期刊文献+
共找到99,905篇文章
< 1 2 250 >
每页显示 20 50 100
Loss of energetic particles due to feedback control of resistive wall mode in HL-3
1
作者 Yifei ZHAO Yueqiang LIU +7 位作者 Guangzhou HAO Zhengxiong WANG Guanqi DONG Shuo WANG Chunyu LI Guanming YANG Yutian MIAO Yongqin WANG 《Plasma Science and Technology》 SCIE EI CAS CSCD 2024年第10期17-28,共12页
Effects of three-dimensional(3D)magnetic field perturbations due to feedback control of an unstable n=1(n is toroidal mode number)resistive wall mode(RWM)on the energetic particle(EP)losses are systematically investig... Effects of three-dimensional(3D)magnetic field perturbations due to feedback control of an unstable n=1(n is toroidal mode number)resistive wall mode(RWM)on the energetic particle(EP)losses are systematically investigated for the HL-3 tokamak.The MARS-F(Liu et al 2000 Phys.Plasmas 73681)code,facilitated by the test particle guiding center tracing module REORBIT,is utilized for the study.The RWM is found to generally produce no EP loss for cocurrent particles in HL-3.Assuming the same perturbation level at the sensor location for the close-loop system,feedback produces nearly the same loss of counter-current EPs compared to the open-loop case.Assuming however that the sensor signal is ten times smaller in the close-loop system than the open-loop counter part(reflecting the fact that the RWM is more stable with feedback),the counter-current EP loss is found significantly reduced in the former.Most of EP losses occur only for particles launched close to the plasma edge,while particles launched further away from the plasma boundary experience much less loss.The strike points of lost EPs on the HL-3 limiting surface become more scattered for particles launched closer to the plasma boundary.Taking into account the full gyro-orbit of particles while approaching the limiting surface,REORBIT finds slightly enhanced loss fraction. 展开更多
关键词 energetic particles resistive wall mode HL-3
下载PDF
Hybrid simulation of q=1 high-order harmonics driven by passing energetic particles in tokamak plasmas
2
作者 刘胜 任珍珍 +3 位作者 汪卫华 申伟 杨锦宏 宁洪伟 《Plasma Science and Technology》 SCIE EI CAS CSCD 2023年第12期31-39,共9页
High-order harmonics q(ψ_(s))=1 energetic particle modes(EPMs)have been observed in toroidal plasmas experiments with neutral beam injection.To investigate these phenomena,linear properties and nonlinear dynamics of ... High-order harmonics q(ψ_(s))=1 energetic particle modes(EPMs)have been observed in toroidal plasmas experiments with neutral beam injection.To investigate these phenomena,linear properties and nonlinear dynamics of these EPMs driven by passing energetic particles(EPs)are studied via the global hybrid kinetic-magnetohydrodynamic code M3D-K.Simulation results demonstrate that passing EPs'effects on high mode-number harmonics(q(ψ_(s))=m/n=2/2,3/3,4/4)instability are more obvious than the q(ψ_(s))=1/1 mode,especially when q-profile is sufficiently flat in the core region.Furthermore,the effects of the pitch angleΛ_0 and beam ion pressure P_(hot)/P_(total)on the features of high n components are also analyzed specifically.It is found that there exists only one resonant condition for these EPMs.In the nonlinear phase,these high mode-number harmonics can induce significant energetic ions redistribution and chirping up phenomena,which differs from the classical fishbone excited by passing EPs.These discoveries are conducive to better apprehend the underlying physical mechanisms of the highorder harmonics driven by passing EPs. 展开更多
关键词 high-order harmonics passing energetic particles wave-particle resonance TOKAMAK
下载PDF
Validation of the current and pressure coupling schemes with nonlinear simulations of TAE and analysis on the linear stability of tearing mode in the presence of energetic particles
3
作者 张豪伟 马志为 《Plasma Science and Technology》 SCIE EI CAS CSCD 2023年第4期39-50,共12页
Both current and pressure coupling schemes have been adopted in the hybrid kinetic–magnetohydrodynamic code CLT-K recently.Numerical equivalences between these two coupling schemes are strictly verified under differe... Both current and pressure coupling schemes have been adopted in the hybrid kinetic–magnetohydrodynamic code CLT-K recently.Numerical equivalences between these two coupling schemes are strictly verified under different approximations.First,when considering only the perturbed distribution function of energetic particles(EPs),the equivalence can be proved analytically.Second,when both the variations of the magnetic field and the EP distribution function are included,the current and pressure coupling schemes numerically produce the same result in the nonlinear simulations.On this basis,the influences of co-/counter-passing and trapped EPs on the linear stabilities of the m/n=2/1 tearing mode(TM)have been investigated(where m and n represent the poloidal and toroidal mode numbers,respectively).The results of scanningβh of EPs show that the co-passing and trapped EPs are found to stabilize the TM,while the counter-passing EPs tend to destabilize the TM.The behind(de)stabilization mechanisms of the TM by EPs are carefully analyzed.Furthermore,after exceeding critical EP betas,the same branch of the high-frequency mode is excited by co-/counterpassing and trapped EPs,which is identified as the m/n=2/1 energetic particle mode. 展开更多
关键词 hybrid kinetic–magnetohydrodynamic simulation tearing mode energetic particle
下载PDF
基于Energetic和改进Jiles-Atherton-Sablik模型的电工钢片动态磁致伸缩特性模拟 被引量:3
4
作者 陈昊 李琳 王亚琦 《中国电机工程学报》 EI CSCD 北大核心 2024年第2期848-858,I0035,共12页
准确模拟电工钢片的动态磁致伸缩特性是电工装备铁心振动和噪声分析的关键步骤。该文提出一种基于Energetic磁滞模型和改进Jiles-Atherton-Sablik(J-A-S)模型的电工钢片动态磁致伸缩特性模拟方法。首先,基于静态Energetic磁滞模型和损... 准确模拟电工钢片的动态磁致伸缩特性是电工装备铁心振动和噪声分析的关键步骤。该文提出一种基于Energetic磁滞模型和改进Jiles-Atherton-Sablik(J-A-S)模型的电工钢片动态磁致伸缩特性模拟方法。首先,基于静态Energetic磁滞模型和损耗分离理论,考虑由励磁频率引起的动态损耗密度分量,并采用场分离技术建立动态Energetic磁滞模型。其次,将动态Energetic磁滞模型求解的动态磁场强度作为改进J-A-S模型的已知量,从而根据铁磁材料的非线性本构关系,建立以磁感应强度为输入量的动态磁致伸缩逆模型。在此基础上,设计电工钢片动态磁致伸缩曲线的模拟流程。最后,将所提方法的模拟结果与实测结果和现有方法模拟结果进行对比,可知所提方法的模拟结果与实测结果吻合更好,从而验证所提模拟方法的准确性。 展开更多
关键词 电工钢片 动态磁致伸缩特性 energetic磁滞模型 改进Jiles-Atherton-Sablik模型
下载PDF
Computer vision-aided DEM study on the compaction characteristics of graded subgrade filler considering realistic coarse particle shapes 被引量:1
5
作者 Taifeng Li Kang Xie +2 位作者 Xiaobin Chen Zhixing Deng Qian Su 《Railway Engineering Science》 EI 2024年第2期194-210,共17页
The compaction quality of subgrade filler strongly affects subgrade settlement.The main objective of this research is to analyze the macro-and micro-mechanical compaction characteristics of subgrade filler based on th... The compaction quality of subgrade filler strongly affects subgrade settlement.The main objective of this research is to analyze the macro-and micro-mechanical compaction characteristics of subgrade filler based on the real shape of coarse particles.First,an improved Viola-Jones algorithm is employed to establish a digitalized 2D particle database for coarse particle shape evaluation and discrete modeling purposes of subgrade filler.Shape indexes of 2D subgrade filler are then computed and statistically analyzed.Finally,numerical simulations are performed to quantitatively investigate the effects of the aspect ratio(AR)and interparticle friction coefficient(μ)on the macro-and micro-mechanical compaction characteristics of subgrade filler based on the discrete element method(DEM).The results show that with the increasing AR,the coarse particles are narrower,leading to the increasing movement of fine particles during compaction,which indicates that it is difficult for slender coarse particles to inhibit the migration of fine particles.Moreover,the average displacement of particles is strongly influenced by the AR,indicating that their occlusion under power relies on particle shapes.The dis-placement and velocity of fine particles are much greater than those of the coarse particles,which shows that compaction is primarily a migration of fine particles.Under the cyclic load,the interparticle friction coefficientμhas little effect on the internal structure of the sample;under the quasi-static loads,however,the increase inμwill lead to a significant increase in the porosity of the sample.This study could not only provide a novel approach to investigate the compaction mechanism but also establish a new theoretical basis for the evaluation of intelligent subgrade compaction. 展开更多
关键词 Subgrade filler particles Deep learning particle Shape analysis particle library Compaction characteristics Discrete element method(DEM)
下载PDF
Particle agglomeration and inhibition method in the fluidized pyrolysis reaction of waste resin 被引量:1
6
作者 Congjing Ren Peng Zhang +3 位作者 Qi Song Zhengliang Huang Yao Yang Yongrong Yang 《Chinese Journal of Chemical Engineering》 SCIE EI CAS CSCD 2024年第3期135-147,共13页
This work investigated the pyrolysis reaction of waste resin in a fluidized bed reactor.It was found that the pyrolysis-generated ash would adhere to the surface of ceramic particles,causing particle agglomeration and... This work investigated the pyrolysis reaction of waste resin in a fluidized bed reactor.It was found that the pyrolysis-generated ash would adhere to the surface of ceramic particles,causing particle agglomeration and defluidization.Adding kaolin could effectively inhibit the particle agglomeration during the fluidized pyrolysis reaction through physical isolation and chemical reaction.On the one hand,kaolin could form a coating layer on the surface of ceramic particles to prevent the adhesion of organic ash generated by the pyrolysis of resin.On the other hand,when a sufficient amount of kaolin(-0.2%(mass))was added,the activated kaolin could fully contact with the Na+ ions generated by the pyrolysis of resin and react to form a high-melting aluminosilicate mineral(nepheline),which could reduce the formation of low-melting-point sodium sulfate and thereby avoid the agglomeration of ceramic particles. 展开更多
关键词 Pyrolysis reaction of waste resin FLUIDIZATION particle agglomeration KAOLIN
下载PDF
An improved particle filter indoor fusion positioning approach based on Wi-Fi/PDR/geomagnetic field 被引量:1
7
作者 Tianfa Wang Litao Han +5 位作者 Qiaoli Kong Zeyu Li Changsong Li Jingwei Han Qi Bai Yanfei Chen 《Defence Technology(防务技术)》 SCIE EI CAS CSCD 2024年第2期443-458,共16页
The existing indoor fusion positioning methods based on Pedestrian Dead Reckoning(PDR)and geomagnetic technology have the problems of large initial position error,low sensor accuracy,and geomagnetic mismatch.In this s... The existing indoor fusion positioning methods based on Pedestrian Dead Reckoning(PDR)and geomagnetic technology have the problems of large initial position error,low sensor accuracy,and geomagnetic mismatch.In this study,a novel indoor fusion positioning approach based on the improved particle filter algorithm by geomagnetic iterative matching is proposed,where Wi-Fi,PDR,and geomagnetic signals are integrated to improve indoor positioning performances.One important contribution is that geomagnetic iterative matching is firstly proposed based on the particle filter algorithm.During the positioning process,an iterative window and a constraint window are introduced to limit the particle generation range and the geomagnetic matching range respectively.The position is corrected several times based on geomagnetic iterative matching in the location correction stage when the pedestrian movement is detected,which made up for the shortage of only one time of geomagnetic correction in the existing particle filter algorithm.In addition,this study also proposes a real-time step detection algorithm based on multi-threshold constraints to judge whether pedestrians are moving,which satisfies the real-time requirement of our fusion positioning approach.Through experimental verification,the average positioning accuracy of the proposed approach reaches 1.59 m,which improves 33.2%compared with the existing particle filter fusion positioning algorithms. 展开更多
关键词 Fusion positioning particle filter Geomagnetic iterative matching Iterative window Constraint window
下载PDF
Extended wet sieving method for determination of complete particle size distribution of general soils 被引量:1
8
作者 Shengnan Ma Yi Song +2 位作者 Jiawei Liu Xingyu Kang Zhongqi Quentin Yue 《Journal of Rock Mechanics and Geotechnical Engineering》 SCIE CSCD 2024年第1期242-257,共16页
The traditional standard wet sieving method uses steel sieves with aperture?0.063 mm and can only determine the particle size distribution(PSD)of gravel and sand in general soil.This paper extends the traditional meth... The traditional standard wet sieving method uses steel sieves with aperture?0.063 mm and can only determine the particle size distribution(PSD)of gravel and sand in general soil.This paper extends the traditional method and presents an extended wet sieving method.The extended method uses both the steel sieves and the nylon filter cloth sieves.The apertures of the cloth sieves are smaller than 0.063 mm and equal 0.048 mm,0.038 mm,0.014 mm,0.012 mm,0.0063 mm,0.004 mm,0.003 mm,0.002 mm,and 0.001 mm,respectively.The extended method uses five steps to separate the general soil into many material sub-groups of gravel,sand,silt and clay with known particle size ranges.The complete PSD of the general soil is then calculated from the dry masses of the individual material sub-groups.The extended method is demonstrated with a general soil of completely decomposed granite(CDG)in Hong Kong,China.The silt and clay materials with different particle size ranges are further examined,checked and verified using stereomicroscopic observation,physical and chemical property tests.The results further confirm the correctness of the extended wet sieving method. 展开更多
关键词 particle size distribution(PSD) General soil SILT CLAY Wet sieving Physical and chemical properties
下载PDF
A stable implicit nodal integration-based particle finite element method(N-PFEM)for modelling saturated soil dynamics 被引量:1
9
作者 Liang Wang Xue Zhang +1 位作者 Jingjing Meng Qinghua Lei 《Journal of Rock Mechanics and Geotechnical Engineering》 SCIE CSCD 2024年第6期2172-2183,共12页
In this study,we present a novel nodal integration-based particle finite element method(N-PFEM)designed for the dynamic analysis of saturated soils.Our approach incorporates the nodal integration technique into a gene... In this study,we present a novel nodal integration-based particle finite element method(N-PFEM)designed for the dynamic analysis of saturated soils.Our approach incorporates the nodal integration technique into a generalised Hellinger-Reissner(HR)variational principle,creating an implicit PFEM formulation.To mitigate the volumetric locking issue in low-order elements,we employ a node-based strain smoothing technique.By discretising field variables at the centre of smoothing cells,we achieve nodal integration over cells,eliminating the need for sophisticated mapping operations after re-meshing in the PFEM.We express the discretised governing equations as a min-max optimisation problem,which is further reformulated as a standard second-order cone programming(SOCP)problem.Stresses,pore water pressure,and displacements are simultaneously determined using the advanced primal-dual interior point method.Consequently,our numerical model offers improved accuracy for stresses and pore water pressure compared to the displacement-based PFEM formulation.Numerical experiments demonstrate that the N-PFEM efficiently captures both transient and long-term hydro-mechanical behaviour of saturated soils with high accuracy,obviating the need for stabilisation or regularisation techniques commonly employed in other nodal integration-based PFEM approaches.This work holds significant implications for the development of robust and accurate numerical tools for studying saturated soil dynamics. 展开更多
关键词 particle finite element method Nodal integration Dynamic saturated media Second-order cone programming(SOCP)
下载PDF
The research progress of an E//B neutral particle analyzer 被引量:1
10
作者 马龙 屈玉凡 +12 位作者 罗圆 谢德豪 汪彦熹 王硕 曲国峰 任培培 罗小兵 刘星泉 韩纪锋 Roy WADA 林炜平 臧临阁 朱敬军 《Plasma Science and Technology》 SCIE EI CAS CSCD 2024年第3期10-16,共7页
An E//B neutral particle analyzer(NPA)has been designed and is under development at Sichuan University and Southwestern Institute of Physics.The main purpose of the E//B NPA is to measure the distribution function of ... An E//B neutral particle analyzer(NPA)has been designed and is under development at Sichuan University and Southwestern Institute of Physics.The main purpose of the E//B NPA is to measure the distribution function of fast ions in the HL-2A/3 tokamak.The E//B NPA contains three main units,i.e.the stripping unit,the analyzing unit and the detection unit.A gas stripping chamber was adopted as the stripping unit.The results of the simulations and beam tests for the stripping chamber are presented.Parallel electric and magnetic fields provided by a NdFeB permanent magnet and two parallel electric plates were designed and constructed for the analyzing unit.The calibration of the magnetic and electric fields was performed using a 50 kV electron cyclotron resonance ion source(ECRIS)platform.The detection unit consists of 32lutetium-yttrium oxyorthosilicate(LYSO)detector modules arranged in two rows.The response functions ofα,hydrogen ions(H^(+),H_(2)^(+)and H_(3)^(+))andγfor a detector module were measured with^(241)Am,^(137)Cs and^(152)Eu sources together with the 50 kV ECRIS platform.The overall results indicate that the designed E//B NPA device is capable of measuring the intensity of neutral hydrogen and deuteron atoms with energy higher than 20 keV. 展开更多
关键词 E//B neutral particle analyzer gas stripping lutetium-yttrium oxyorthosilicate electron cyclotron resonance ion source platform
下载PDF
Surface morphologies of Mg-Gd alloy particle during its reactions with O_(2) and Teflon
11
作者 Yifan Li Hongtao Yang +2 位作者 Aifeng Jiang Dongming Song Yanchun Li 《Defence Technology(防务技术)》 SCIE EI CAS CSCD 2024年第3期209-221,共13页
Mg-Gd alloy particle has exhibited its unique combustion properties as the fuel of Mg/Teflon/Viton(MTV).Mg-Gd alloy/Teflon/Viton(MGTV)could burn at lower ambient pressure than MTV.To further investigate the reaction o... Mg-Gd alloy particle has exhibited its unique combustion properties as the fuel of Mg/Teflon/Viton(MTV).Mg-Gd alloy/Teflon/Viton(MGTV)could burn at lower ambient pressure than MTV.To further investigate the reaction of MGTV in air,it was investigated via thermo gravity-differential scanning calorimetry(TG-DSC).Meanwhile,the morphologies and element distributions on the alloy surface during the reaction of MGTV in air were investigated via scanning electronic microscope-mapping-electronic differential spectrometer.Meanwhile,a similar experimental protocol on the Mg-Gd alloy particle during oxidation was also applied.The results showed that owning to a protective oxide shell,the onset oxidation temperature of Mg-Gd alloy is higher than Mg.However,the onset oxidation temperature of the exceeded Mg-Gd alloy in MGTV is significantly lower than that of the exceeded Mg in MTV.It was due to the existence of GdOF,which could significantly lower the oxidation temperature of the exceeded fuel.Furthermore,a possible reaction mechanism was proposed.The fascinating oxidation properties of Mg-Gd alloy suggested its promising applications in energetic materials. 展开更多
关键词 Mg-Gd alloy energetic materials Morphology EDS GdOF
下载PDF
Progress on the application of graphene-based composites toward energetic materials:A review
12
作者 Ting Zhang Xiaoming Gao +4 位作者 Jiachen Li Libai Xiao Hongxu Gao Fengqi Zhao Haixia Ma 《Defence Technology(防务技术)》 SCIE EI CAS CSCD 2024年第1期95-116,共22页
Carbon material is an important additive in energetic materials.Graphene is a monolayer carbon material in which carbon atoms are arranged in two-dimensional honeycomb structure,who has special optical,electrical,and ... Carbon material is an important additive in energetic materials.Graphene is a monolayer carbon material in which carbon atoms are arranged in two-dimensional honeycomb structure,who has special optical,electrical,and mechanical properties.Recently,the application of graphene-based composites in energetic materials has received extensive attention.This review mainly summarizes the applications of graphene and graphene-based nanomaterials in energetic materials.The effects of these materials on the thermal stability,sensitivity,mechanical property,ignition and combustion of energetic materials were discussed.Furthermore,the progress of functionalized modification of graphene has been summarized,including covalent bonding modification and doping modification.These studies show that graphenebased materials exhibit excellent performances and might emerge as promising candidate for energetic materials. 展开更多
关键词 Graphene Desensitization Thermal decomposition Catalytic combustion energetic materials
下载PDF
Study of deep transportation and plugging performance of deformable gel particles in porous media
13
作者 Wen-Jing Zhao Jing Wang +1 位作者 Zhong-Yang Qi Hui-Qing Liu 《Petroleum Science》 SCIE EI CAS CSCD 2024年第2期962-973,共12页
Deformable gel particles(DGPs) possess the capability of deep profile control and flooding. However, the deep migration behavior and plugging mechanism along their path remain unclear. Breakage, an inevitable phenomen... Deformable gel particles(DGPs) possess the capability of deep profile control and flooding. However, the deep migration behavior and plugging mechanism along their path remain unclear. Breakage, an inevitable phenomenon during particle migration, significantly impacts the deep plugging effect. Due to the complexity of the process, few studies have been conducted on this subject. In this paper, we conducted DGP flow experiments using a physical model of a multi-point sandpack under various injection rates and particle sizes. Particle size and concentration tests were performed at each measurement point to investigate the transportation behavior of particles in the deep part of the reservoir. The residual resistance coefficient and concentration changes along the porous media were combined to analyze the plugging performance of DGPs. Furthermore, the particle breakage along their path was revealed by analyzing the changes in particle size along the way. A mathematical model of breakage and concentration changes along the path was established. The results showed that the passage after breakage is a significant migration behavior of particles in porous media. The particles were reduced to less than half of their initial size at the front of the porous media. Breakage is an essential reason for the continuous decreases in particle concentration, size, and residual resistance coefficient. However, the particles can remain in porous media after breakage and play a significant role in deep plugging. Higher injection rates or larger particle sizes resulted in faster breakage along the injection direction, higher degrees of breakage, and faster decreases in residual resistance coefficient along the path. These conditions also led to a weaker deep plugging ability. Smaller particles were more evenly retained along the path, but more particles flowed out of the porous media, resulting in a poor deep plugging effect. The particle size is a function of particle size before injection, transport distance, and different injection parameters(injection rate or the diameter ratio of DGP to throat). Likewise, the particle concentration is a function of initial concentration, transport distance, and different injection parameters. These models can be utilized to optimize particle injection parameters, thereby achieving the goal of fine-tuning oil displacement. 展开更多
关键词 Physical simulation Deformable gel particle BREAKAGE particle size Residual resistance coefficient
下载PDF
Mathematical modeling and simulations of stress mitigation by coating polycrystalline particles in lithium-ion batteries 被引量:1
14
作者 N.IQBAL J.CHOI +2 位作者 S.F.SHAH C.LEE S.LEE 《Applied Mathematics and Mechanics(English Edition)》 SCIE EI CSCD 2024年第6期947-962,共16页
A chemo-mechanical model is developed to investigate the effects on the stress development of the coating of polycrystalline Ni-rich LiNixMnyCo_(z)O_(2)(x≥0.8)(NMC)particles with poly(3,4-ethylenedioxythiophene)(PEDO... A chemo-mechanical model is developed to investigate the effects on the stress development of the coating of polycrystalline Ni-rich LiNixMnyCo_(z)O_(2)(x≥0.8)(NMC)particles with poly(3,4-ethylenedioxythiophene)(PEDOT).The simulation results show that the coating of primary NMC particles significantly reduces the stress generation by efficiently accommodating the volume change associated with the lithium diffusion,and the coating layer plays roles both as a cushion against the volume change and a channel for the lithium transport,promoting the lithium distribution across the secondary particles more homogeneously.Besides,the lower stiffness,higher ionic conductivity,and larger thickness of the coating layer improve the stress mitigation.This paper provides a mathematical framework for calculating the chemo-mechanical responses of anisotropic electrode materials and fundamental insights into how the coating of NMC active particles mitigates stress levels. 展开更多
关键词 lithium-ion battery(LIB) polycrystalline particle COATING finite element simulation Ni-rich LiNixMnyCo_(z)O_(2)(x>0.8)(NMC)
下载PDF
A review of ultra-high temperature heat-resistant energetic materials
15
作者 Rongzheng Zhang Yuangang Xu +4 位作者 Feng Yang Pengcheng Wang Qiuhan Lin Hui Huang Ming Lu 《Defence Technology(防务技术)》 SCIE EI CAS CSCD 2024年第8期33-57,共25页
Heat-resistant energetic materials refer to a type of energetic materials that possess a high melting point,high stability and operational safety. By studying the structures of these energetic materials has showed tha... Heat-resistant energetic materials refer to a type of energetic materials that possess a high melting point,high stability and operational safety. By studying the structures of these energetic materials has showed that the thermal stability can be enhanced by introducing amino groups to form intra/inter-molecular hydrogen bonds, constructing conjugate systems and designing symmetrical structures. This article aims to review the physical and chemical properties of ultra-high temperature heat-resistant energetic compounds and provide valuable theoretical insights for the preparation of ultra-high temperature heatresistant energetic materials. We also analyze the selected 20 heat-resistant energetic materials with decomposition temperatures higher than 350℃, serving as templates for the synthesis of various highperformance heat-resistant energetic materials. 展开更多
关键词 Heat-resistant energetic materials Organic synthesis CONJUGATED Hydrogen bond Symmetrical structure STABILIZATION
下载PDF
Alkylene-functionality in bridged and fused nitrogen-rich poly-cyclic energetic materials:Synthesis,structural diversity and energetic properties
16
作者 Man Xu Nanxi Xiang +2 位作者 Ping Yin Qi Lai Siping Pang 《Defence Technology(防务技术)》 SCIE EI CAS CSCD 2024年第5期18-46,共29页
From the standpoint of chemical structures,the organic backbones of energetic materials can be classified into aromatic rings,nonaromatic rings,and open chains.Although the category of aromatic energetic compounds exh... From the standpoint of chemical structures,the organic backbones of energetic materials can be classified into aromatic rings,nonaromatic rings,and open chains.Although the category of aromatic energetic compounds exhibits several advantages in the regulation of energetic properties,the nonaromatic heterocycles,assembling nitramino explosophores with simple alkyl bridges,still have prevailed in benchmark materials.The methylene bridge plays a pivotal role in the constructions of the classic nonaromatic heterocycle-based energetic compounds,e.g.,hexahydro-1,3,5-trinitro-1,3,5-triazine(RDX)and octahydro-1,3,5,7-tetranitro-1,3,5,7-tetrazocine(HMX),whereas ethylene bridge is the core moiety of state-of-the-art explosive 2,4,6,8,10,12-hexanitro-2,4,6,8,10,12-hexaazaisowurtzitane(CL-20).In this context,it is of great interest to employ simple and practical bridges to assemble aromatic and nonaromatic nitrogen-rich heterocycles,thereby expanding the structural diversity of energetic materials,e.g.,bridged and fused nitrogen-rich poly-heterocycles.Furthermore,alkyl-bridged poly-heterocycles highlight the potential for the open chain type of energetic materials.In this review,the development of alkyl bridges in linking nitrogen-rich heterocycles is presented,and the perspective of the newly constructed energetic backbones is summarized for the future design of advanced energetic materials. 展开更多
关键词 energetic materials Alkyl bridge strategy Nitrogen-rich azoles Fused heterocycles AZOLES
下载PDF
The Sigma-1 Receptor as a Pharmacologic Chaperone: Energetics
17
作者 Robert B. Raffa Joseph V. Pergolizzi Jr. 《Journal of Biosciences and Medicines》 2024年第8期347-356,共10页
Initially thought to be an opioid receptor subtype, Sigma-1 receptors (S1R) are now known to be unique proteins that have chaperone-like properties. As such, they play critical roles in cellular signaling, homeostasis... Initially thought to be an opioid receptor subtype, Sigma-1 receptors (S1R) are now known to be unique proteins that have chaperone-like properties. As such, they play critical roles in cellular signaling, homeostasis, and cell survival. These roles offer significant insight for understanding homeostasis of normal physiologic processes, and the pathophysiologic consequences of disruption of normal function. Because of the broad nature of chaperone action, S1R agonists and antagonists represent potential drug discovery goals for the pharmacotherapeutic treatment of a variety of disorders that result from dysfunctional proteins. The present study summarizes the S1R as a pharmacologic chaperone crucial for protein folding and cellular homeostasis. Through literature review and thermodynamic analysis, it explores how S1R stabilizes target proteins, influencing neuroprotection and potential drug therapies. The binding of chaperones to target proteins is thermodynamically favorable, offering insights into treating diseases linked to protein misfolding. 展开更多
关键词 CHAPERONE Sigma-1 Receptor energeticS THERMODYNAMICS Isothermal Titration Microcalorimetry
下载PDF
Mass transfer enhancement and hydrodynamic performance with wire mesh coupling solid particles in bubble column reactor
18
作者 Chuanjun Di Jipeng Dong +3 位作者 Fei Gao Guanghui Chen Pan Zhang Jianlong Li 《Chinese Journal of Chemical Engineering》 SCIE EI CAS CSCD 2024年第3期195-205,共11页
It is of vital significance to investigate mass transfer enhancements for chemical engineering processes.This work focuses on investigating the coupling influence of embedding wire mesh and adding solid particles on b... It is of vital significance to investigate mass transfer enhancements for chemical engineering processes.This work focuses on investigating the coupling influence of embedding wire mesh and adding solid particles on bubble motion and gas-liquid mass transfer process in a bubble column.Particle image velocimetry(PIV)technology was employed to analyze the flow field and bubble motion behavior,and dynamic oxygen absorption technology was used to measure the gas-liquid volumetric mass transfer coefficient(kLa).The effect of embedding wire mesh,adding solid particles,and wire mesh coupling solid particles on the flow characteristic and kLa were analyzed and compared.The results show that the gas-liquid interface area increases by 33%-72%when using the wire mesh coupling solid particles strategy compared to the gas-liquid two-phase flow,which is superior to the other two strengthening methods.Compared with the system without reinforcement,kLa in the bubble column increased by 0.5-1.8 times with wire mesh coupling solid particles method,which is higher than the sum of kLa increases with inserting wire mesh and adding particles,and the coupling reinforcement mechanism for affecting gas-liquid mass transfer process was discussed to provide a new idea for enhancing gas-liquid mass transfer. 展开更多
关键词 Fluid mechanics BUBBLE Mass transfer Wire mesh coupling solid particles particle image velocimetry Hydrodynamics
下载PDF
Interfacial reinforcement of core-shell HMX@energetic polymer composites featuring enhanced thermal and safety performance
19
作者 Binghui Duan Hongchang Mo +3 位作者 Bojun Tan Xianming Lu Bozhou Wang Ning Liu 《Defence Technology(防务技术)》 SCIE EI CAS CSCD 2024年第1期387-399,共13页
The weak interface interaction and solid-solid phase transition have long been a conundrum for 1,3,5,7-tetranitro-1,3,5,7-tetraazacyclooctane(HMX)-based polymer-bonded explosives(PBX).A two-step strategy that involves... The weak interface interaction and solid-solid phase transition have long been a conundrum for 1,3,5,7-tetranitro-1,3,5,7-tetraazacyclooctane(HMX)-based polymer-bonded explosives(PBX).A two-step strategy that involves the pretreatment of HMX to endow—OH groups on the surface via polyalcohol bonding agent modification and in situ coating with nitrate ester-containing polymer,was proposed to address the problem.Two types of energetic polyether—glycidyl azide polymer(GAP)and nitrate modified GAP(GNP)were grafted onto HMX crystal based on isocyanate addition reaction bridged through neutral polymeric bonding agent(NPBA)layer.The morphology and structure of the HMX-based composites were characterized in detail and the core-shell structure was validated.The grafted polymers obviously enhanced the adhesion force between HMX crystals and fluoropolymer(F2314)binder.Due to the interfacial reinforcement among the components,the two HMX-based composites exhibited a remarkable increment of phase transition peak temperature by 10.2°C and 19.6°C with no more than 1.5%shell content,respectively.Furthermore,the impact and friction sensitivity of the composites decreased significantly as a result of the barrier produced by the grafted polymers.These findings will enhance the future prospects for the interface design of energetic composites aiming to solve the weak interface and safety concerns. 展开更多
关键词 HMX crystals Polyalcohol bonding agent energetic polymer Core-shell structure Interfacial reinforcement
下载PDF
Optimizing laser coupling,matter heating,and particle acceleration from solids using multiplexed ultraintense lasers
20
作者 Weipeng Yao Motoaki Nakatsutsumi +20 位作者 Sébastien Buffechoux Patrizio Antici Marco Borghesi Andrea Ciardi Sophia N.Chen Emmanuel d’Humières Laurent Gremillet Robert Heathcote Vojtech Horny Paul McKenna Mark N.Quinn Lorenzo Romagnani Ryan Royle Gianluca Sarri Yasuhiko Sentoku Hans-Peter Schlenvoigt Toma Toncian Olivier Tresca Laura Vassura Oswald Willi Julien Fuchs 《Matter and Radiation at Extremes》 SCIE EI CSCD 2024年第4期16-28,共13页
Realizing the full potential of ultrahigh-intensity lasers for particle and radiation generation will require multi-beam arrangements due to technology limitations.Here,we investigate how to optimize their coupling wi... Realizing the full potential of ultrahigh-intensity lasers for particle and radiation generation will require multi-beam arrangements due to technology limitations.Here,we investigate how to optimize their coupling with solid targets.Experimentally,we show that overlapping two intense lasers in a mirror-like configuration onto a solid with a large preplasma can greatly improve the generation of hot electrons at the target front and ion acceleration at the target backside.The underlying mechanisms are analyzed through multidimensional particle-in-cell simulations,revealing that the self-induced magnetic fields driven by the two laser beams at the target front are susceptible to reconnection,which is one possible mechanism to boost electron energization.In addition,the resistive magnetic field generated during the transport of the hot electrons in the target bulk tends to improve their collimation.Our simulations also indicate that such effects can be further enhanced by overlapping more than two laser beams. 展开更多
关键词 laser ACCELERATION particle
下载PDF
上一页 1 2 250 下一页 到第
使用帮助 返回顶部