Wave tank tests were carried out to evaluate the total efficiency of a floating OWC Pentagonal Backward Bent Duct Buoy (PBBDB). Two kinds of turbine generators were used in tests. The incident wave power, pneumatic po...Wave tank tests were carried out to evaluate the total efficiency of a floating OWC Pentagonal Backward Bent Duct Buoy (PBBDB). Two kinds of turbine generators were used in tests. The incident wave power, pneumatic power and electricity were measured. The test results show that the primary efficiency can reach up to 185.98% in regular waves and 85.86% in irregular waves. The total efficiency from wave to wire with Wells turbine-generator set is 33.43% in regular waves and 15.82% in irregular waves. The peak total efficiency of the PBBDB with check valves equipped with the impulse turbine-generator set is 41.68% in regular waves and 27.10% in irregular waves. The efficiency of the turbine-generator set is about 30% in the tests. Obviously, the total efficiency can be further improved with the increasing of turbine efficiency.展开更多
To avoid the damage caused by big wind and wave in cage culture, and to solve the problem of energy supply faced by automatic breeding equipment, a new type of floating breakwater, named as Savonius double buoy breakw...To avoid the damage caused by big wind and wave in cage culture, and to solve the problem of energy supply faced by automatic breeding equipment, a new type of floating breakwater, named as Savonius double buoy breakwater(SDBB), is proposed in the paper. The floating breakwater is composed of HDPE cylindrical double buoys and horizontal axis Savonius rotors, and has the functions of wave-absorbing and energy-capturing. Based on the linear wave theory and energy conservation law, the Fourier Transform was applied to separate the two-dimensional wave frequency domain, and the energy captured by the rotors and absorbed by the floating breakwater were calculated.Experiments were conducted in a two-dimensional wave-making flume, and the transmitted waves at different wave heights and periods, the tension of mooring lines, and the rotational torque exerted on the Savonius rotor were measured. A series of performance comparison tests were also performed on the new floating breakwater and the traditional double-floating breakwater. Results show that the new floating breakwater is better than the traditional one in terms of reducing wave transmittance, and the combination of the floating breakwater with Savonius rotors can provide for marine aquaculture equipments with green power supply to a certain degree of self-sufficiency.展开更多
This paper brings the comparison of performances of CO_(2)conversion by plasma and plasma-assisted catalysis based on the data collected from literature in this field,organised in an open access online database.This t...This paper brings the comparison of performances of CO_(2)conversion by plasma and plasma-assisted catalysis based on the data collected from literature in this field,organised in an open access online database.This tool is open to all users to carry out their own analyses,but also to contributors who wish to add their data to the database in order to improve the relevance of the comparisons made,and ultimately to improve the efficiency of CO_(2)conversion by plasma-catalysis.The creation of this database and database user interface is motivated by the fact that plasma-catalysis is a fast-growing field for all CO_(2)conversion processes,be it methanation,dry reforming of methane,methanolisation,or others.As a result of this rapid increase,there is a need for a set of standard procedures to rigorously compare performances of different systems.However,this is currently not possible because the fundamental mechanisms of plasma-catalysis are still too poorly understood to define these standard procedures.Fortunately however,the accumulated data within the CO_(2)plasma-catalysis community has become large enough to warrant so-called“big data”studies more familiar in the fields of medicine and the social sciences.To enable comparisons between multiple data sets and make future research more effective,this work proposes the first database on CO_(2)conversion performances by plasma-catalysis open to the whole community.This database has been initiated in the framework of a H_(2)0_(2)0 European project and is called the“PIONEER Data Base”.The database gathers a large amount of CO_(2)conversion performance data such as conversion rate,energy efficiency,and selectivity for numerous plasma sources coupled with or without a catalyst.Each data set is associated with metadata describing the gas mixture,the plasma source,the nature of the catalyst,and the form of coupling with the plasma.Beyond the database itself,a data extraction tool with direct visualisation features or advanced filtering functionalities has been developed and is available online to the public.The simple and fast visualisation of the state of the art puts new results into context,identifies literal gaps in data,and consequently points towards promising research routes.More advanced data extraction illustrates the impact that the database can have in the understanding of plasma-catalyst coupling.Lessons learned from the review of a large amount of literature during the setup of the database lead to best practice advice to increase comparability between future CO_(2)plasma-catalytic studies.Finally,the community is strongly encouraged to contribute to the database not only to increase the visibility of their data but also the relevance of the comparisons allowed by this tool.展开更多
The integration of wave energy converters(WECs) with floating breakwaters has become common recently due to the benefits of both cost-sharing and providing offshore power supply. In this study, based on viscous comput...The integration of wave energy converters(WECs) with floating breakwaters has become common recently due to the benefits of both cost-sharing and providing offshore power supply. In this study, based on viscous computational fluid dynamics(CFD) theory, we investigated the hydrodynamic performances of the floating box and Berkeley Wedge breakwaters, both of which can also serve as WECs. A numerical wave flume model is constructed using Star-CCM+software and applied to investigate the interaction between waves and wave energy converters while completing the verification of the convergence study of time and space steps. The effects of wave length on motion response and transmission coefficient of the floating box breakwater model are studied. Comparisons of our numerical results and published experimental data indicate that Star-CCM+ is very capable of accurately modeling the nonlinear wave interaction of floating structures, while the analytical potential theory overrates the results especially around the resonant frequency. Optimal damping can be readily predicted using potential flow theory and can then be verified by CFD numerical results. Next, we investigated the relationship between wave frequencies and various coefficients using the CFD model under optimal damping, including the motion response, transmission coefficient, reflection coefficient,dissipation coefficient, and wave energy conversion efficiency. We then compared the power generation efficiencies and wave dissipation performances of the floating box and Berkeley Wedge breakwaters. The results show that the power generation efficiency of the Berkeley Wedge breakwater is always much higher than that of the floating box breakwater. Besides, the wave dissipation performance of the Berkeley Wedge breakwater is much better than that of the floating box breakwater at lower frequency.展开更多
In this study, we investigated the hydrodynamic and energy conversion performance of a double-float wave energy converter(WEC) based on the linear theory of water waves. The generator power take-off(PTO) system is mod...In this study, we investigated the hydrodynamic and energy conversion performance of a double-float wave energy converter(WEC) based on the linear theory of water waves. The generator power take-off(PTO) system is modeled as a combination of a linear viscous damping and a linear spring. Using the frequency domain method, the optimal damping coefficient of the generator PTO system is derived to achieve the optimal conversion efficiency(capture width ratio).Based on the potential flow theory and the higher-order boundary element method(HOBEM), we constructed a threedimensional model of double-float WEC to study its hydrodynamic performance and response in the time domain. Only the heave motion of the two-body system is considered and a virtual function is introduced to decouple the motions of the floats. The energy conversion character of the double-float WEC is also evaluated. The investigation is carried out over a wide range of incident wave frequency. By analyzing the effects of the incident wave frequency, we derive the PTO's damping coefficient for the double-float WEC's capture width ratio and the relationships between the capture width ratio and the natural frequencies of the lower and upper floats. In addition, it is capable to modify the natural frequencies of the two floats by changing the stiffness coefficients of the PTO and mooring systems. We found that the natural frequencies of the device can directly influence the peak frequency of the capture width, which may provide an important reference for the design of WECs.展开更多
In the present study,the performance characteristics of a Savonius rotor type wave energy converter used in conjunction with a conventional double-buoy floating breakwater is investigated using physical model studies....In the present study,the performance characteristics of a Savonius rotor type wave energy converter used in conjunction with a conventional double-buoy floating breakwater is investigated using physical model studies.The Savonius rotor type converter is suspended under the double-buoy floating breakwater to achieve wave attenuation while generating electricity,thereby enhancing the overall wave-elimination effect of the combination.The Savonius rotor is tested with different water submergence depths,and a reasonable relative submergence depth is determined within the scope of the research parameters.The hydrodynamics and energy capture performance of the combined breakwater with four different sizes of Savonius rotor under different wave conditions are studied,and the transmission coefficient of the experimental device is analyzed.The results show that when the optimal relative submergence depth is 0.65D,where D is the impeller diameter,there is a correspondence between the optimal performance of Savonius rotor with different rotor sizes and the wave period and wave height.The optimal energy capture efficiency of the wave energy converter reaches 17%−20.5%,and the transmission coefficient is reduced by 35%−45%compared with the conventional double-buoy breakwater.展开更多
The CO2 separation from natural gas, syngas or flue gas represents an important industrial field of applications. An economic and energy-efficient CO2 separation from these gas streams is a prerequisite for sustainabl...The CO2 separation from natural gas, syngas or flue gas represents an important industrial field of applications. An economic and energy-efficient CO2 separation from these gas streams is a prerequisite for sustainable industry contributions to the megatrends resource efficiency and globalization of technologies. One way of reducing operational expenditure for these separation processes is the development of better performing CO2 absorbents. Although a number of absorbents for the separation of CO2 from process gas streams exist, the need for the development of CO2 absorbents with an improved absorption performance, less corrosion and foaming, no nitrosamine formation, lower energy requirement and therefore less operational expenditure remains. Recent industrial activities have led to the development of novel high-performance CO2 scrubbing agents that can be employed in numerous industrial processes such as natural gas treatment, purification of syngas and the scrubbing of flue gas. The objective of this paper is to introduce these new high-performance scrubbing agents and to compare their performance with other state-of-the-art absorbents. It turned out, that the evaluated absorbents offer high cyclic capacities in the range of 2.4 to 2.6 mol CO2/kg absorbent and low absorption enthalpies (–30 kJ/mol) allowing for distinctive savings in the regeneration energy of the absorbent. Calculations with the modified Kremser model resulted in a reduction of the specific reboiler heat duty of 55%. Furthermore, the absorbents are less corrosive than standard amines as indicated by the measured corrosion rates of 0.21 mm/y versus 1.18 mm/y for a piperazine/methyldiethanolamine mixture. Based on new experimental results it is shown how substantial savings in operational and capital expenditure can be realized due to favorable absorbent properties. The novel high-performance CO2 system solutions meet recent industrial absorbent requirements and allow for more efficient or new CO2 separation processes.展开更多
This paper studies the current strategies of energy efficiency improvement, CO2 capture in cement production and fly ash blended cement and concrete. Application of updated technology in newly industrialized countries...This paper studies the current strategies of energy efficiency improvement, CO2 capture in cement production and fly ash blended cement and concrete. Application of updated technology in newly industrialized countries (especially China) has improved energy efficiency due to their (its) dominant global cement production shares. Waste heat recovery (WHR) increases its energy efficiency. CO2 capture from cement plants will be more efficient than that from pulverized coal fired power plant. This paper might serve as a guide for the technology improvement, energy policy making and environmental protection in cement production.展开更多
This paper proposes a new concept of an actively-controlled wave energy converter for suppressing the pitch and roll motions of floating offshore wind turbines.The wave energy converter consists of several floating bo...This paper proposes a new concept of an actively-controlled wave energy converter for suppressing the pitch and roll motions of floating offshore wind turbines.The wave energy converter consists of several floating bodies that receive the wave energy,actuators that convert the wave energy into electrical energy and generate the mechanical forces,and rigid bars that connect the floating bodies and the wind turbine platform and deliver the actuator forces to the platform.The rotational torques that are required to minimize the platform pitch and roll motions are determined using a linear quadratic regulator.The torques determined in this manner are realized through the actuator forces that maximize the wave power capture as well.The performance of the proposed wave energy converter in simultaneously suppressing the platform pitch and roll motions and extracting the wave energy is validated through simulations.展开更多
Freely movable wave energy converters(WECs) will greatly improve their adaptability to the marine environment.In this paper, a dual-mode oscillating water column(OWC) WEC with potential sailing capability is proposed....Freely movable wave energy converters(WECs) will greatly improve their adaptability to the marine environment.In this paper, a dual-mode oscillating water column(OWC) WEC with potential sailing capability is proposed. By opening and closing a gate on the side facing the waves, the WEC converts wave energy in the vertical duct(called VD mode) with low sailing resistance or in the backward bend duct(called BBD mode) with high sailing resistance.A small model and a medium model were designed and manufactured. The capture width ratio(CWR) of the small model in the two modes was experimentally studied. The CWR under bidirectional airflow and conversion characteristics under unidirectional airflow of the medium model in the BBD mode were obtained. Tests of the small model show that the peak CWR is 145.2% under regular waves and 90.1% under random waves in BBD mode, and in VD mode the peak CWR is about 60% of that in the BBD mode. Tests of the medium model show that the peak CWR is 228.96% under regular waves, the maximum wave-to-battery efficiency is 63.36% under regular waves and 30.17%under random waves, respectively.展开更多
基金financially supported by the National Natural Science Foundation of China(Grant Nos.51579231,51879253)the Strategic Priority Research Program of the Chinese Academy of Sciences(Grant No.XDA13040202)
文摘Wave tank tests were carried out to evaluate the total efficiency of a floating OWC Pentagonal Backward Bent Duct Buoy (PBBDB). Two kinds of turbine generators were used in tests. The incident wave power, pneumatic power and electricity were measured. The test results show that the primary efficiency can reach up to 185.98% in regular waves and 85.86% in irregular waves. The total efficiency from wave to wire with Wells turbine-generator set is 33.43% in regular waves and 15.82% in irregular waves. The peak total efficiency of the PBBDB with check valves equipped with the impulse turbine-generator set is 41.68% in regular waves and 27.10% in irregular waves. The efficiency of the turbine-generator set is about 30% in the tests. Obviously, the total efficiency can be further improved with the increasing of turbine efficiency.
基金financially supported by the National Natural Science Foundation of China (Grant no. 51605431)Major Science and Technology Projects of Ningbo (Grant no. 2015C110015 and 2017C110005)。
文摘To avoid the damage caused by big wind and wave in cage culture, and to solve the problem of energy supply faced by automatic breeding equipment, a new type of floating breakwater, named as Savonius double buoy breakwater(SDBB), is proposed in the paper. The floating breakwater is composed of HDPE cylindrical double buoys and horizontal axis Savonius rotors, and has the functions of wave-absorbing and energy-capturing. Based on the linear wave theory and energy conservation law, the Fourier Transform was applied to separate the two-dimensional wave frequency domain, and the energy captured by the rotors and absorbed by the floating breakwater were calculated.Experiments were conducted in a two-dimensional wave-making flume, and the transmitted waves at different wave heights and periods, the tension of mooring lines, and the rotational torque exerted on the Savonius rotor were measured. A series of performance comparison tests were also performed on the new floating breakwater and the traditional double-floating breakwater. Results show that the new floating breakwater is better than the traditional one in terms of reducing wave transmittance, and the combination of the floating breakwater with Savonius rotors can provide for marine aquaculture equipments with green power supply to a certain degree of self-sufficiency.
基金funding from the European Union’s Horizon 2020 research and innovation programme under the Marie Sklodowska-Curie grant agreement No.813393partially funded by the Portuguese FCT-Funda??o para a Ciência e a Tecnologia,under projects UIDB/50010/2020,UIDP/50010/2020 and PTDC/FIS-PLA/1616/2021。
文摘This paper brings the comparison of performances of CO_(2)conversion by plasma and plasma-assisted catalysis based on the data collected from literature in this field,organised in an open access online database.This tool is open to all users to carry out their own analyses,but also to contributors who wish to add their data to the database in order to improve the relevance of the comparisons made,and ultimately to improve the efficiency of CO_(2)conversion by plasma-catalysis.The creation of this database and database user interface is motivated by the fact that plasma-catalysis is a fast-growing field for all CO_(2)conversion processes,be it methanation,dry reforming of methane,methanolisation,or others.As a result of this rapid increase,there is a need for a set of standard procedures to rigorously compare performances of different systems.However,this is currently not possible because the fundamental mechanisms of plasma-catalysis are still too poorly understood to define these standard procedures.Fortunately however,the accumulated data within the CO_(2)plasma-catalysis community has become large enough to warrant so-called“big data”studies more familiar in the fields of medicine and the social sciences.To enable comparisons between multiple data sets and make future research more effective,this work proposes the first database on CO_(2)conversion performances by plasma-catalysis open to the whole community.This database has been initiated in the framework of a H_(2)0_(2)0 European project and is called the“PIONEER Data Base”.The database gathers a large amount of CO_(2)conversion performance data such as conversion rate,energy efficiency,and selectivity for numerous plasma sources coupled with or without a catalyst.Each data set is associated with metadata describing the gas mixture,the plasma source,the nature of the catalyst,and the form of coupling with the plasma.Beyond the database itself,a data extraction tool with direct visualisation features or advanced filtering functionalities has been developed and is available online to the public.The simple and fast visualisation of the state of the art puts new results into context,identifies literal gaps in data,and consequently points towards promising research routes.More advanced data extraction illustrates the impact that the database can have in the understanding of plasma-catalyst coupling.Lessons learned from the review of a large amount of literature during the setup of the database lead to best practice advice to increase comparability between future CO_(2)plasma-catalytic studies.Finally,the community is strongly encouraged to contribute to the database not only to increase the visibility of their data but also the relevance of the comparisons allowed by this tool.
基金financially supported by the National Natural Science Foundation of China(51409066,51761135013)High Technology Ship Scientific Research Project from the Ministry of Industry and Information Technology of the People's Republic of China-Floating Security Platform Project(the second stage,201622)the Fundamental Research Fund for the Central University(HEUCF180104,HEUCFP201809)
文摘The integration of wave energy converters(WECs) with floating breakwaters has become common recently due to the benefits of both cost-sharing and providing offshore power supply. In this study, based on viscous computational fluid dynamics(CFD) theory, we investigated the hydrodynamic performances of the floating box and Berkeley Wedge breakwaters, both of which can also serve as WECs. A numerical wave flume model is constructed using Star-CCM+software and applied to investigate the interaction between waves and wave energy converters while completing the verification of the convergence study of time and space steps. The effects of wave length on motion response and transmission coefficient of the floating box breakwater model are studied. Comparisons of our numerical results and published experimental data indicate that Star-CCM+ is very capable of accurately modeling the nonlinear wave interaction of floating structures, while the analytical potential theory overrates the results especially around the resonant frequency. Optimal damping can be readily predicted using potential flow theory and can then be verified by CFD numerical results. Next, we investigated the relationship between wave frequencies and various coefficients using the CFD model under optimal damping, including the motion response, transmission coefficient, reflection coefficient,dissipation coefficient, and wave energy conversion efficiency. We then compared the power generation efficiencies and wave dissipation performances of the floating box and Berkeley Wedge breakwaters. The results show that the power generation efficiency of the Berkeley Wedge breakwater is always much higher than that of the floating box breakwater. Besides, the wave dissipation performance of the Berkeley Wedge breakwater is much better than that of the floating box breakwater at lower frequency.
基金supported by the National Natural Science Foundation of China(51409066,51761135013)High Technology Ship Scientific Research Project from the Ministry of Industry and Information Technology of the People's Republic of China-Floating Security Platform Project(the second stage,201622)the Fundamental Research Fund for the Central University(HEUCFJ180104,HEUCFP1809)
文摘In this study, we investigated the hydrodynamic and energy conversion performance of a double-float wave energy converter(WEC) based on the linear theory of water waves. The generator power take-off(PTO) system is modeled as a combination of a linear viscous damping and a linear spring. Using the frequency domain method, the optimal damping coefficient of the generator PTO system is derived to achieve the optimal conversion efficiency(capture width ratio).Based on the potential flow theory and the higher-order boundary element method(HOBEM), we constructed a threedimensional model of double-float WEC to study its hydrodynamic performance and response in the time domain. Only the heave motion of the two-body system is considered and a virtual function is introduced to decouple the motions of the floats. The energy conversion character of the double-float WEC is also evaluated. The investigation is carried out over a wide range of incident wave frequency. By analyzing the effects of the incident wave frequency, we derive the PTO's damping coefficient for the double-float WEC's capture width ratio and the relationships between the capture width ratio and the natural frequencies of the lower and upper floats. In addition, it is capable to modify the natural frequencies of the two floats by changing the stiffness coefficients of the PTO and mooring systems. We found that the natural frequencies of the device can directly influence the peak frequency of the capture width, which may provide an important reference for the design of WECs.
基金the National Natural Science Foundation of China(Grant No.51605431)the Major Science and Technology Projects of Ningbo(Grant Nos.2015C110015 and 2017C110005).
文摘In the present study,the performance characteristics of a Savonius rotor type wave energy converter used in conjunction with a conventional double-buoy floating breakwater is investigated using physical model studies.The Savonius rotor type converter is suspended under the double-buoy floating breakwater to achieve wave attenuation while generating electricity,thereby enhancing the overall wave-elimination effect of the combination.The Savonius rotor is tested with different water submergence depths,and a reasonable relative submergence depth is determined within the scope of the research parameters.The hydrodynamics and energy capture performance of the combined breakwater with four different sizes of Savonius rotor under different wave conditions are studied,and the transmission coefficient of the experimental device is analyzed.The results show that when the optimal relative submergence depth is 0.65D,where D is the impeller diameter,there is a correspondence between the optimal performance of Savonius rotor with different rotor sizes and the wave period and wave height.The optimal energy capture efficiency of the wave energy converter reaches 17%−20.5%,and the transmission coefficient is reduced by 35%−45%compared with the conventional double-buoy breakwater.
文摘The CO2 separation from natural gas, syngas or flue gas represents an important industrial field of applications. An economic and energy-efficient CO2 separation from these gas streams is a prerequisite for sustainable industry contributions to the megatrends resource efficiency and globalization of technologies. One way of reducing operational expenditure for these separation processes is the development of better performing CO2 absorbents. Although a number of absorbents for the separation of CO2 from process gas streams exist, the need for the development of CO2 absorbents with an improved absorption performance, less corrosion and foaming, no nitrosamine formation, lower energy requirement and therefore less operational expenditure remains. Recent industrial activities have led to the development of novel high-performance CO2 scrubbing agents that can be employed in numerous industrial processes such as natural gas treatment, purification of syngas and the scrubbing of flue gas. The objective of this paper is to introduce these new high-performance scrubbing agents and to compare their performance with other state-of-the-art absorbents. It turned out, that the evaluated absorbents offer high cyclic capacities in the range of 2.4 to 2.6 mol CO2/kg absorbent and low absorption enthalpies (–30 kJ/mol) allowing for distinctive savings in the regeneration energy of the absorbent. Calculations with the modified Kremser model resulted in a reduction of the specific reboiler heat duty of 55%. Furthermore, the absorbents are less corrosive than standard amines as indicated by the measured corrosion rates of 0.21 mm/y versus 1.18 mm/y for a piperazine/methyldiethanolamine mixture. Based on new experimental results it is shown how substantial savings in operational and capital expenditure can be realized due to favorable absorbent properties. The novel high-performance CO2 system solutions meet recent industrial absorbent requirements and allow for more efficient or new CO2 separation processes.
文摘This paper studies the current strategies of energy efficiency improvement, CO2 capture in cement production and fly ash blended cement and concrete. Application of updated technology in newly industrialized countries (especially China) has improved energy efficiency due to their (its) dominant global cement production shares. Waste heat recovery (WHR) increases its energy efficiency. CO2 capture from cement plants will be more efficient than that from pulverized coal fired power plant. This paper might serve as a guide for the technology improvement, energy policy making and environmental protection in cement production.
文摘This paper proposes a new concept of an actively-controlled wave energy converter for suppressing the pitch and roll motions of floating offshore wind turbines.The wave energy converter consists of several floating bodies that receive the wave energy,actuators that convert the wave energy into electrical energy and generate the mechanical forces,and rigid bars that connect the floating bodies and the wind turbine platform and deliver the actuator forces to the platform.The rotational torques that are required to minimize the platform pitch and roll motions are determined using a linear quadratic regulator.The torques determined in this manner are realized through the actuator forces that maximize the wave power capture as well.The performance of the proposed wave energy converter in simultaneously suppressing the platform pitch and roll motions and extracting the wave energy is validated through simulations.
基金financially supported by the National Natural Science Foundation of China (Grant Nos. 51879253 and U20A20106)。
文摘Freely movable wave energy converters(WECs) will greatly improve their adaptability to the marine environment.In this paper, a dual-mode oscillating water column(OWC) WEC with potential sailing capability is proposed. By opening and closing a gate on the side facing the waves, the WEC converts wave energy in the vertical duct(called VD mode) with low sailing resistance or in the backward bend duct(called BBD mode) with high sailing resistance.A small model and a medium model were designed and manufactured. The capture width ratio(CWR) of the small model in the two modes was experimentally studied. The CWR under bidirectional airflow and conversion characteristics under unidirectional airflow of the medium model in the BBD mode were obtained. Tests of the small model show that the peak CWR is 145.2% under regular waves and 90.1% under random waves in BBD mode, and in VD mode the peak CWR is about 60% of that in the BBD mode. Tests of the medium model show that the peak CWR is 228.96% under regular waves, the maximum wave-to-battery efficiency is 63.36% under regular waves and 30.17%under random waves, respectively.