Liquefaction assessment based on strain energy is significantly superior to conventional stress-based methods.The main purpose of the present study is to investigate the correlation between shear wave velocity and str...Liquefaction assessment based on strain energy is significantly superior to conventional stress-based methods.The main purpose of the present study is to investigate the correlation between shear wave velocity and strain energy capacity of silty sands.The dissipated energy until liquefaction occurs was calculated by analyzing the results of three series of comprehensive cyclic direct simple shear and triaxial tests on Ottawa F65,Nevada,and Firoozkuh sands with varying silt content by weight and relative densities.Additionally,the shear wave velocity of each series was obtained using bender element or resonant column tests.Consequently,for the first time,a liquefaction triggering criterion,relating to effective overburden normalized liquefaction capacity energy(WL=s’c)to effective overburden stresscorrected shear wave velocity(eVs1)has been introduced.The accuracy of the proposed criteria was evaluated using in situ data.The results confirm the ability of shear wave velocity as a distinguishing parameter for separating liquefied and non-liquefied soils when it is calculated against liquefaction capacity energy(WL=s’c).However,the proposed WL=s’c-Vs1 curve,similar to previously proposed cyclic resistance ratio(CRR)-Vs1 relationships,should be used conservatively for fields vulnerable to liquefaction-induced lateral spreading.展开更多
The low electricity supply rate is a major cause of underdevelopment in Cameroon. To address this issue, Cameroon outlined a strategy in 2003 aiming for a production capacity of 3000 MW by 2020. However, by 2020, prod...The low electricity supply rate is a major cause of underdevelopment in Cameroon. To address this issue, Cameroon outlined a strategy in 2003 aiming for a production capacity of 3000 MW by 2020. However, by 2020, production had only reached 1040 MW, leading Cameroon to devise a new national energy sector development strategy targeting 5000 MW by 2035. This paper provides an overview of the current state of energy production and projects future output by 2035. Scientific articles and investigative reports on energy production in Cameroon have enabled an assessment of the current electrical energy production. The 2035 production estimate is based on the Energy Sector Development Projects (PDSEN) report in Cameroon. The current production is estimated at around 1600 MW. Considering the ongoing construction of power plants, future projects, and financing delays, achieving the 5000 MW goal by 2035 appears challenging. Nonetheless, diversifying energy production sources could bring Cameroon closer to this target.展开更多
Compensating for photovoltaic(PV)power forecast errors is an important function of energy storage systems.As PV power outputs have strong random fluctuations and uncertainty,it is difficult to satisfy the grid-connect...Compensating for photovoltaic(PV)power forecast errors is an important function of energy storage systems.As PV power outputs have strong random fluctuations and uncertainty,it is difficult to satisfy the grid-connection requirements using fixed energy storage capacity configuration methods.In this paper,a method of configuring energy storage capacity is proposed based on the uncertainty of PV power generation.A k-means clustering algorithm is used to classify weather types based on differences in solar irradiance.The power forecast errors in different weather types are analyzed,and an energy storage system is used to compensate for the errors.The kernel density estimation is used to fit the distributions of the daily maximum power and maximum capacity requirements of the energy storage system;the power and capacity of the energy storage unit are calculated at different confidence levels.The optimized energy storage configuration of a PV plant is presented according to the calculated degrees of power and capacity satisfaction.The proposed method was validated using actual operating data from a PV power station.The results indicated that the required energy storage can be significantly reduced while compensating for power forecast errors.展开更多
A kind of composite buffering material was made by filling the voids of honeycomb paperboard with polyurethane. Drop tests were performed to evaluate the dynamic energy absorption capacity of the material. Based on th...A kind of composite buffering material was made by filling the voids of honeycomb paperboard with polyurethane. Drop tests were performed to evaluate the dynamic energy absorption capacity of the material. Based on the tests results,the mechanical behaviors of the material under low velocity dynamic impact conditions were analyzed. It was shown that the absorbed energy of the composite material varies inversely with the void diameter. The absorbed energy of the composite material is 1- 2 times than that of honeycomb paperboard and polyurethane. The energy absorption efficiency of the composite material is better than those of honeycomb paperboard and polyurethane.展开更多
Renewable energy is connected to the grid through the inverter,which in turn reduces the inertia and stability of the power grid itself.The traditional grid-connected inverter does not have the function of voltage reg...Renewable energy is connected to the grid through the inverter,which in turn reduces the inertia and stability of the power grid itself.The traditional grid-connected inverter does not have the function of voltage regulation and frequency regulation and can therefore no longer adapt to the new development.The virtual synchronous generator(VSG)has the function of voltage regulation and frequency regulation,which has more prominent advantages than traditional inverters.Based on the principle of VSG,the relationship between the frequency characteristics and the energy storage capacity of the feedforward branch-based virtual synchronous machine(FVSG)is derived when the input power and grid frequency change.Reveal the relationship between the virtual inertia coefficient,damping coefficient,and frequency characteristics of VSG and energy storage capacity.An energy storage configuration method that meets the requirements of frequency variation characteristics is proposed.A mathematical model is established,and the Matlab/Simulink simulation software is used for modeling.The simulation results verify the relationship between the inertia coefficient,damping coefficient,and energy storage demand of the FVSG.展开更多
Recent experimental and theoretical studies show that energy efficiency, which measures the amount of infor- mation processed by a neuron with per unit of energy consumption, plays an important role in the evolution o...Recent experimental and theoretical studies show that energy efficiency, which measures the amount of infor- mation processed by a neuron with per unit of energy consumption, plays an important role in the evolution of neural systems. Here we calculate the information rates and energy efficieneies of the Hodgkin-Huxley (HH) neuron model at different temperatures in a noisy environment. It is found that both the information rate and energy efficiency are maximized by certain temperatures. Though the information rate and energy efficiency cannot be maximized simultaneously, the neuron holds a high information processing capacity at the tempera- ture corresponding to the maximal energy efficiency. Our results support the idea that the energy efficiency is a selective pressure that influences the evolution of nervous systems.展开更多
This study presents promising variants of genetic programming (GP), namely linear genetic programming (LGP) and multi expression programming (MEP) to evaluate the liquefaction resistance of san- dy soils. Genera...This study presents promising variants of genetic programming (GP), namely linear genetic programming (LGP) and multi expression programming (MEP) to evaluate the liquefaction resistance of san- dy soils. Generalized LGP and MEP-based relationships were developed between the strain energy density required to trigger liquefaction (capacity energy) and the factors affecting the liquefaction characteristics of sands. The correlations were established based on well established and widely dispersed experimental results obtained from the literature. To verify the applicability of the derived models, they were employed to estimate the capacity energy values of parts of the test results that were not included in the analysis. The external validation of the models was verified using statistical criteria recommended by researchers. Sensitivity and parametric analyses were performed for further verification of the correlations. The results indicate that the proposed correlations are effectively capable of capturing the liquefaction resistance of a number of sandy soils. The developed correlations provide a significantly better prediction performance than the models found in the literature. Furthermore, the best LGP and MEP models perform superior than the optimal traditional GP model. The verification phases confirm the efficiency of the derived correlations for their general application to the assessment of the strain energy at the onset of liquefaction.展开更多
Liquefaction is one of the most destructive phenomena caused by earthquakes,which has been studied in the issues of potential,triggering and hazard analysis.The strain energy approach is a common method to investigate...Liquefaction is one of the most destructive phenomena caused by earthquakes,which has been studied in the issues of potential,triggering and hazard analysis.The strain energy approach is a common method to investigate liquefaction potential.In this study,two Artificial Neural Network(ANN)models were developed to estimate the liquefaction resistance of sandy soil based on the capacity strain energy concept(W)by using laboratory test data.A large database was collected from the literature.One group of the dataset was utilized for validating the process in order to prevent overtraining the presented model.To investigate the complex influence of fine content(FC)on liquefaction resistance,according to previous studies,the second database was arranged by samples with FC of less than 28%and was used to train the second ANN model.Then,two presented ANN models in this study,in addition to four extra available models,were applied to an additional 20 new samples for comparing their results to show the capability and accuracy of the presented models herein.Furthermore,a parametric sensitivity analysis was performed through Monte Carlo Simulation(MCS)to evaluate the effects of parameters and their uncertainties on the liquefaction resistance of soils.According to the results,the developed models provide a higher accuracy prediction performance than the previously publishedmodels.The sensitivity analysis illustrated that the uncertainties of grading parameters significantly affect the liquefaction resistance of soils.展开更多
1-year hourly wind speed data from two Burundian stations, namely Bujumbura and Muyinga, have been processed in this work to bring an efficient help for the planning and installation of wind energy conversion systems ...1-year hourly wind speed data from two Burundian stations, namely Bujumbura and Muyinga, have been processed in this work to bring an efficient help for the planning and installation of wind energy conversion systems (WECS) at those localities. Mean seasonal and diurnal variations of wind direction and wind shear exponent have been derived. Two-parameter Weibull probability density functions (PDFs) fitting the observed monthly and annual wind speed relative frequency distributions have been implemented. As shown through three complementary statistical tests, the fitting technique was very satisfactory. A wind resource analysis at 10 m above ground level (AGL) has led to a mean power density at Bujumbura which is almost thirteen fold higher than at Muyinga. The use of the empirical power law to extrapolate wind characteristics at heights from 150 to 350 m AGL has shown that energy potential of hilltops around Muyinga was only suitable for small, individual scale wind energy applications. At the opposite, wind energy potential of ridge-tops and hilltops around Bujumbura has been found suitable for medium and large scale electricity production. For that locality and at those heights, energy outputs and capacity factors (CF or C<sub>f</sub>) have been computed for ten selected wind turbines (WTs), together with costs of electricity (COE) using the present value of cost (PVC) method. Amongst those WTs, YDF-1500-87 and S95-2.1 MW have emerged as the best options for installation owing to their highest CF and lowest COE. Moreover, an analysis of those two quantities at monthly basis for YDF-1500-87 WT has led to its best performance in the dry season. Compared to the average present COE of household hydroelectricity consumption, results of this study have evidenced economical feasibility and benefit of WECS setting in selected Burundian sites in order to supplement traditional electricity sources.展开更多
The biggest challenge for organic phase change materials(PCMs)used in cold energy storage is to maintain high heat storage capacity while reducing the leakage risk of PCMs during the phase transition process.This is c...The biggest challenge for organic phase change materials(PCMs)used in cold energy storage is to maintain high heat storage capacity while reducing the leakage risk of PCMs during the phase transition process.This is crucial for expanding their applications in the more demanding cold storage field.In this study,novel formstable low-temperature composite PCMs are prepared with mesoporous materials,namely SBA-15 and CMK-3(which are prepared using the template method),as supporting matrices and dodecane as the PCM.Owing to the combined effects of capillary forces within mesoporous materials and interactions among dodecane molecules,both dodecane/SBA-15 and dodecane/CMK-3 exhibit outstanding shape stability and thermal cycling stability even after 200 heating/cooling cycles.In comparison to those of dodecane/SBA-15,dodecane/CMK-3 exhibits superior cold storage performance and higher thermal conductivity.Specifically,the phase transition temperature of dodecane/CMK-3 is-8.81℃ with a latent heat of 122.4 J·g^(-1).Additionally,it has a thermal conductivity of 1.21 W·m^(-1)·K^(-1),which is 9.45 times that of dodecane alone.All these highlight its significant potential for applications in the area of cold energy storage.展开更多
To study the seismic performance of double-skin steelconcrete composite box( DSCB) piers, a total of 11 DSCB pier specimens were tested under bidirectional cyclic loading. The effects of the loading pattern, the ste...To study the seismic performance of double-skin steelconcrete composite box( DSCB) piers, a total of 11 DSCB pier specimens were tested under bidirectional cyclic loading. The effects of the loading pattern, the steel plate thickness, the axial load ratio, the slenderness ratio and the aspect ratio were taken into consideration. The damage evolution process and failure modes of the tested specimens are presented in detail. Test results are also discussed in terms of the hysteretic curve, skeleton curve, ductility and energy dissipation capacity of DSCB pier specimens. It can be concluded that the hysteretic performance of DSCB piers in one direction is affected and weakened by the cyclic loading in the other direction. DSCB piers under bidirectional cyclic loading exhibit good performance in terms of load carrying capacity, ductility, and energy dissipation capacity. Overall, DSCB piers can meet the basic aseismic requirements. The research results can be taken as a reference for using DSCB piers as high piers in bridges in strong earthquakeprone areas.展开更多
The mechanical properties of the monodirectional Gutou mortise-tenon joints of the ancient Chinese traditional timber buildings in the Yangtze River region were studied using the experimental method. Three monodirecti...The mechanical properties of the monodirectional Gutou mortise-tenon joints of the ancient Chinese traditional timber buildings in the Yangtze River region were studied using the experimental method. Three monodirectional Gutou mortise-tenon joints were designed according to the actual configurations. The failure modes,the hysteretic curves,the skeleton curves, the rotation rigidities, and the energy dissipation capacity of this type of mortise-tenon joints under the low cyclic reversed loading were obtained. The results show that the hysteretic curves of the monodirectional Gutou mortise-tenon joints appear to be Z shape and have obvious pinch effects. During the process of the test,these mortisetenon joints pass orderly through the elastic stage,the yield stage and the failure stage. The energy dissipation capacity of these mortise-tenon joints generally decreases with the increase in the rotation angle. The equivalent viscous damping coefficients of the monodirectional Gutou mortise-tenon joints are between 0. 161 and 0. 193. The results can provide the theoretical base for the computing analysis and repair design of Chinese traditional timber buildings in the Yangtze River region.展开更多
Construction of seaside and underground wall bracing often uses stiffened deep cement mixed columns (SDCM). This research investigates methods used to improve the level of bearing capacity of these SDCM when subject...Construction of seaside and underground wall bracing often uses stiffened deep cement mixed columns (SDCM). This research investigates methods used to improve the level of bearing capacity of these SDCM when subjected to cyclic lateral loading via various types of stiffer cores. Eight piles, two deep cement mixed piles and six stiffened deep cement mixing piles with three different types of cores, H shape cross section prestressed concrete, steel pipe, and H-beam steel, were embedded though soft clay into medium-hard clay on site in Thailand. Cyclic horizontal loading was gradually applied until pile failure and the hysteresis loops of lateral load vs. lateral deformation were recorded. The lateral carrying capacities of the SDCM piles with an H-beam steel core increased by 3-4 times that of the DCM piles. This field research clearly shows that using H-beam steel as a stiffer core for SDCM piles is the best method to improve its lateral carrying capacity, ductility and energy dissipation capacity.展开更多
The rectangle core plate of all-steel buckling-restrained braces(BRBs) usually exhibit obvious local buckling, due to the lack of longitudinal restraint from the encasing tube. To eliminate the undesirable effects, a ...The rectangle core plate of all-steel buckling-restrained braces(BRBs) usually exhibit obvious local buckling, due to the lack of longitudinal restraint from the encasing tube. To eliminate the undesirable effects, a novel steel BRB is proposed. In this new-type steel BRB, two T-shaped steels are adopted as the minor restraint elements to restrain the core plate instead of infilled concrete or mortar. Meanwhile, the ingot-iron material with low yielding strength and high elongation is applied to the steel core to study the mechanical properties of steel BRBs. To validate the theoretical requirements for the width-to-thickness ratio of the steel core and the thickness of angle steel, quasi-static tests of eight specimens were conducted. The tests focused on the energy dissipation capacity and failure modes of the proposed steel BRBs. Nonlinear finite element analysis was also carried out to validate the experimental results. Both the aforementioned results imply that appropriately designed steel BRBs can meet the performance requirements for BRB components.展开更多
At present, the problem of abandoning wind and PV power in “Three North” region of China is particularly significant, and how to alleviate this problem has become the focus of universal attention. Calculation of ren...At present, the problem of abandoning wind and PV power in “Three North” region of China is particularly significant, and how to alleviate this problem has become the focus of universal attention. Calculation of renewable energy accommodation capacity is the basis to solve the problem of abandoning wind and PV power. Main problems of Chinese renewable energy accommodation is analyzed from power supply, power grid and load side aspects, and it focuses on the effect of inter-provincial tie-line to renewable energy accommodation capacity. At present, the inter-provincial tie-line utilization level is limited, which affected renewable energy accommodation to a certain extent. Based on the sequential production simulation model, a new kind of renewable energy accommodation capacity model is put forward considering the utilization level of inter-provincial tie-line. According to different system stability constraints and different electricity constraints of inter-provincial tie-line, 4 schemes are designed for comparative analysis, and the evaluation model is used to calculate renewable energy accommodation capacity of “Three North” region of China in 2020. Example analysis results verify validity of the model that releasing curve constraints, electricity constraints and stability constraints in turn can significantly enhance renewable energy accommodation capacity through effective use of inter-provincial tie-line transmission capacity. Research work in this paper can provide strong support for the planning and scheduling control of power grid.展开更多
A new kind of composite buffering material was made by filling the voids of honeycomb paperboard with polyurethane. Drop tests were performed to evaluate the dynamic energy absorption capacity of the material. Based o...A new kind of composite buffering material was made by filling the voids of honeycomb paperboard with polyurethane. Drop tests were performed to evaluate the dynamic energy absorption capacity of the material. Based on the tests results, we analyzed the mechanical behaviors of the material under different conditions and obtained the inherent influencing laws of some factors on the material's dynamic buffering performance. It was shown that the dynamic buffering performance varied directly with impact velocity, and inversely with the void diameter, thickness and buffeting area of the composite material.展开更多
Rational construction of flexible free-standing electrocatalysts featuring long-lasting durability,high efficiency,and wide temperature tolerance under harsh practical operations are fundamentally significant for comm...Rational construction of flexible free-standing electrocatalysts featuring long-lasting durability,high efficiency,and wide temperature tolerance under harsh practical operations are fundamentally significant for commercial zinc-air batteries.Here,3D flexible free-standing bifunctional membrane electrocatalysts composed of covalently cross-linked supramolecular polymer networks with nitrogen-deficient carbon nitride nanotubes are fabricated(referred to as PEMAC@NDCN)by a facile self-templated approach.PEMAC@NDCN demonstrates the lowest reversible oxygen bifunctional activity of 0.61 V with exceptional long-lasting durability,which outperforms those of commercial Pt/C and RuO_(2).Theoretical calculations and control experi-ments reveal the boosted electron transfer,electrolyte mass/ion transports,and abundant active surface site preferences.Moreover,the constructed alkaline Zn-air battery with PEMAC@NDCN air-cathode reveals superb power density,capacity,and discharge-charge cycling stability(over 2160 cycles)compared to the reference Pt/C+RuO_(2).Solid-state Zn-air batteries enable a high power density of 211 mW cm^(−2),energy density of 1056 Wh kg^(−1),stable charge-discharge cycling of 2580 cycles for 50 mA cm^(−2),and wide temperature tolerance from−40 to 70℃with retention of 86%capacity compared to room-temperature counterparts,illustrating prospects over harsh operations.展开更多
Plain round bars were commonly used as main bars in the design of RC (reinforced concrete) buildings prior to the 1970s. According to previous research investigating the seismic performance of reinforced concrete me...Plain round bars were commonly used as main bars in the design of RC (reinforced concrete) buildings prior to the 1970s. According to previous research investigating the seismic performance of reinforced concrete members constructed with plain round bars, the strength of those members did not reach the calculated flexural strength due to bond slippage of main bars before yielding. It is important, therefore, to investigate the hysteretic bond mechanisms of plain round bars in concrete. In this research, analytical models were proposed to predict hysteretic bond-slip mechanisms between plain round bar and concrete depending on the results of experiments performed by the authors. In addition, the energy absorption capacity and the equivalent viscous damping factors obtained from the experimental results and analytical models are discussed. As a result of comparisons between the experimental data and the analysis models, good agreements were obtained.展开更多
A disadvantage of the conventional quasi-static test method is that it does not consider the soil restraint effect.A new method to test the seismic performance of prefabricated specimens for underground assembled stru...A disadvantage of the conventional quasi-static test method is that it does not consider the soil restraint effect.A new method to test the seismic performance of prefabricated specimens for underground assembled structures is proposed,which can realistically reflect the strata restraint effect on the underground structure.Laboratory work combined with finite element(FE)analysis is performed in this study.Three full-scale sidewall specimens with different joint forms are designed and fabricated.Indices related to the seismic performance and damage modes are analyzed comprehensively to reveal the mechanism of the strata restraint effect on the prefabricated sidewall components.Test results show that the strata restraint effect effectively improves the energy dissipation capacity,load-bearing capacity,and the recoverability of the internal deformation of the precast sidewall components.However,the strata restraint effect reduces the ductility of the precast sidewall components and aggravates the shear and bending deformations in the core region of the connection joints.Additionally,the strata restraint effect significantly affects the seismic performance and damage mode of the prefabricated sidewall components.An FE model that can be used to conduct a seismic performance study of prefabricated specimens for underground assembled structures is proposed,and its feasibility is verified via comparison with test data.展开更多
文摘Liquefaction assessment based on strain energy is significantly superior to conventional stress-based methods.The main purpose of the present study is to investigate the correlation between shear wave velocity and strain energy capacity of silty sands.The dissipated energy until liquefaction occurs was calculated by analyzing the results of three series of comprehensive cyclic direct simple shear and triaxial tests on Ottawa F65,Nevada,and Firoozkuh sands with varying silt content by weight and relative densities.Additionally,the shear wave velocity of each series was obtained using bender element or resonant column tests.Consequently,for the first time,a liquefaction triggering criterion,relating to effective overburden normalized liquefaction capacity energy(WL=s’c)to effective overburden stresscorrected shear wave velocity(eVs1)has been introduced.The accuracy of the proposed criteria was evaluated using in situ data.The results confirm the ability of shear wave velocity as a distinguishing parameter for separating liquefied and non-liquefied soils when it is calculated against liquefaction capacity energy(WL=s’c).However,the proposed WL=s’c-Vs1 curve,similar to previously proposed cyclic resistance ratio(CRR)-Vs1 relationships,should be used conservatively for fields vulnerable to liquefaction-induced lateral spreading.
文摘The low electricity supply rate is a major cause of underdevelopment in Cameroon. To address this issue, Cameroon outlined a strategy in 2003 aiming for a production capacity of 3000 MW by 2020. However, by 2020, production had only reached 1040 MW, leading Cameroon to devise a new national energy sector development strategy targeting 5000 MW by 2035. This paper provides an overview of the current state of energy production and projects future output by 2035. Scientific articles and investigative reports on energy production in Cameroon have enabled an assessment of the current electrical energy production. The 2035 production estimate is based on the Energy Sector Development Projects (PDSEN) report in Cameroon. The current production is estimated at around 1600 MW. Considering the ongoing construction of power plants, future projects, and financing delays, achieving the 5000 MW goal by 2035 appears challenging. Nonetheless, diversifying energy production sources could bring Cameroon closer to this target.
基金supported by Nation Key R&D Program of China(2021YFE0102400).
文摘Compensating for photovoltaic(PV)power forecast errors is an important function of energy storage systems.As PV power outputs have strong random fluctuations and uncertainty,it is difficult to satisfy the grid-connection requirements using fixed energy storage capacity configuration methods.In this paper,a method of configuring energy storage capacity is proposed based on the uncertainty of PV power generation.A k-means clustering algorithm is used to classify weather types based on differences in solar irradiance.The power forecast errors in different weather types are analyzed,and an energy storage system is used to compensate for the errors.The kernel density estimation is used to fit the distributions of the daily maximum power and maximum capacity requirements of the energy storage system;the power and capacity of the energy storage unit are calculated at different confidence levels.The optimized energy storage configuration of a PV plant is presented according to the calculated degrees of power and capacity satisfaction.The proposed method was validated using actual operating data from a PV power station.The results indicated that the required energy storage can be significantly reduced while compensating for power forecast errors.
基金Sponsored by the National Natural Science Foundation of China(Grant No.51008306)
文摘A kind of composite buffering material was made by filling the voids of honeycomb paperboard with polyurethane. Drop tests were performed to evaluate the dynamic energy absorption capacity of the material. Based on the tests results,the mechanical behaviors of the material under low velocity dynamic impact conditions were analyzed. It was shown that the absorbed energy of the composite material varies inversely with the void diameter. The absorbed energy of the composite material is 1- 2 times than that of honeycomb paperboard and polyurethane. The energy absorption efficiency of the composite material is better than those of honeycomb paperboard and polyurethane.
基金National Key Research and Development Plan Project(2017YFB1201003-20)Quality Inspection,Monitoring and Operation and Maintenance Guarantee Technology of New Power Supply SystemVehicles for UrbanRail Transit and Their on-Board Energy Storage Technology.
文摘Renewable energy is connected to the grid through the inverter,which in turn reduces the inertia and stability of the power grid itself.The traditional grid-connected inverter does not have the function of voltage regulation and frequency regulation and can therefore no longer adapt to the new development.The virtual synchronous generator(VSG)has the function of voltage regulation and frequency regulation,which has more prominent advantages than traditional inverters.Based on the principle of VSG,the relationship between the frequency characteristics and the energy storage capacity of the feedforward branch-based virtual synchronous machine(FVSG)is derived when the input power and grid frequency change.Reveal the relationship between the virtual inertia coefficient,damping coefficient,and frequency characteristics of VSG and energy storage capacity.An energy storage configuration method that meets the requirements of frequency variation characteristics is proposed.A mathematical model is established,and the Matlab/Simulink simulation software is used for modeling.The simulation results verify the relationship between the inertia coefficient,damping coefficient,and energy storage demand of the FVSG.
基金Supported by the National Natural Science Foundation of China under Grant Nos 11105062,11275003,11265014 and 11275084the Fundamental Research Funds for the Central Universities under Grant No LZUJBKY-2015-119
文摘Recent experimental and theoretical studies show that energy efficiency, which measures the amount of infor- mation processed by a neuron with per unit of energy consumption, plays an important role in the evolution of neural systems. Here we calculate the information rates and energy efficieneies of the Hodgkin-Huxley (HH) neuron model at different temperatures in a noisy environment. It is found that both the information rate and energy efficiency are maximized by certain temperatures. Though the information rate and energy efficiency cannot be maximized simultaneously, the neuron holds a high information processing capacity at the tempera- ture corresponding to the maximal energy efficiency. Our results support the idea that the energy efficiency is a selective pressure that influences the evolution of nervous systems.
文摘This study presents promising variants of genetic programming (GP), namely linear genetic programming (LGP) and multi expression programming (MEP) to evaluate the liquefaction resistance of san- dy soils. Generalized LGP and MEP-based relationships were developed between the strain energy density required to trigger liquefaction (capacity energy) and the factors affecting the liquefaction characteristics of sands. The correlations were established based on well established and widely dispersed experimental results obtained from the literature. To verify the applicability of the derived models, they were employed to estimate the capacity energy values of parts of the test results that were not included in the analysis. The external validation of the models was verified using statistical criteria recommended by researchers. Sensitivity and parametric analyses were performed for further verification of the correlations. The results indicate that the proposed correlations are effectively capable of capturing the liquefaction resistance of a number of sandy soils. The developed correlations provide a significantly better prediction performance than the models found in the literature. Furthermore, the best LGP and MEP models perform superior than the optimal traditional GP model. The verification phases confirm the efficiency of the derived correlations for their general application to the assessment of the strain energy at the onset of liquefaction.
基金This work was supported by the National Natural Science Foundation of China(Grant No.51863005,51462006,51102230,51671062,51871065,and 51971068)the Guangxi Natural Science Foundation(No.2018GXNSFDA281051,2014GXNSFAA118401,and 2020GXNSFGA297004)+2 种基金the Science Research and Technology Development Program of Guangxi(AD17195073,AA19182014 and AA17202030-1)the Guangxi Bagui Scholar Foundation,the Guangxi Collabora-tive Innovation Centre of Structure and Property for New Energy and Materials,the Guangxi Advanced Functional Materials Foundation and Application Talents Small Highlands,Chinesisch-Deutsche Kooperationsgruppe(GZ1528)the Innovation Project of GUET Graduate Education(2019YCXS114 and 2018YJCX88).
文摘We deviseda functional form stable compositephase-change materials(PCMs)toachieve a three-dimensional(3D)interconnectedporous carbon aerogel structure for encapsulating polyethyleneglycol(PEG).Anovelhomogeneity reinforced carbonaerogel witha well-interconnected porous structure was constructed bycombining a flexible carbonresource from biomass guar gum with hard-brittle carbonfrom polyimide,to overcome severeshrinkage andpoor mechanical performance of traditionalcarbon aerogel.Thesupportingcarbon aerogel-encapsulated PEG produced thenovel composite PCMswithgood structure stability andcomprehensive energy storage performance.Theresults showed thatthecomposite PCMsdisplayed awell-defined 3Dinterconnected structure,and theirenergy storage capacities were 171.5 and169.5 J/g,which changed onlyslightlyafter 100 thermalcycles,andthe compositescould maintainthe equilibrium temperature at50.0−58.1℃ for about 760.3 s.The thermal conductivityofthe compositescould reach0.62 W m^(−1) K^(−1),which effectively enhanced the thermalresponse rate.And thecomposite PCMs exhibited good leakage-proof performance andexcellent light–thermal conversion.The compressive strengthof thecomposite PCMscan improveupto 1.602 MPa.Results indicatethatthisstrategy canbe efficiently usedtodevelop novel composite PCMswithimproved comprehensive thermalperformance and high light–thermal conversion.
基金supported by the Scientific Innovation Group for Youths of Sichuan Province under Grant No.2019JDTD0017。
文摘Liquefaction is one of the most destructive phenomena caused by earthquakes,which has been studied in the issues of potential,triggering and hazard analysis.The strain energy approach is a common method to investigate liquefaction potential.In this study,two Artificial Neural Network(ANN)models were developed to estimate the liquefaction resistance of sandy soil based on the capacity strain energy concept(W)by using laboratory test data.A large database was collected from the literature.One group of the dataset was utilized for validating the process in order to prevent overtraining the presented model.To investigate the complex influence of fine content(FC)on liquefaction resistance,according to previous studies,the second database was arranged by samples with FC of less than 28%and was used to train the second ANN model.Then,two presented ANN models in this study,in addition to four extra available models,were applied to an additional 20 new samples for comparing their results to show the capability and accuracy of the presented models herein.Furthermore,a parametric sensitivity analysis was performed through Monte Carlo Simulation(MCS)to evaluate the effects of parameters and their uncertainties on the liquefaction resistance of soils.According to the results,the developed models provide a higher accuracy prediction performance than the previously publishedmodels.The sensitivity analysis illustrated that the uncertainties of grading parameters significantly affect the liquefaction resistance of soils.
文摘1-year hourly wind speed data from two Burundian stations, namely Bujumbura and Muyinga, have been processed in this work to bring an efficient help for the planning and installation of wind energy conversion systems (WECS) at those localities. Mean seasonal and diurnal variations of wind direction and wind shear exponent have been derived. Two-parameter Weibull probability density functions (PDFs) fitting the observed monthly and annual wind speed relative frequency distributions have been implemented. As shown through three complementary statistical tests, the fitting technique was very satisfactory. A wind resource analysis at 10 m above ground level (AGL) has led to a mean power density at Bujumbura which is almost thirteen fold higher than at Muyinga. The use of the empirical power law to extrapolate wind characteristics at heights from 150 to 350 m AGL has shown that energy potential of hilltops around Muyinga was only suitable for small, individual scale wind energy applications. At the opposite, wind energy potential of ridge-tops and hilltops around Bujumbura has been found suitable for medium and large scale electricity production. For that locality and at those heights, energy outputs and capacity factors (CF or C<sub>f</sub>) have been computed for ten selected wind turbines (WTs), together with costs of electricity (COE) using the present value of cost (PVC) method. Amongst those WTs, YDF-1500-87 and S95-2.1 MW have emerged as the best options for installation owing to their highest CF and lowest COE. Moreover, an analysis of those two quantities at monthly basis for YDF-1500-87 WT has led to its best performance in the dry season. Compared to the average present COE of household hydroelectricity consumption, results of this study have evidenced economical feasibility and benefit of WECS setting in selected Burundian sites in order to supplement traditional electricity sources.
基金supported by the National Natural Science Foundation of China(Grant No.51906230)the Key scientific and technological projects in Henan Province(Grant No.212102210007)the Project of Zhongyuan Science and Technology Innovation Talents(Grant No.234200510011).
文摘The biggest challenge for organic phase change materials(PCMs)used in cold energy storage is to maintain high heat storage capacity while reducing the leakage risk of PCMs during the phase transition process.This is crucial for expanding their applications in the more demanding cold storage field.In this study,novel formstable low-temperature composite PCMs are prepared with mesoporous materials,namely SBA-15 and CMK-3(which are prepared using the template method),as supporting matrices and dodecane as the PCM.Owing to the combined effects of capillary forces within mesoporous materials and interactions among dodecane molecules,both dodecane/SBA-15 and dodecane/CMK-3 exhibit outstanding shape stability and thermal cycling stability even after 200 heating/cooling cycles.In comparison to those of dodecane/SBA-15,dodecane/CMK-3 exhibits superior cold storage performance and higher thermal conductivity.Specifically,the phase transition temperature of dodecane/CMK-3 is-8.81℃ with a latent heat of 122.4 J·g^(-1).Additionally,it has a thermal conductivity of 1.21 W·m^(-1)·K^(-1),which is 9.45 times that of dodecane alone.All these highlight its significant potential for applications in the area of cold energy storage.
基金The National Natural Science Foundation of China(No.5117810151378112)the Doctoral Fund of Ministry of Education(No.20110092110011)
文摘To study the seismic performance of double-skin steelconcrete composite box( DSCB) piers, a total of 11 DSCB pier specimens were tested under bidirectional cyclic loading. The effects of the loading pattern, the steel plate thickness, the axial load ratio, the slenderness ratio and the aspect ratio were taken into consideration. The damage evolution process and failure modes of the tested specimens are presented in detail. Test results are also discussed in terms of the hysteretic curve, skeleton curve, ductility and energy dissipation capacity of DSCB pier specimens. It can be concluded that the hysteretic performance of DSCB piers in one direction is affected and weakened by the cyclic loading in the other direction. DSCB piers under bidirectional cyclic loading exhibit good performance in terms of load carrying capacity, ductility, and energy dissipation capacity. Overall, DSCB piers can meet the basic aseismic requirements. The research results can be taken as a reference for using DSCB piers as high piers in bridges in strong earthquakeprone areas.
基金The National Natural Science Foundation of China(No.51138002,51578127)
文摘The mechanical properties of the monodirectional Gutou mortise-tenon joints of the ancient Chinese traditional timber buildings in the Yangtze River region were studied using the experimental method. Three monodirectional Gutou mortise-tenon joints were designed according to the actual configurations. The failure modes,the hysteretic curves,the skeleton curves, the rotation rigidities, and the energy dissipation capacity of this type of mortise-tenon joints under the low cyclic reversed loading were obtained. The results show that the hysteretic curves of the monodirectional Gutou mortise-tenon joints appear to be Z shape and have obvious pinch effects. During the process of the test,these mortisetenon joints pass orderly through the elastic stage,the yield stage and the failure stage. The energy dissipation capacity of these mortise-tenon joints generally decreases with the increase in the rotation angle. The equivalent viscous damping coefficients of the monodirectional Gutou mortise-tenon joints are between 0. 161 and 0. 193. The results can provide the theoretical base for the computing analysis and repair design of Chinese traditional timber buildings in the Yangtze River region.
基金the Thailand Research Fund (TRF) for their financial support to this study
文摘Construction of seaside and underground wall bracing often uses stiffened deep cement mixed columns (SDCM). This research investigates methods used to improve the level of bearing capacity of these SDCM when subjected to cyclic lateral loading via various types of stiffer cores. Eight piles, two deep cement mixed piles and six stiffened deep cement mixing piles with three different types of cores, H shape cross section prestressed concrete, steel pipe, and H-beam steel, were embedded though soft clay into medium-hard clay on site in Thailand. Cyclic horizontal loading was gradually applied until pile failure and the hysteresis loops of lateral load vs. lateral deformation were recorded. The lateral carrying capacities of the SDCM piles with an H-beam steel core increased by 3-4 times that of the DCM piles. This field research clearly shows that using H-beam steel as a stiffer core for SDCM piles is the best method to improve its lateral carrying capacity, ductility and energy dissipation capacity.
基金Supported by:Basic Research Foundation of Institute of Engineering Mechanics,CEA under Grant No.2017A01the Earthquake Scientific Research Funds Program under Grant No.201508023
文摘The rectangle core plate of all-steel buckling-restrained braces(BRBs) usually exhibit obvious local buckling, due to the lack of longitudinal restraint from the encasing tube. To eliminate the undesirable effects, a novel steel BRB is proposed. In this new-type steel BRB, two T-shaped steels are adopted as the minor restraint elements to restrain the core plate instead of infilled concrete or mortar. Meanwhile, the ingot-iron material with low yielding strength and high elongation is applied to the steel core to study the mechanical properties of steel BRBs. To validate the theoretical requirements for the width-to-thickness ratio of the steel core and the thickness of angle steel, quasi-static tests of eight specimens were conducted. The tests focused on the energy dissipation capacity and failure modes of the proposed steel BRBs. Nonlinear finite element analysis was also carried out to validate the experimental results. Both the aforementioned results imply that appropriately designed steel BRBs can meet the performance requirements for BRB components.
基金supported by project of the National Key Research and Development Program Foundation of China(2016YFB0900100).
文摘At present, the problem of abandoning wind and PV power in “Three North” region of China is particularly significant, and how to alleviate this problem has become the focus of universal attention. Calculation of renewable energy accommodation capacity is the basis to solve the problem of abandoning wind and PV power. Main problems of Chinese renewable energy accommodation is analyzed from power supply, power grid and load side aspects, and it focuses on the effect of inter-provincial tie-line to renewable energy accommodation capacity. At present, the inter-provincial tie-line utilization level is limited, which affected renewable energy accommodation to a certain extent. Based on the sequential production simulation model, a new kind of renewable energy accommodation capacity model is put forward considering the utilization level of inter-provincial tie-line. According to different system stability constraints and different electricity constraints of inter-provincial tie-line, 4 schemes are designed for comparative analysis, and the evaluation model is used to calculate renewable energy accommodation capacity of “Three North” region of China in 2020. Example analysis results verify validity of the model that releasing curve constraints, electricity constraints and stability constraints in turn can significantly enhance renewable energy accommodation capacity through effective use of inter-provincial tie-line transmission capacity. Research work in this paper can provide strong support for the planning and scheduling control of power grid.
基金Funded in part by the National Natural Science Foundation of China(No.51008306)
文摘A new kind of composite buffering material was made by filling the voids of honeycomb paperboard with polyurethane. Drop tests were performed to evaluate the dynamic energy absorption capacity of the material. Based on the tests results, we analyzed the mechanical behaviors of the material under different conditions and obtained the inherent influencing laws of some factors on the material's dynamic buffering performance. It was shown that the dynamic buffering performance varied directly with impact velocity, and inversely with the void diameter, thickness and buffeting area of the composite material.
基金supported by the Creative Materials Discovery Program (Grant No. 2018M3D1A1057844) through the National Research Foundation of Korea (NRF) funded by the Ministry of Science and ICTthe Basic Science Research Program through the NRF funded by the Ministry of Science, ICT and Future Planning (Grant No. 2021R1A2B5B01002879).
文摘Rational construction of flexible free-standing electrocatalysts featuring long-lasting durability,high efficiency,and wide temperature tolerance under harsh practical operations are fundamentally significant for commercial zinc-air batteries.Here,3D flexible free-standing bifunctional membrane electrocatalysts composed of covalently cross-linked supramolecular polymer networks with nitrogen-deficient carbon nitride nanotubes are fabricated(referred to as PEMAC@NDCN)by a facile self-templated approach.PEMAC@NDCN demonstrates the lowest reversible oxygen bifunctional activity of 0.61 V with exceptional long-lasting durability,which outperforms those of commercial Pt/C and RuO_(2).Theoretical calculations and control experi-ments reveal the boosted electron transfer,electrolyte mass/ion transports,and abundant active surface site preferences.Moreover,the constructed alkaline Zn-air battery with PEMAC@NDCN air-cathode reveals superb power density,capacity,and discharge-charge cycling stability(over 2160 cycles)compared to the reference Pt/C+RuO_(2).Solid-state Zn-air batteries enable a high power density of 211 mW cm^(−2),energy density of 1056 Wh kg^(−1),stable charge-discharge cycling of 2580 cycles for 50 mA cm^(−2),and wide temperature tolerance from−40 to 70℃with retention of 86%capacity compared to room-temperature counterparts,illustrating prospects over harsh operations.
文摘Plain round bars were commonly used as main bars in the design of RC (reinforced concrete) buildings prior to the 1970s. According to previous research investigating the seismic performance of reinforced concrete members constructed with plain round bars, the strength of those members did not reach the calculated flexural strength due to bond slippage of main bars before yielding. It is important, therefore, to investigate the hysteretic bond mechanisms of plain round bars in concrete. In this research, analytical models were proposed to predict hysteretic bond-slip mechanisms between plain round bar and concrete depending on the results of experiments performed by the authors. In addition, the energy absorption capacity and the equivalent viscous damping factors obtained from the experimental results and analytical models are discussed. As a result of comparisons between the experimental data and the analysis models, good agreements were obtained.
基金The authors gratefully acknowledge the financial support provided by the National Key R&D Program of China(No.2018YFC0808705)the National Natural Science Foundation of China(Grant No.51678033)the Technology Research and Development Project of China Railway Siyuan Survey and Design Group Co.,Ltd.(No.2021K026).
文摘A disadvantage of the conventional quasi-static test method is that it does not consider the soil restraint effect.A new method to test the seismic performance of prefabricated specimens for underground assembled structures is proposed,which can realistically reflect the strata restraint effect on the underground structure.Laboratory work combined with finite element(FE)analysis is performed in this study.Three full-scale sidewall specimens with different joint forms are designed and fabricated.Indices related to the seismic performance and damage modes are analyzed comprehensively to reveal the mechanism of the strata restraint effect on the prefabricated sidewall components.Test results show that the strata restraint effect effectively improves the energy dissipation capacity,load-bearing capacity,and the recoverability of the internal deformation of the precast sidewall components.However,the strata restraint effect reduces the ductility of the precast sidewall components and aggravates the shear and bending deformations in the core region of the connection joints.Additionally,the strata restraint effect significantly affects the seismic performance and damage mode of the prefabricated sidewall components.An FE model that can be used to conduct a seismic performance study of prefabricated specimens for underground assembled structures is proposed,and its feasibility is verified via comparison with test data.