The endoplasmic reticulum is a key site for protein production and quality control.More than one-third of proteins are synthesized and folded into the correct three-dimensional conformation in the endoplasmic reticulu...The endoplasmic reticulum is a key site for protein production and quality control.More than one-third of proteins are synthesized and folded into the correct three-dimensional conformation in the endoplasmic reticulum.However,during protein folding,unfolded and/or misfolded proteins are prone to occur,which may lead to endoplasmic reticulum stress.Organisms can monitor the quality of the proteins produced by endoplasmic reticulum quality control(ERQC)and endoplasmic reticulum-associated degradation(ERAD),which maintain endoplasmic reticulum protein homeostasis by degrading abnormally folded proteins.The underlying mechanisms of protein folding and ERAD in mammals have not yet been fully explored.Therefore,this paper reviews the process and function of protein folding and ERAD in mammalian cells,in order to help clinicians better understand the mechanism of ERAD and to provide a scientific reference for the treatment of diseases caused by abnormal ERAD.展开更多
The endoplasmic reticulum,a key cellular organelle,regulates a wide variety of cellular activities.Endoplasmic reticulum autophagy,one of the quality control systems of the endoplasmic reticulum,plays a pivotal role i...The endoplasmic reticulum,a key cellular organelle,regulates a wide variety of cellular activities.Endoplasmic reticulum autophagy,one of the quality control systems of the endoplasmic reticulum,plays a pivotal role in maintaining endoplasmic reticulum homeostasis by controlling endoplasmic reticulum turnover,remodeling,and proteostasis.In this review,we briefly describe the endoplasmic reticulum quality control system,and subsequently focus on the role of endoplasmic reticulum autophagy,emphasizing the spatial and temporal mechanisms underlying the regulation of endoplasmic reticulum autophagy according to cellular requirements.We also summarize the evidence relating to how defective or abnormal endoplasmic reticulum autophagy contributes to the pathogenesis of neurodegenerative diseases.In summary,this review highlights the mechanisms associated with the regulation of endoplasmic reticulum autophagy and how they influence the pathophysiology of degenerative nerve disorders.This review would help researchers to understand the roles and regulatory mechanisms of endoplasmic reticulum-phagy in neurodegenerative disorders.展开更多
Piezo1 is a mechanically-gated calcium channel.Recent studies have shown that Piezo1,a mechanically-gated calcium channel,can attenuate both psychosineand lipopolysaccharide-induced demyelination.Because oligodendrocy...Piezo1 is a mechanically-gated calcium channel.Recent studies have shown that Piezo1,a mechanically-gated calcium channel,can attenuate both psychosineand lipopolysaccharide-induced demyelination.Because oligodendrocyte damage and demyelination occur in intracerebral hemorrhage,in this study,we investigated the role of Piezo1 in intracerebral hemorrhage.We established a mouse model of cerebral hemorrhage by injecting autologous blood into the right basal ganglia and found that Piezo1 was largely expressed soon(within 48 hours)after intracerebral hemorrhage,primarily in oligodendrocytes.Intraperitoneal injection of Dooku1 to inhibit Piezo1 resulted in marked alleviation of brain edema,myelin sheath loss,and degeneration in injured tissue,a substantial reduction in oligodendrocyte apoptosis,and a significant improvement in neurological function.In addition,we found that Dooku1-mediated Piezo1 suppression reduced intracellular endoplasmic reticulum stress and cell apoptosis through the PERK-ATF4-CHOP and inositol-requiring enzyme 1 signaling pathway.These findings suggest that Piezo1 is a potential therapeutic target for intracerebral hemorrhage,as its suppression reduces intracellular endoplasmic reticulum stress and cell apoptosis and protects the myelin sheath,thereby improving neuronal function after intracerebral hemorrhage.展开更多
SEL1L-mediated endoplasmic reticulum-associated degradation(ERAD)plays critical roles in controlling protein homeostasis by degrading misfolded or terminal unfolded proteins.However,it remains unclear how SEL1L regula...SEL1L-mediated endoplasmic reticulum-associated degradation(ERAD)plays critical roles in controlling protein homeostasis by degrading misfolded or terminal unfolded proteins.However,it remains unclear how SEL1L regulates peripheral T-cell survival and homeostasis.Herein,we found that SEL1L deficiency led to a greatly reduced frequency and number of mature T cells,which was further validated by adoptive transfer experiments or bone marrow chimera experiments,accompanied by the induction of multiple forms of cell death.Furthermore,SEL1L deficiency selectively disrupted naïve CD8+T-cell homeostasis,as indicated by the severe loss of the naïve T-cell subset but an increase in the memory T-cell subset.We also found that SEL1L deficiency fueled mTORC1/c-MYC activation and induced a metabolic shift,which was largely attributable to enhanced expression of the IL-15 receptorαandβchains.Mechanistically,single-cell transcriptomic profiling and biochemical analyses further revealed that Sel1l−/−CD8+T cells harbored excessive ER stress,particularly aberrant activation of the PERK-ATF4-CHOP-Bim pathway,which was alleviated by supplementing IL-7 or IL-15.Importantly,PERK inhibition greatly resolved the survival defects of Sel1l−/−CD8+T cells.In addition,IRE1αdeficiency decreased mTORC1 signaling in Sel1l−/−naïve CD8+T cells by downregulating the IL-15 receptorαchain.Altogether,these observations suggest that the ERAD adaptor molecule SEL1L acts as an important checkpoint for preserving the survival and homeostasis of peripheral T cells by regulating the PERK signaling cascade and IL-15 receptor-mediated mTORC1 axis.展开更多
基金This work was supported by the National Natural Science Foundation of China(No.82071762)the Shanghai Key Lab of Human Performance(Shanghai University of Sport)(No.11DZ2261100)the 2021 Capacity Building of Shanghai Universities(No.21010503600),China。
文摘The endoplasmic reticulum is a key site for protein production and quality control.More than one-third of proteins are synthesized and folded into the correct three-dimensional conformation in the endoplasmic reticulum.However,during protein folding,unfolded and/or misfolded proteins are prone to occur,which may lead to endoplasmic reticulum stress.Organisms can monitor the quality of the proteins produced by endoplasmic reticulum quality control(ERQC)and endoplasmic reticulum-associated degradation(ERAD),which maintain endoplasmic reticulum protein homeostasis by degrading abnormally folded proteins.The underlying mechanisms of protein folding and ERAD in mammals have not yet been fully explored.Therefore,this paper reviews the process and function of protein folding and ERAD in mammalian cells,in order to help clinicians better understand the mechanism of ERAD and to provide a scientific reference for the treatment of diseases caused by abnormal ERAD.
基金supported by the National Natural Science Foundation of China,Nos.92049120 and 81870897STI2030-Major Projects,No.2021ZD0204001+6 种基金Guangdong Key Project for Development of New Tools for the Diagnosis and Treatment of Autism,No.2018B030335001the Natural Science Foundation of Jiangsu Province,No.BK20181436the National Major Scientific and Technological Special Project for Significant New Drug Development,No.2019ZX09301102the Discipline Construction Program of the Second Affiliated Hospital of Soochow University,No.XKTJ-TD202003Sino-German Cooperation Mobility Programme,No.M-0679the Science and Technology Project of Suzhou,No.SKY2022161Research Project of Neurological Diseases of the Second Affiliated Hospital of Soochow University Medical Center,No.ND2023A01(all to QHM)。
文摘The endoplasmic reticulum,a key cellular organelle,regulates a wide variety of cellular activities.Endoplasmic reticulum autophagy,one of the quality control systems of the endoplasmic reticulum,plays a pivotal role in maintaining endoplasmic reticulum homeostasis by controlling endoplasmic reticulum turnover,remodeling,and proteostasis.In this review,we briefly describe the endoplasmic reticulum quality control system,and subsequently focus on the role of endoplasmic reticulum autophagy,emphasizing the spatial and temporal mechanisms underlying the regulation of endoplasmic reticulum autophagy according to cellular requirements.We also summarize the evidence relating to how defective or abnormal endoplasmic reticulum autophagy contributes to the pathogenesis of neurodegenerative diseases.In summary,this review highlights the mechanisms associated with the regulation of endoplasmic reticulum autophagy and how they influence the pathophysiology of degenerative nerve disorders.This review would help researchers to understand the roles and regulatory mechanisms of endoplasmic reticulum-phagy in neurodegenerative disorders.
基金supported by the National Natural Science Foundation of China,Nos.81901193(to HLZ)and 81901267(to YY)。
文摘Piezo1 is a mechanically-gated calcium channel.Recent studies have shown that Piezo1,a mechanically-gated calcium channel,can attenuate both psychosineand lipopolysaccharide-induced demyelination.Because oligodendrocyte damage and demyelination occur in intracerebral hemorrhage,in this study,we investigated the role of Piezo1 in intracerebral hemorrhage.We established a mouse model of cerebral hemorrhage by injecting autologous blood into the right basal ganglia and found that Piezo1 was largely expressed soon(within 48 hours)after intracerebral hemorrhage,primarily in oligodendrocytes.Intraperitoneal injection of Dooku1 to inhibit Piezo1 resulted in marked alleviation of brain edema,myelin sheath loss,and degeneration in injured tissue,a substantial reduction in oligodendrocyte apoptosis,and a significant improvement in neurological function.In addition,we found that Dooku1-mediated Piezo1 suppression reduced intracellular endoplasmic reticulum stress and cell apoptosis through the PERK-ATF4-CHOP and inositol-requiring enzyme 1 signaling pathway.These findings suggest that Piezo1 is a potential therapeutic target for intracerebral hemorrhage,as its suppression reduces intracellular endoplasmic reticulum stress and cell apoptosis and protects the myelin sheath,thereby improving neuronal function after intracerebral hemorrhage.
基金supported by the National Key R&D Program of China(2022YFA0807300)the National Natural Science Foundation of China(82271775 and 81971466)+1 种基金the Natural Science Foundation Outstanding Youth Fund of Jiangsu Province(BK20220049)and the CAMS Innovation Fund for Medical Sciences(CIFMS 2021-I2M-1-061,2021-I2M-1-047 and 2022-I2M-2-004).BZ was in part supported by the Innovation Capability Support Program of Shaanxi 2021TD-38.JZ was in part supported by a Translational Research Grant of NCRCH(2020ZKZC04)and the National Natural Science Foundation of China(82071765)supported by the Natural Science Foundation of China(NSFC 31900645).We thank Prof.Yonghong Wan from McMaster University,Canada,for his critical reading of the manuscript and helpful discussions.
文摘SEL1L-mediated endoplasmic reticulum-associated degradation(ERAD)plays critical roles in controlling protein homeostasis by degrading misfolded or terminal unfolded proteins.However,it remains unclear how SEL1L regulates peripheral T-cell survival and homeostasis.Herein,we found that SEL1L deficiency led to a greatly reduced frequency and number of mature T cells,which was further validated by adoptive transfer experiments or bone marrow chimera experiments,accompanied by the induction of multiple forms of cell death.Furthermore,SEL1L deficiency selectively disrupted naïve CD8+T-cell homeostasis,as indicated by the severe loss of the naïve T-cell subset but an increase in the memory T-cell subset.We also found that SEL1L deficiency fueled mTORC1/c-MYC activation and induced a metabolic shift,which was largely attributable to enhanced expression of the IL-15 receptorαandβchains.Mechanistically,single-cell transcriptomic profiling and biochemical analyses further revealed that Sel1l−/−CD8+T cells harbored excessive ER stress,particularly aberrant activation of the PERK-ATF4-CHOP-Bim pathway,which was alleviated by supplementing IL-7 or IL-15.Importantly,PERK inhibition greatly resolved the survival defects of Sel1l−/−CD8+T cells.In addition,IRE1αdeficiency decreased mTORC1 signaling in Sel1l−/−naïve CD8+T cells by downregulating the IL-15 receptorαchain.Altogether,these observations suggest that the ERAD adaptor molecule SEL1L acts as an important checkpoint for preserving the survival and homeostasis of peripheral T cells by regulating the PERK signaling cascade and IL-15 receptor-mediated mTORC1 axis.