated endoplasmic reticulum stress by regulating the ATF6-CHOP axis.TSP1 restrained cell proliferation,and promoted apoptosis and endoplasmic reticulum stress by activating the ATF6-CHOP axis.
基金the National Natural Science Foundation of China, No. 30973779the National Special Planning Project for Traditional Chinese Medicine of China, No.02-03LP41the Key Program of Scientific Planning of Guangdong Province, No. 2006B35630007
文摘BACKGROUND: Studies have demonstrated that β-amyloid peptide (Aβ), a characteristic pathological product of Alzheimer's disease (AD), results in neuronal endoplasmic reticulum stress (ERS). However, the mechanisms of traditional Chinese medicine against ERS in AD are poorly understood. OBJECTIVE: To measure expression levels of protective proteins (GRP78 and GRP94) of ER molecular partners and pro-apoptotic Caspase-12 ER membrane expression following application of traditional Chinese medicine natural cerebrolysin (NC) to treat Aβ1-40-induced ERS. DESIGN, TIME AND SETTING: A parallel-controlled study was performed at the Institute of Integrated Western and Traditional Chinese Medicine, Shenzhen Hospital of Southern Medical University between September 2006 and November 2008. MATERIALS: Sprague Dawley male rats, 6-8 weeks old, were used to harvest tibial and femoral bone marrow. Isolation and purification of mesenchymal stem cells (MSCs) were established from the whole bone marrow by removing non-adherent cells in primary and passage cultures. Aβ1-40 was provided by Sigma, USA. NC was provided by Shenzhen Institute of Integrated Chinese and Western Medicine, China. NC was predominantly composed of Renshen (Radix Ginseng), Tianma (Rhizoma Gastrodiae), and Yinxingye (Ginkgo Leaf) in a proportion of 1 : 2: 2. Following conventional water extraction technology, an extract (1 : 20) was prepared. Six adult, male, New Zealand rabbits underwent intragastric administration of NC extract (0.976 g/kg per day) for 1 month to prepare NC-positive serum, and the remaining 6 rabbits received intragastric administration of physiological saline to prepare normal blank serum. METHODS: A total of 500 nmol/L Aβ1-40 was used to establish ERS models of primary cultured MSCs. AD cell models were incubated with different doses of NC-positive serum (2.5%, 5%, and 10%). MSCs treated with normal blank serum served as normal blank controls. MAIN OUTCOME MEASURES: Reverse transcription-polymerase chain reaction and fluorescent immunocytochemistry were respectively used to measure mRNA and protein expression levels of GRP78, GRP94, and Caspase-12 in MSCs. RESULTS: Following Aβ1-40 exposure, mRNA and protein expression levels of GRP78 and GRP94, as well as Caspase-12, significantly increased (P 〈 0.05), suggesting successful establishment of ERS models. Following NC-positive serum application, mRNA and protein expression levels of GRP78 and GRP94 in MSCs significantly increased (P 〈 0.05 or P 〈 0.01). However, mRNA and protein expression levels of Caspase-12 significantly decreased (P 〈 0.05, or P 〈 0.01) compared with the ERS model group. These effects were dose-dependent. CONCLUSION: NC downregulated Caspase-12 expression and upregulated GRP78 and GRP94 expression in MSCs in a dose-dependent manner under the state of Aβ1-40-induced ERS.
基金the National Natural Science Foundation of China, No. 30860085a grant from the Candidates of Young and Middle-Aged Academic Leaders of Yunnan Province, No. 2006PY01-07the Natural Science Foundation of Yunnan Province, No. 2007C177M
文摘1-methyl-4-phenylpyridinium ion (MPP^+) induces endoplasmic reticulum stress and activates caspase-12 in PC12 cells, leading to neuronal apoptosis. However, the underlying molecular mechanism remains unknown. The present study investigated the regulatory effects of nerve growth factor (Akt activator) and lithium chloride (glycogen synthase kinase-3β inhibitor) on the endoplasmic reticulum stress signaling pathway. The results revealed that MPP+ induced expression of Bip and C/EBP homologous protein. The upregulation of Bip and C/EBP homologous protein, as well as the decreased pro-caspase-12 level induced by MPP^+ were inhibited by pretreatment of the nerve growth factor or lithium chloride. These results suggest that the phosphatidylinositol 3 kinase-Aktglycogen synthase kinase-3β pathway is involved in MPP-induced endoplasmic reticulum stress.
基金Supported by The U.S. Alpha One Foundation,the Health Research Board of Ireland,the Medical Research Charities Group,the Programmes for Research in Third Level Institutes administered by the Higher Education Authority and the Children’s Medical and Research Centre,Crumlin Hospital
文摘The serine proteinase inhibitor α-1 antitrypsin(AAT) is produced principally by the liver at the rate of 2 g/d.It is secreted into the circulation and provides an antiprotease protective screen throughout the body but most importantly in the lung,where it can neutralise the activity of the serine protease neutrophil elastase.Mutations leading to def iciency in AAT are associated with liver and lung disease.The most notable is the Z AAT mutation,which encodes a misfolded variant of the AAT protein in which the glutamic acid at position 342 is replaced by a lysine.More than 95% of all individuals with AAT def iciency carry at least one Z allele.ZAAT protein is not secreted effectively and accumulates intracellularly in the endoplasmic reticulum(ER) of hepatocytes and other AAT-producing cells.This results in a loss of function associated with decreased circulating and intrapulmonary levels of AAT.However,the misfolded protein acquires a toxic gain of function that impacts on the ER.A major function of the ER is to ensure correct protein folding.ZAAT interferes with this function and promotes ER stress responses and inflammation.Here the signalling pathways activated during ER stress in response to accumulation of ZAAT are described and therapeutic strategies that can potentially relieve ER stress are discussed.
基金supported by the National Natural Science Foundation of China,No.81873768 and 81671213(both to ZW)the Key Research and Development Foundation of Shandong Province of China,No.2017GSF218091(to ZW)the Fundamental Research Funds of Shandong University of China,No.2015JC008(to ZW)
文摘Previous studies have shown that resveratrol,a bioactive substance found in many plants,can reduce early brain injury after subarachnoid hemorrhage,but how it acts is still unclear.This study explored the mechanism using the experimental subarachnoid hemorrhage rat model established by injecting autologous blood into the cerebellomedullary cistern.Rat models were treated with an intraperitoneal injection of 60 mg/kg resveratrol 2,6,24 and 46 hours after injury.At 48 hours after injury,their neurological function was assessed using a modified Garcia score.Brain edema was measured by the wet-dry method.Neuronal apoptosis in the prefrontal cortex was detected by terminal deoxyribonucleotidyl transferase-mediated biotin-16-dUTP nick-end labeling assay.Levels of reactive oxygen species and malondialdehyde in the prefrontal cortex were determined by colorimetry.CHOP,glucose-regulated protein 78,nuclear factor-erythroid2-related factor 2 and heme oxygenase-1 mRNA expression levels in the prefrontal cortex were measured by reverse transcription polymerase chain reaction.Tumor necrosis factor-alpha content in the prefrontal cortex was detected by enzyme linked immunosorbent assay.Immunohistochemical staining was used to detect the number of positive cells of nuclear factor-erythroid 2-related factor 2,heme oxygenase 1,glucose-regulated protein 78,CHOP and glial fibrillary acidic protein.Western blot assay was utilized to analyze the expression levels of nuclear factor-erythroid 2-related factor 2,heme oxygenase 1,glucose-regulated protein 78 and CHOP protein expression levels in the prefrontal cortex.The results showed that resveratrol treatment markedly alleviated neurological deficits and brain edema in experimental subarachnoid hemorrhage rats,and reduced neuronal apoptosis in the prefrontal cortex.Resveratrol reduced the levels of reactive oxygen species and malondialdehyde,and increased the expression of nuclear factor-erythroid 2-related factor 2,heme oxygenase-1 mRNA and protein in the prefrontal cortex.Resveratrol decreased glucose-regulated protein 78,CHOP mRNA and protein expression and tumor necrosis factor-alpha level.It also activated astrocytes.The results suggest that resveratrol exerted neuroprotective effect on subarachnoid hemorrhage by reducing oxidative damage,endoplasmic reticulum stress and neuroinflammation.The study was approved by the Animals Ethics Committee of Shandong University,China on February 22,2016(approval No.LL-201602022).
基金the Science and Technology Research Foundations of Guizhou Province,No.QKHJC-ZK(2022)YB642Zunyi Science and Technology Plan Project,No.ZSKHHZ(2022)344,No.ZSKHHZ(2022)360,and No.ZYK160+2 种基金Hubei Province Central Leading Local Science and Technology Development Special Project,No.2022BCE030Changzhou Science and Technology Projects,No.CE20225054Bijie City Science and Planning Bureau,No.BKH(2022)8.
文摘BACKGROUND Uridine diphosphate glucuronosyltransferase 1A1(UGT1A1)plays a crucial role in metabolizing and detoxifying endogenous and exogenous substances.However,its contribution to the progression of liver damage remains unclear.AIM To determine the role and mechanism of UGT1A1 in liver damage progression.METHODS We investigated the relationship between UGT1A1 expression and liver injury through clinical research.Additionally,the impact and mechanism of UGT1A1 on the progression of liver injury was analyzed through a mouse model study.RESULTS Patients with UGT1A1 gene mutations showed varying degrees of liver damage,while patients with acute-onchronic liver failure(ACLF)exhibited relatively reduced levels of UGT1A1 protein in the liver as compared to patients with chronic hepatitis.This suggests that low UGT1A1 levels may be associated with the progression of liver damage.In mouse models of liver injury induced by carbon tetrachloride(CCl_(4))and concanavalin A(ConA),the hepatic levels of UGT1A1 protein were found to be increased.In mice with lipopolysaccharide or liver steatosis-mediated liver-injury progression,the hepatic protein levels of UGT1A1 were decreased,which is consistent with the observations in patients with ACLF.UGT1A1 knockout exacerbated CCl_(4)-and ConA-induced liver injury,hepatocyte apoptosis and necroptosis in mice,intensified hepatocyte endoplasmic reticulum(ER)stress and oxidative stress,and disrupted lipid metabolism.CONCLUSION UGT1A1 is upregulated as a compensatory response during liver injury,and interference with this upregulation process may worsen liver injury.UGT1A1 reduces ER stress,oxidative stress,and lipid metabolism disorder,thereby mitigating hepatocyte apoptosis and necroptosis.
基金supported by grants from National Eye Institute(R01EY023295,R01EY024932)BrightF ocus Foundation(G2013046)National Multiple Sclerosis Society(RG 5021A1)to YH
文摘Injury to central nervous system axons is a common early characteristic of neurodegenerative diseases. Depending on its location and the type of neuron, axon injury often leads to axon degeneration, retrograde neuronal cell death and progressive permanent loss of vital neuronal functions. Although these sequential events are clearly connected, ample evidence indicates that neuronal soma and axon degenerations are active autonomous processes with distinct molecular mechanisms. By exploiting the anatomical and techni- cal advantages of the retinal ganglion cell (RGC)/optic nerve (ON) system, we demonstrated that inhibition of the PERK-eIF2a-CHOP pathway and activation of the X-box binding protein 1 pathway synergistically protect RGC soma and axon, and preserve visual function, in both acute ON traumatic injury and chronic glaucomatous neuropathy. The autonomous endoplasmic reticulum (ER) stress pathway in neurons has been implicated in several other neurodegenerative diseases. In addition to the emerging role of ER mor- phology in axon maintenance, we propose that ER stress is a common upstream signal for disturbances in axon integrity, and that it leads to a retrograde signal that can subsequently induce neuronal soma death. Therefore manipulation of the ER stress pathway may be a key step toward developing the effective neuro- protectants that are greatly needed in the clinic.
基金Beijing Municipal Natural Scientific Research Foundation,No.7132175
文摘AIM: To explore the changes of X-box binding protein 1splicing(XBP1s) and inflammatory cytokine expression in patients with ulcerative colitis(UC) in response to endoplasmic reticulum stress(ERS).METHODS: Reverse transcription polymerase chain reaction and quantitative polymerase chain reaction were performed to detect the forms of XBP1 s and the expression of interleukin(IL)-2, interferon(IFN)-γ, and IL-17α. Differences between patients with UC and normal subjects were then determined.RESULTS: Mononuclear cells of the peripheral blood of normal subjects and UC patients with were stimulated with no drugs(control), phytohemagglutinin(PHA), thapsigargin(TG), or both PHA and TG. XBP1 s in patients with UC exhibited splicing, which was greater with co-stimulation than single stimulation. Costimulation increased the expression level of IL-2, IFN-γ, and IL-17α.CONCLUSION: The T lymphocytes of both normal subjects and patients with UC responded to ERS by activating the XBP1s-mediated signalling pathway, upregulating the expression of inflammatory cytokines, and increasing the occurrence of inflammation. The mononuclear cells in the peripheral blood of patients with UC were more sensitive to ERS than those in the peripheral blood of normal subjects.