This paper focuses on boosting the performance of small cell networks(SCNs)by integrating multiple-input multiple-output(MIMO)and nonorthogonal multiple access(NOMA)in consideration of imperfect channel-state informat...This paper focuses on boosting the performance of small cell networks(SCNs)by integrating multiple-input multiple-output(MIMO)and nonorthogonal multiple access(NOMA)in consideration of imperfect channel-state information(CSI).The estimation error and the spatial randomness of base stations(BSs)are characterized by using Kronecker model and Poisson point process(PPP),respectively.The outage probabilities of MIMO-NOMA enhanced SCNs are first derived in closed-form by taking into account two grouping policies,including random grouping and distance-based grouping.It is revealed that the average outage probabilities are irrelevant to the intensity of BSs in the interference-limited regime,while the outage performance deteriorates if the intensity is sufficiently low.Besides,as the channel uncertainty lessens,the asymptotic analyses manifest that the target rates must be restricted up to a bound to achieve an arbitrarily low outage probability in the absence of the inter-cell interference.Moreover,highly correlated estimation error ameliorates the outage performance under a low quality of CSI,otherwise it behaves oppositely.Afterwards,the goodput is maximized by choosing appropriate precoding matrix,receiver filters and transmission rates.In the end,the numerical results verify our analysis and corroborate the superiority of our proposed algorithm.展开更多
All cells are derived from one cell, and the origin of different cell types is a subject of curiosity. Cells construct life through appropriately timed networks at each stage of development. Communication among cells ...All cells are derived from one cell, and the origin of different cell types is a subject of curiosity. Cells construct life through appropriately timed networks at each stage of development. Communication among cells and intracellular signaling are essential for cell differentiation and for life processes. Cellular molecular networks establish cell diversity and life. The investigation of the regulation of each gene in the genome within the cellular network is therefore of interest. Stem cells produce various cells that are suitable for specific purposes. The dynamics of the information in the cellular network changes as the status of cells is altered. The components of each cell are subject to investigation.展开更多
Purpose:To reveal the research hotpots and relationship among three research hot topics in b iomedicine,namely CRISPR,iPS(induced Pluripotent Stem)cell and Synthetic biology.Design/methodology/approach:We set up their...Purpose:To reveal the research hotpots and relationship among three research hot topics in b iomedicine,namely CRISPR,iPS(induced Pluripotent Stem)cell and Synthetic biology.Design/methodology/approach:We set up their keyword co-occurrence networks with using three indicators and information visualization for metric analysis.Findings:The results reveal the main research hotspots in the three topics are different,but the overlapping keywords in the three topics indicate that they are mutually integrated and interacted each other.Research limitations:All analyses use keywords,without any other forms.Practical implications:We try to find the information distribution and structure of these three hot topics for revealing their research status and interactions,and for promoting biomedical developments.Originality/value:We chose the core keywords in three research hot topics in biomedicine by using h-index.展开更多
基金supported in part by the National Key Research and Development Program of China under Grant 2017YFE0120600in part by National Natural Science Foundation of China under Grants 61801192,62171200,and 61801246+7 种基金in part by Guangdong Basic and Applied Basic Research Foundation under Grant 2019A1515012136in part by Natural Science Foundation of Anhui Province under Grant 1808085MF164in part by the Science and Technology Planning Project of Guangdong Province under Grants 2018B010114002 and 2019B010137006in part by the Science and Technology Development Fund,Macao SAR(File no.0036/2019/A1 and File no.SKL-IOTSC2021-2023)in part by the Hong Kong Presidents Advisory Committee on Research and Development(PACRD)under Project No.2020/1.6in part by Qinglan Project of University of Jiangsu Provincein part by the Research Committee of University of Macao under Grant MYRG2018-00156-FSTin part by 2018 Guangzhou Leading Innovation Team Program(China)under Grant 201909010006。
文摘This paper focuses on boosting the performance of small cell networks(SCNs)by integrating multiple-input multiple-output(MIMO)and nonorthogonal multiple access(NOMA)in consideration of imperfect channel-state information(CSI).The estimation error and the spatial randomness of base stations(BSs)are characterized by using Kronecker model and Poisson point process(PPP),respectively.The outage probabilities of MIMO-NOMA enhanced SCNs are first derived in closed-form by taking into account two grouping policies,including random grouping and distance-based grouping.It is revealed that the average outage probabilities are irrelevant to the intensity of BSs in the interference-limited regime,while the outage performance deteriorates if the intensity is sufficiently low.Besides,as the channel uncertainty lessens,the asymptotic analyses manifest that the target rates must be restricted up to a bound to achieve an arbitrarily low outage probability in the absence of the inter-cell interference.Moreover,highly correlated estimation error ameliorates the outage performance under a low quality of CSI,otherwise it behaves oppositely.Afterwards,the goodput is maximized by choosing appropriate precoding matrix,receiver filters and transmission rates.In the end,the numerical results verify our analysis and corroborate the superiority of our proposed algorithm.
文摘All cells are derived from one cell, and the origin of different cell types is a subject of curiosity. Cells construct life through appropriately timed networks at each stage of development. Communication among cells and intracellular signaling are essential for cell differentiation and for life processes. Cellular molecular networks establish cell diversity and life. The investigation of the regulation of each gene in the genome within the cellular network is therefore of interest. Stem cells produce various cells that are suitable for specific purposes. The dynamics of the information in the cellular network changes as the status of cells is altered. The components of each cell are subject to investigation.
基金the National Natural Science Foundation of China Grant 71673131 for financial support
文摘Purpose:To reveal the research hotpots and relationship among three research hot topics in b iomedicine,namely CRISPR,iPS(induced Pluripotent Stem)cell and Synthetic biology.Design/methodology/approach:We set up their keyword co-occurrence networks with using three indicators and information visualization for metric analysis.Findings:The results reveal the main research hotspots in the three topics are different,but the overlapping keywords in the three topics indicate that they are mutually integrated and interacted each other.Research limitations:All analyses use keywords,without any other forms.Practical implications:We try to find the information distribution and structure of these three hot topics for revealing their research status and interactions,and for promoting biomedical developments.Originality/value:We chose the core keywords in three research hot topics in biomedicine by using h-index.