期刊文献+
共找到19篇文章
< 1 >
每页显示 20 50 100
Compressive property and energy absorption characteristic of interconnected porous Mg-Zn-Y alloys with adjusting Y addition
1
作者 J.A.Liu S.J.Liu +3 位作者 B.Wang W.B.Sun X.J.Liu Z.W.Han 《Journal of Magnesium and Alloys》 SCIE EI CAS CSCD 2024年第1期171-185,共15页
In this study,interconnected porous Mg-2Zn-xY alloys with different phase compositions were prepared by various Y additions(x=0.4,3,and 6 wt.%)to adjust the compressive properties and energy absorption characteristics... In this study,interconnected porous Mg-2Zn-xY alloys with different phase compositions were prepared by various Y additions(x=0.4,3,and 6 wt.%)to adjust the compressive properties and energy absorption characteristics.Several characterization methods were then applied to identify the microstructure of the porous Mg-Zn-Y and describe the details of the second phase.Compressive tests were performed at room temperature(RT),200℃,and 300℃to study the impact of the Y addition and testing temperature on the compressive properties of the porous Mg-Zn-Y.The experimental results showed that a high Y content promotes a microstructure refinement and increases the volume fraction of the second phase.When the Y content increases,different Mg-Zn-Y ternary phases appear:I-phase(Mg_(3)Zn_(6)Y),W-phase(Mg_(3)Zn_(3)Y_(2)),and LPSO phase(Mg_(12)ZnY).When the Y content ranges between 0.4%and 6%,the compressive strength increases from 6.30MPa to 9.23 MPa,and the energy absorption capacity increases from 7.33 MJ/m^(3)to 10.97 MJ/m^(3)at RT,which is mainly attributed to the phase composition and volume fraction of the second phase.However,the average energy absorption efficiency is independent of the Y content.In addition,the compressive deformation behaviors of the porous Mg-Zn-Y are altered by the testing temperature.The compressive strength and energy absorption capacity of the porous Mg-Zn-Y decrease due to the softening effect of the high temperature on the struts.The deformation behaviors at different temperatures are finally observed to reflect the failure mechanisms of the struts. 展开更多
关键词 Porous magnesium Rare earth elements Microstructure Compressive behavior energy absorption characteristic
下载PDF
The effect of Ti and Zr content on the structure,mechanics and energy-release characteristics of Ti—Zr—Ta alloys
2
作者 Jia-yu Meng Jing-zhi He +4 位作者 Bin Zhang Jin Chen Shun Li Dun Niu Yu Tang 《Defence Technology(防务技术)》 SCIE EI CAS CSCD 2024年第1期343-350,共8页
Energetic structural materials(ESMs)are a new type of structural materials with bearing and damage characteristics.In this work the microstructure,mechanical properties and energy release characteristics of multi-elem... Energetic structural materials(ESMs)are a new type of structural materials with bearing and damage characteristics.In this work the microstructure,mechanical properties and energy release characteristics of multi-element Ti-Zr-Ta alloys with good casting performance were studied.The microstructure of the Ti_(x)ZrTa alloys gradually change from BCC+HCP to single BCC structure with the increase of Ti.While the Ti_(2)Zr_(y)Ta alloys was still uniform and single BCC structure with the increase of Zr.The evolution of microstructure and composition then greatly affect the mechanical properties and energy-release characteristics of Ti-Zr-Ta alloys.The synergistic effect of dual phase structure increases the fracture strain of Ti_(x)ZrTa(x=0.2,0.5)with the Ti content decreases,while the fracture strain of Ti_(x)ZrTa(x=2.0,3.0,4.0)gradually increase with the Ti content increases caused by the annihilation of the obstacles for dislocation movement.And as Zr content increases,the fracture strain of Ti_(2)Zr_(y)Ta alloys decrease,then the oxidation reaction rate and fragmentation degree gradually increase.The higher oxidation rate and the lager exposed oxidation area jointly leads the higher releasing energy efficiency of Ti_(x)ZrTa alloys with low Ti content and Ti_(2)Zr_(y)Ta alloys with high Zr content. 展开更多
关键词 Energetic structural materials Ti-Zr-Ta Multi-element alloy energy release characteristics
下载PDF
Anisotropic characteristics of layered backfill:Mechanical properties and energy dissipation
3
作者 Huisheng Qu Lang Liu +4 位作者 Yonglu Suo Mengbo Zhu Pan Yang Caixing Zhang Geng Xie 《Journal of Rock Mechanics and Geotechnical Engineering》 SCIE CSCD 2023年第12期3188-3208,共21页
Layered backfill is commonly used in mining operations,and its mechanical behavior is strongly influenced by delamination parameters.In this study,13 specimens with different numbers of delamination and delamination a... Layered backfill is commonly used in mining operations,and its mechanical behavior is strongly influenced by delamination parameters.In this study,13 specimens with different numbers of delamination and delamination angle were prepared to investigate the anisotropic mechanical behavior,energy dissipation characteristics and crack development of backfill.P-wave velocity,uniaxial compression,scanning electron microscope(SEM),and acoustic emission(AE)experiments were conducted.The results indicate that:(1)The P-wave velocity has linear and elliptical relationships with the number of delamination surface and delamination angle,respectively;the strength,delamination parameters and P-wave velocity show a high degree of coincidence in terms of their function relationship,which can realize the rapid prediction of strength.(2)The microstructure of the delaminated surface is looser than that of the matrix,leading to a decrease in strength and an increase at the pore-fissure compaction stage.The number and angle of delamination increase linearly with the anisotropy coefficient.(3)The energy evolution in angle-cut backfill can be divided into four stages,with a decrease in the proportion of elastic energy at the initiation stress and peak stress with increasing number of delamination planes and delamination angle.(4)Crack development increases with the number of delamination surface and delamination angle,resulting in a decrease in energy dissipation coefficient and peak AE energy.These findings provide valuable insights for the design of filling materials and processes in mining operations. 展开更多
关键词 Layered backfill Delamination par ameters Anisotropic mechanical behavior P-wave velocity energy dissipation characteristics Acoustic emission(AE)
下载PDF
Energy characteristics of urban buildings: Assessment by machine learning 被引量:3
4
作者 Wei Tian Chuanqi Zhu +2 位作者 Yu Sun Zhanyong Li Baoquan Yin 《Building Simulation》 SCIE EI CSCD 2021年第1期179-193,共15页
Machine learning techniques have attracted more attention as advanced data analytics in building energy analysis.However,most of previous studies are only focused on the prediction capability of machine learning algor... Machine learning techniques have attracted more attention as advanced data analytics in building energy analysis.However,most of previous studies are only focused on the prediction capability of machine learning algorithms to provide reliable energy estimation in buildings.Machine learning also has great potentials to identify energy patterns for urban buildings except for model prediction.Therefore,this paper explores energy characteristic of London domestic properties using ten machine learning algorithms from three aspects:tuning process of learning model;variable importance;spatial analysis of model discrepancy.The results indicate that the combination of these three aspects can provide insights on energy patterns for urban buildings.The tuning process of these models indicates that gas use models should have more terms in comparison with electricity in London and the interaction terms should be considered in both gas and electricity models.The rankings of important variables are very different for gas and electricity prediction in London residential buildings,which suggests that gas and electricity use are affected by different physical and social factors.Moreover,the importance levels for these key variables are markedly different for gas and electricity consumption.There are much more important variables for electricity use in comparison with gas use for the importance levels over 40.The areas with larger model discrepancies can be determined using the local spatial analysis based on these machine learning models.These identified areas have significantly different energy patterns for gas and electricity use.More research is required to understand these unusual patterns of energy use in these areas. 展开更多
关键词 urban buildings energy characteristics machine learning variable importance spatial analysis
原文传递
Study on energy release characteristics of reactive material casings under explosive loading 被引量:5
5
作者 Ning Du Wei Xiong +3 位作者 Tao Wang Xian-feng Zhang Hai-hua Chen Meng-ting Tan 《Defence Technology(防务技术)》 SCIE EI CAS CSCD 2021年第5期1791-1803,共13页
Reactive Materials(RMs),a new material with structural and energy release characteristics under shockinduced chemical reactions,are promising in extensive applications in national defense and military fields.They can ... Reactive Materials(RMs),a new material with structural and energy release characteristics under shockinduced chemical reactions,are promising in extensive applications in national defense and military fields.They can increase the lethality of warheads due to their dual functionality.This paper focuses on the energy release characteristics of RM casings prepared by alloy melting and casting process under explosive loading.Explosion experiments of RM and conventional 2A12 aluminum alloy casings were conducted in free field to capture the explosive fireballs,temperature distribution,peak overpressure of the air shock wave and the fracture morphology of fragments of reactive material(RM)warhead casings by using high-speed camera,infrared thermal imager temperature and peak overpressure testing and scanning electron microscope.Results showed that an increase of both the fireball temperature and air shock wave were observed in all RM casings compared to conventional 2A12 aluminum ally casings.The RM casings can improve the peak overpressure of the air shock wave under explosion loading,though the results are different with different charge ratios.According to the energy release characteristics of the RM,increasing the thickness of RM casings will increase the peak overpressure of the near-field air shock wave,while reducing the thickness will increase the peak overpressure of the far-field air shock wave. 展开更多
关键词 Reactive materials Explosive loading Shock-induced chemical reaction energy release characteristics FRAGMENTATION
下载PDF
A Bilayer High-Temperature Dielectric Film with Superior Breakdown Strength and Energy Storage Density 被引量:2
6
作者 Jiang-Bo Ping Qi-Kun Feng +4 位作者 Yong-Xin Zhang Xin-Jie Wang Lei Huang Shao-Long Zhong Zhi-Min Dang 《Nano-Micro Letters》 SCIE EI CAS CSCD 2023年第9期479-491,共13页
The further electrification of various fields in production and daily life makes it a topic worthy of exploration to improve the performance of capacitors for a long time,including thin-film capacitors.The discharge e... The further electrification of various fields in production and daily life makes it a topic worthy of exploration to improve the performance of capacitors for a long time,including thin-film capacitors.The discharge energy density of thin-film capacitors that serves as one of the important types directly depends on electric field strength and the dielectric constant of the insulation material.However,it has long been a great challenge to improve the breakdown strength and dielectric constant simultaneously.Considering that boron nitride nanosheets(BNNS)possess superior insulation and thermal conductivity owing to wide band gap and 2-dimensional structure,a bilayer polymer film is prepared via coating BNNS by solution casting on surface of polyethylene terephthalate(PET)films.By revealing the bandgap and insulating behavior with UV absorption spectrum,leakage current,and finite element calculation,it is manifested that nanocoating contributes to enhance the bandgap of polymer films,thereby suppressing the charge injection by redirecting their transport from electrodes.Worthy to note that an ultrahigh breakdown field strength(~736 MV m^(−1)),an excellent discharge energy density(~8.77 J cm^(−3))and a prominent charge-discharge efficiency(~96.51%)are achieved concurrently,which is ascribed to the contribution of BNNS ultrathin layer.In addition,the modified PET films also have superior comprehensive performance at high temperatures(~120°C).The materials and methods here selected are easily accessible and facile,which are suitable for large-scale roll-to-roll process production,and are of certain significance to explore the methods about film modification suitable for commercial promotion. 展开更多
关键词 Film capacitor Dielectric property Boron nitride nanosheets Surface coating energy storage characteristics
下载PDF
Luminescence Characteristics and Energy Transfer Machanismof LaOBr:Tb^(3+) (Dy^(3+))
7
作者 Jinghai YANG Chunzhong MIN and Zhanguo ZONG(Institute of Solid State Physics, Siping Normal University, Siping 136000, China)Yongji LI(Siping Teachers College, Siping 136000, China)Xingyin LIU(Changchun Institute of Physics, Chinese Academy of Sciences, 《Journal of Materials Science & Technology》 SCIE EI CAS CSCD 1997年第6期479-482,共4页
The rare earth luminescence materials LaOBrfTb3+(Dy3+) were synthesized at high temperature,and the structure and luminescence characteristics were studied. The co-doping Dy3+ may make the energy of 5D3 of Tb3+ transf... The rare earth luminescence materials LaOBrfTb3+(Dy3+) were synthesized at high temperature,and the structure and luminescence characteristics were studied. The co-doping Dy3+ may make the energy of 5D3 of Tb3+ transfer to 5D4 level, which makes the emission of 5D4-7FJ (J=0,1... 6), specially of 5D4-7F5, enhance obviously, and the total brightness is increased by about 40% in comparison with the samples without Dy3+ cations, as a result of the energy transfer of dipole-dipole interaction. 展开更多
关键词 DY BR Luminescence characteristics and energy Transfer Machanismof LaOBr NM
下载PDF
Mechanical behavior and response mechanism of porous metal structures manufactured by laser powder bed fusion under compressive loading
8
作者 Xuanming Cai Yang Hou +6 位作者 Wei Zhang Zhiqiang Fan Yubo Gao Junyuan Wang Heyang Sun Zhujun Zhang Wenshu Yang 《International Journal of Minerals,Metallurgy and Materials》 SCIE EI CAS CSCD 2024年第4期737-749,共13页
Al Si10Mg porous protective structure often produces different damage forms under compressive loading,and these damage modes affect its protective function.In order to well meet the service requirements,there is an ur... Al Si10Mg porous protective structure often produces different damage forms under compressive loading,and these damage modes affect its protective function.In order to well meet the service requirements,there is an urgent need to comprehensively understand the mechanical behavior and response mechanism of AlSi10Mg porous structures under compressive loading.In this paper,Al Si10Mg porous structures with three kinds of volume fractions are designed and optimized to meet the requirements of high-impact,strong-energy absorption,and lightweight characteristics.The mechanical behaviors of AlSi10Mg porous structures,including the stress-strain relationship,structural bearing state,deformation and damage modes,and energy absorption characteristics,were obtained through experimental studies at different loading rates.The damage pattern of the damage section indicates that AlSi10Mg porous structures have both ductile and brittle mechanical properties.Numerical simulation studies show that the AlSi10Mg porous structure undergoes shear damage due to relative misalignment along the diagonal cross-section,and the damage location is almost at 45°to the load direction,which is the most direct cause of its structural damage,revealing the damage mechanism of AlSi10Mg porous structures under the compressive load.The normalized energy absorption model constructed in the paper well interprets the energy absorption state of Al Si10Mg porous structures and gives the sensitive location of the structures,and the results of this paper provide important references for peers in structural design and optimization. 展开更多
关键词 AlSi10Mg additive manufacture energy absorption characteristics damage by deformation mechanical behavior
下载PDF
Performance Evaluation of Advanced Wave Energy Converters in the Nearshore Areas of the North Indian Ocean
9
作者 WAN Yong ZHANG Wen +2 位作者 FAN Chen-qing LI Li-gang DAI Yong-shou 《China Ocean Engineering》 SCIE EI CSCD 2022年第6期980-993,共14页
The 21st Century Maritime Silk Road is a profound measure for mankind,whilst its development is severely restricted by the energy shortage of surrounding countries.As the core construction area of Maritime Silk Road,t... The 21st Century Maritime Silk Road is a profound measure for mankind,whilst its development is severely restricted by the energy shortage of surrounding countries.As the core construction area of Maritime Silk Road,the North Indian Ocean is rich in wave energy.The development and utilization of wave energy not only can overcome energy shortage,but also promote communication between peripheral countries.However,previous researchers often focused on wave energy itself,without combining devices to analyze wave energy resources.Therefore,we conducted an overall assessment of wave energy resources using 20-year ERA5 data and determined the sites considered as superior for the construction of Wave Energy Farm(WEF)in the coastal areas.In order to point out which type of Wave Energy Converter(WEC)is best suited for the sites,we carried out the performance evaluation of eight advanced WECs using three parameters:the mean power output,the capacity factor and the capture width ratio.The results show that the performance of Wave Star is superior to other devices,which is supposed to be the primary consideration of the Wave Energy Farms(WEFs)in the future. 展开更多
关键词 ocean energy wave energy characteristics site selection wave energy converter performance evaluation
下载PDF
Quasi-static and low-velocity impact mechanical behaviors of entangled porous metallic wire material under different temperatures
10
作者 Yi-wan Wu Hu Cheng +3 位作者 Shang-zhou Li Yu Tang Hong-bai Bai Chun-hong Lu 《Defence Technology(防务技术)》 SCIE EI CAS CSCD 2023年第1期143-152,共10页
To improve the defense capability of military equipment under extreme conditions,impact-resistant and high-energy-consuming materials have to be developed.The damping characteristic of entangled porous metallic wire m... To improve the defense capability of military equipment under extreme conditions,impact-resistant and high-energy-consuming materials have to be developed.The damping characteristic of entangled porous metallic wire materials(EPMWM)for vibration isolation was previously investigated.In this paper,a study focusing on the impact-resistance of EPMWM with the consideration of ambient temperature is presented.The quasi-static and low-velocity impact mechanical behavior of EPMWM under different temperatures(25℃-300℃)are systematically studied.The results of the static compression test show that the damping energy dissipation of EPMWM increases with temperature while the nonlinear damping characteristics are gradually enhanced.During the impact experiments,the impact energy loss rate of EPMWM was between 65%and 85%,while the temperatures increased from 25℃to 300℃.Moreover,under the same drop impact conditions,the overall deformation of EPMWM decreases in the temperature range of 100℃-200℃.On the other hand,the impact stiffness,energy dissipation,and impact loss factor of EPMWM significantly increase with temperature.This can be attributed to an increase in temperature,which changes the thermal expansion coefficient and contact state of the internal wire helixes.Consequently,the energy dissipation mode(dry friction,air damping,and plastic deformation)of EPMWM is also altered.Therefore,the EPMWM may act as a potential candidate material for superior energy absorption applications. 展开更多
关键词 Entangled porous metallic wire material Low-velocity impact High temperature energy dissipation characteristics Mechanical behavior
下载PDF
Assessment of the ballistic response of honeycomb sandwich structures subjected to offset and normal impact
11
作者 Nikhil Khaire Gaurav Tiwari +1 位作者 Vivek Patel M.A.Iqbal 《Defence Technology(防务技术)》 SCIE EI CAS CSCD 2023年第10期56-73,共18页
In the present study,experimental and numerical investigations were carried out to examine the behavior of sandwich panels with honeycomb cores.The high velocity impact tests were carried out using a compressed air gu... In the present study,experimental and numerical investigations were carried out to examine the behavior of sandwich panels with honeycomb cores.The high velocity impact tests were carried out using a compressed air gun.A sharp conical nosed projectile was impacted normally and with some offset distance(20 mm and 40 mm).The deformation,failure mode and energy dissipation characteristics were obtained for both kinds of loading.Moreover,the explicit solver was run in Abaqus to create the finite element model.The numerically obtained test results were compared with the experimental to check the accuracy of the modelling.The numerical result was further employed to obtain strain energy dissipation in each element by externally running user-defined code in Abaqus.Furthermore,the influence of inscribe circle diameter and cell wall and face sheet thickness on the energy dissipation,deformation and failure mode was examined.The result found that ballistic resistance and deformation were higher against offset impact compared to the normal impact loading.Sandwich panel impacted at 40 mm offset distance required 3 m/s and 1.9 m/s more velocity than 0 and 20 mm offset distance.Also,increasing the face sheet and wall thickness had a positive impact on the ballistic resistance in terms of a higher ballistic limit and energy absorption.However,inscribe circle diameter had a negative influence on the ballistic resistance.Also,the geometrical parameters of the sandwich structure had a significant influence on the energy dissipation in the different deformation directions.The energy dissipation in plastic work was highest for circumferential direction,regardless of impact condition followed by tangential,radial and axial directions. 展开更多
关键词 Honeycomb sandwich structure Offset impact energy dissipation characteristic Deformation and failure mode Geometry effect
下载PDF
Impact response and energy absorption of metallic buffer with entangled wire mesh damper
12
作者 Chao Zheng Jun Wu +1 位作者 Mangong Zhang Xin Xue 《Defence Technology(防务技术)》 SCIE EI CAS 2024年第5期137-150,共14页
An innovative metallic buffer consisting of series-connected hat-shaped entangled wire mesh damper(EWMD)and parallel springs are proposed in this work to enhance the reliability of engineering equipment.The impact res... An innovative metallic buffer consisting of series-connected hat-shaped entangled wire mesh damper(EWMD)and parallel springs are proposed in this work to enhance the reliability of engineering equipment.The impact response and the energy dissipation mechanism of hat-shaped EWMD under different quasi-static compression deformations(2-7 mm)and impact heights(100-200 mm)are investigated using experimental and numerical methods.The results demonstrate distinct stages in the quasi-static mechanical characteristics of hat-shaped EWMD,including stiffness softening,negative stiffness,and stiffness hardening.The loss factor gradually increases with increasing compression deformation before entering the stiffness hardening stage.Under impact loads,the hat-shaped EWMD exhibits optimal impact energy absorption when it enters the negative stiffness stage(150 mm),resulting in the best impact isolation effect of metallic buffer.However,the impact energy absorption significantly decreases when hat-shaped EWMD enters the stiffness hardening stage.Interestingly,quasi-static compression analysis after experiencing different impact loads reveals the disappearance of the negative stiffness phenomenon.Moreover,with increasing impact loads,the stiffness hardening point progressively shifts to an earlier stage. 展开更多
关键词 Metallic buffer Hat-shaped EWMD Drop impact energy absorption characteristics Mechanical behavior
下载PDF
A Novel Hybrid Clustering Based Transmission Protocol for Wireless Body Area Networks
13
作者 Neelam Sharma Harshita Chadha +2 位作者 Karan Singh B.M.Singh Nitish Pathak 《Computers, Materials & Continua》 SCIE EI 2021年第11期2459-2473,共15页
Wireless sensor networks are a collection of intelligent sensor devices that are connected to one another and have the capability to exchange information packets amongst themselves.In recent years,this field of resear... Wireless sensor networks are a collection of intelligent sensor devices that are connected to one another and have the capability to exchange information packets amongst themselves.In recent years,this field of research has become increasingly popular due to the host of useful applications it can potentially serve.A deep analysis of the concepts associated with this domain reveals that the two main problems that are to be tackled here are throughput enhancement and network security improvement.The present article takes on one of these two issues namely the throughput enhancement.For the purpose of improving network productivity,a hybrid clustering based packet propagation protocol has been proposed.The protocol makes use of not only clustering mechanisms of machine learning but also utilizes the traditional forwarding function approach to arrive at an optimum model.The result of the simulation is a novel transmission protocol which significantly enhances network productivity and increases throughput value. 展开更多
关键词 Forwarding function wireless sensor networks WSNS WBANs energy characteristics CLUSTERING hybrid mechanism dissipated energy network stability
下载PDF
A Comparative Study on the Excitation of Large Volume Airgun Source with Different Combinations in Hutubi,Xinjiang,China
14
作者 SU Jinbo WANG Qiong +3 位作者 CHEN Hao WEI Yunyun ZHANG Wenxiu WANG Haitao 《Earthquake Research in China》 CSCD 2019年第4期573-583,I0001,共12页
In order to study the excitation of large-volume airgun source with different combinations in Hutubi,Xinjiang,China,we conducted a targeted experiment.The method of timefrequency analysis is used to study the signals ... In order to study the excitation of large-volume airgun source with different combinations in Hutubi,Xinjiang,China,we conducted a targeted experiment.The method of timefrequency analysis is used to study the signals recorded by a seismometer on the shore of the excited pool,and it is concluded that different gun combinations will lead to different frequency of bubble pulse signals.Besides,linear combination method is used to analyze the signal-to-noise ratios of signals excited by different gun combinations which was recorded by seismic stations around the airgun source.In order to improve the signal-tonoise ratios,it is more effective to increase the activation energy(the number of excited guns at the same time)than to stack the excited signals with smaller energy repeatedly. 展开更多
关键词 Airgun source Different gun combinations energy characteristic Frequency characteristic Signal-to-noise ratio
下载PDF
Energy Absorption Characteristics of a Novel Asymmetric and Rotatable Re-entrant Honeycomb Structure
15
作者 Huifeng Xi Jiachu Xu +1 位作者 Shende Cen Shiqing Huang 《Acta Mechanica Solida Sinica》 SCIE EI CSCD 2021年第4期550-560,共11页
Based on the symmetric re-entrant honeycomb(S-RH)structure with negative Poisson’s ratios,a novel asymmetric and rotatable re-entrant honeycomb(AR-RH)structure was proposed.Both the S-RH structure and AR-RH structure... Based on the symmetric re-entrant honeycomb(S-RH)structure with negative Poisson’s ratios,a novel asymmetric and rotatable re-entrant honeycomb(AR-RH)structure was proposed.Both the S-RH structure and AR-RH structure were produced by the 3D printing technology.Through experimental test and finite element simulation,the deformation mechanism and energy absorption characteristics of the AR-RH structure and the S-RH structure with negative Poisson’s ratios at different impact velocities were compared.The experimental test and finite element simulation results show that the novel AR-RH structure with negative Poisson’s ratios has stronger energy absorption capacity than the S-RH structure,and it has been verified that the rotatability of AR-RH can indeed absorb energy.Furthermore,the degree of asymmetry of the AR-RH structure was discussed. 展开更多
关键词 Asymmetric and rotatable re-entrant honeycomb structure Dynamic compression energy absorption characteristics Metal 3D printing technology
原文传递
High-temperature energy storage dielectric with inhibition of carrier injection/migration based on band structure regulation
16
作者 Guang Liu Qingquan Lei +4 位作者 Yu Feng Changhai Zhang Tiandong Zhang Qingguo Chen Qingguo Chi 《InfoMat》 SCIE CSCD 2023年第2期22-33,共12页
Dielectric capacitors have a high power density,and are widely used in military and civilian life.The main problem lies in the serious deterioration of dielectric insulation performance at high temperatures.In this st... Dielectric capacitors have a high power density,and are widely used in military and civilian life.The main problem lies in the serious deterioration of dielectric insulation performance at high temperatures.In this study,a polycarbonate(PC)-based energy storage dielectric was designed with BN/SiO_(2)heterojunctions on its surface.Based on this structural design,a synergistic suppression of the carrier injection and transport was achieved,significantly improving the insulating properties of the polymer film.In particular,the composite film achieves optimal high-temperature energy-storage properties.The composite film can withstand an electric field intensity of 760 MV m^(-1)at 100℃and obtain an energy storage density of 8.32 J cm^(-3),while achieving a breakthrough energy storage performance even at 150℃(610 MV m^(-1),5.22 J cm^(-3)).Through adjustment of the heterojunction structure,free adjustment of the insulation performance of the material can be realized;this is of great significance for the optimization of the material properties. 展开更多
关键词 electron injection and transport HETEROJUNCTION high temperature energy storage characteristics INSULATION POLYCARBONATE
原文传递
Local characteristics and acoustical energy of radiation on vibrating surface: Ⅰ. Theory
17
作者 JIANG Zhe(Jiangsu University of Science and Technology Jiangsu Zhenjiang 212013) 《Chinese Journal of Acoustics》 1998年第1期49-58,共10页
From a point of view of the auto-spectrum, the local characteristics and the acous-tical energy of radiating on a vibrating surface are theoretically studied in this paper. The point radiation impedance at any point o... From a point of view of the auto-spectrum, the local characteristics and the acous-tical energy of radiating on a vibrating surface are theoretically studied in this paper. The point radiation impedance at any point on a vibrating surface is defined a-s the ratio of the sound pressure to the vibrating velocity, which establishes the relation between the vibration of the surface and the sound field. Applying the Cauchy iategral theorem, the chromatic disper-sion relation between the real and imaginary components of the point radiation impedance is given, and some characteristics are discussed. The discussion about two typical sound sotirces,pulsating and oscillating spheres, supports the arguments of this paper. 展开更多
关键词 Local characteristics and acoustical energy of radiation on vibrating surface THEORY
原文传递
Local characteristics and acoustical energy of radiation on vibrating surface: Ⅱ. application
18
作者 JIANG Zhe ZHAO Xiaodan(Jiangsu University of Science and Technology Jiangsu Zhenjiang 212013) 《Chinese Journal of Acoustics》 1998年第1期59-68,共10页
Applying the theory put forward in Ref. [3], the radiation mechanism of sound energy on a vibrating steel plate was studied. Between the point radiation resistance efficiency and the point radiation reactance efficien... Applying the theory put forward in Ref. [3], the radiation mechanism of sound energy on a vibrating steel plate was studied. Between the point radiation resistance efficiency and the point radiation reactance efficiency exists the chromatic dispersion relation that is one to one. The chromatic dispersion relation fits not only smooth curves, but also the dispersed curves with sharp-pointed peaks. While the vibrating surface radiates the sound energy into field, it absorbs some energy from the field. 展开更多
关键词 APPLICATION Local characteristics and acoustical energy of radiation on vibrating surface
原文传递
Elastic energy storage technology using spiral spring devices and its applications:A review
19
作者 Shiwei Guo Li Yang +2 位作者 Yanping Yuan Zutao Zhang Xiaoling Cao 《Energy and Built Environment》 2023年第6期669-679,共11页
Harvesting and storing energy is a key problem in some applications.Elastic energy storage technology has the advantages of wide-sources,simple structural principle,renewability,high effectiveness and environmental-fr... Harvesting and storing energy is a key problem in some applications.Elastic energy storage technology has the advantages of wide-sources,simple structural principle,renewability,high effectiveness and environmental-friendliness.This paper elaborates the operational principles and technical properties and summarizes the appli-cability of elastic energy storage technology with spiral springs.Elastic energy storage using spiral spring can realize the balance between energy supply and demand in some applications.Continuous input-spontaneous out-put working style can provide simple energy sources for short-time energy supply,and provide strong moment impact and rapid start,or realize the energy conservation for reciprocating movement.Uniform output working style can realize energy output with uniform speed for timekeeping and load-driving.Random input working style can harvest and store random mechanical energy or convert small torque into a large moment to drive external loads.Finally,this paper proposes new researches and developments of elastic energy storage technology on new materials and structures,mechanical properties and structural dynamics analyses,design and control for new functions. 展开更多
关键词 Mechanical energy storage Elastic energy storage Spiral spring system energy input/output characteristics Implementation mechanism
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部