期刊文献+
共找到5,009篇文章
< 1 2 250 >
每页显示 20 50 100
The effect of Ti and Zr content on the structure,mechanics and energy-release characteristics of Ti—Zr—Ta alloys
1
作者 Jia-yu Meng Jing-zhi He +4 位作者 Bin Zhang Jin Chen Shun Li Dun Niu Yu Tang 《Defence Technology(防务技术)》 SCIE EI CAS CSCD 2024年第1期343-350,共8页
Energetic structural materials(ESMs)are a new type of structural materials with bearing and damage characteristics.In this work the microstructure,mechanical properties and energy release characteristics of multi-elem... Energetic structural materials(ESMs)are a new type of structural materials with bearing and damage characteristics.In this work the microstructure,mechanical properties and energy release characteristics of multi-element Ti-Zr-Ta alloys with good casting performance were studied.The microstructure of the Ti_(x)ZrTa alloys gradually change from BCC+HCP to single BCC structure with the increase of Ti.While the Ti_(2)Zr_(y)Ta alloys was still uniform and single BCC structure with the increase of Zr.The evolution of microstructure and composition then greatly affect the mechanical properties and energy-release characteristics of Ti-Zr-Ta alloys.The synergistic effect of dual phase structure increases the fracture strain of Ti_(x)ZrTa(x=0.2,0.5)with the Ti content decreases,while the fracture strain of Ti_(x)ZrTa(x=2.0,3.0,4.0)gradually increase with the Ti content increases caused by the annihilation of the obstacles for dislocation movement.And as Zr content increases,the fracture strain of Ti_(2)Zr_(y)Ta alloys decrease,then the oxidation reaction rate and fragmentation degree gradually increase.The higher oxidation rate and the lager exposed oxidation area jointly leads the higher releasing energy efficiency of Ti_(x)ZrTa alloys with low Ti content and Ti_(2)Zr_(y)Ta alloys with high Zr content. 展开更多
关键词 Energetic structural materials Ti-Zr-Ta Multi-element alloy energy release characteristics
下载PDF
Inter-stage performance and energy characteristics analysis of electric submersible pump based on entropy production theory
2
作者 Hui Wang Yang Yang +5 位作者 Bin Xi Wei-Dong Shi Chuan Wang Lei-Lei Ji Xiang-Yu Song Zhao-Ming He 《Petroleum Science》 SCIE EI CAS CSCD 2024年第2期1354-1368,共15页
The electric submersible pump(ESP) is a crucial apparatus utilized for lifting in the oil extraction process.Its lifting capacity is enhanced by the multi-stage tandem structure, but variations in energy characteristi... The electric submersible pump(ESP) is a crucial apparatus utilized for lifting in the oil extraction process.Its lifting capacity is enhanced by the multi-stage tandem structure, but variations in energy characteristics and internal flow across stages are also introduced. In this study, the inter-stage variability of energy characteristics in ESP hydraulic systems is investigated through entropy production(EP) analysis,which incorporates numerical simulations and experimental validation. The EP theory facilitates the quantification of energy loss in each computational subdomain at all ESP stages, establishing a correlation between microscopic flow structure and energy dissipation within the system. Furthermore, the underlying causes of inter-stage variability in ESP hydraulic systems are examined, and the advantages and disadvantages of applying the EP theory in this context are evaluated. Consistent energy characteristics within the ESP, aligned with the distribution of internal flow structure, are provided by the EP theory, as demonstrated by our results. The EP theory also enables the quantitative analysis of internal flow losses and complements existing performance analysis methods to map the internal flow structure to hydraulic losses. Nonetheless, an inconsistency between the energy characterization based on EP theory and the traditional efficiency index when reflecting inter-stage differences is identified. This inconsistency arises from the exclusive focus of the EP theory on flow losses within the flow field, disregarding the quantification of external energy input to the flow field. This study provides a reference for the optimization of EP theory in rotating machinery while deeply investigating the energy dissipation characteristics of multistage hydraulic system, which has certain theoretical and practical significance. 展开更多
关键词 Electric submersible pump(ESP) Entropy production theory energy characteristics Inter-stage differences
下载PDF
Load-bearing characteristics and energy evolution of fractured rock masses after granite and sandstone grouting
3
作者 WU Xu-kun ZHAO Guang-ming +4 位作者 MENG Xiang-rui LIU Chong-yan LIU Zhi-xi HUANG Shun-jie ZHANG Qi-hang 《Journal of Central South University》 SCIE EI CAS CSCD 2024年第8期2810-2825,共16页
Experiments on grouting-reinforced rock mass specimens with different particle sizes and features were carried out in this study to examine the effects of grouting reinforcement on the load-bearing characteristics of ... Experiments on grouting-reinforced rock mass specimens with different particle sizes and features were carried out in this study to examine the effects of grouting reinforcement on the load-bearing characteristics of fractured rock mass.The strength and deformation features of grouting-reinforced rock mass were analyzed under different loading manners;the energy evolution mechanism of grouting-reinforced rock mass specimens with different particle sizes and features was investigated;the energy dissipation ratio and post-peak stress decreasing rate were employed to evaluate the bearing stability of grouting-reinforced rock mass.The results show that the strength and ductility of granite-reinforced rock mass(GRM)under biaxial loading are higher than that of sandstone-reinforced rock mass(SRM)under uniaxial loading.Besides,the energy evolution characteristics of grouting-reinforced rock mass under uniaxial and biaxial loading mainly could be divided into early,middle,and late stages.In the early stage,total,elastic,and dissipation energies were quite small with flatter curves;in the middle stage,elastic energy increased rapidly,whereas dissipation energy increased slowly;in the late stage,dissipation energy increased sharply.The energy dissipation ratio was used to represent the pre-peak plastic deformation.Under uniaxial loading,this ratio increased as the particle size increased and the pre-peak plastic deformation of grouting-reinforced rock mass became larger;under biaxial loading,it dropped as the particle size increased,and the pre-peak plastic deformation of grouting-reinforced rock mass became smaller.The post-peak stress decline rate A_(v) was used to assess the post-peak bearing performance of grouting-reinforced rock mass.Under uniaxial loading,parameter A_(v) exhibited reduction as the particle size kept increasing,and the ability of post-peak of grouting-reinforced rock mass to allow deformation development was greater,and the bearing capacity was greater;under biaxial loading,A_(v) increased with the particle size,and the ability of post-peak of grouting-reinforced rock mass to allow deformation development was low and the bearing capacity was reduced.The findings are considered instrumental in improving the stability of the roadway-surrounding rock by granite and sandstone grouting. 展开更多
关键词 grouting-reinforced rock mass particle size energy dissipation ratio post-peak stress decreasing rate load-bearing characteristics
下载PDF
Energy release characteristics of PTFE/Al/TiH_(2) reactive jet with different TiH_2 content
4
作者 Chunlan Jiang Jingbo Zhang +2 位作者 Rong Hu Liang Mao Ming Li 《Defence Technology(防务技术)》 SCIE EI CAS CSCD 2024年第9期168-176,共9页
Titanium hydride(TiH_(2)), a promising high-energy additive, is doped into PTFE/Al to optimize the energy output structure of the reactive jet and strive for better aftereffect damage ability to the target. Six types ... Titanium hydride(TiH_(2)), a promising high-energy additive, is doped into PTFE/Al to optimize the energy output structure of the reactive jet and strive for better aftereffect damage ability to the target. Six types of PTFE/Al/TiH_(2) reactive liners with different TiH_(2) content are prepared by the molding and sintering method. The energy release characteristics of PTFE/Al/TiH_(2) reactive jet are tested by the transient explosion energy test, and are characterized from pressure and temperature. The reaction delay time,pressure history, and temperature history of the energy release process are obtained, then the actual value of released energy and reaction efficiency of the reactive jet are calculated. The results show that the peak pressure and temperature of the PTFE/Al/TiH_(2) jet initially increase and then decrease with increasing TiH_(2) content. When the TiH_(2) content is 10%, the actual value of released energy and reaction efficiency increased by 24% and 6.4%, respectively, compared to the PTFE/Al jet. The reaction duration of the reactive material is significantly prolonged as the TiH_(2) content increased from 0% to 30%. Finally,combined with the energy release behaviors of PAT material and the dynamic deformation process of liner, the enhancement mechanism of TiH_(2) on energy release of the reactive jet is expounded. 展开更多
关键词 PTFE/Al/TiH_(2) Reactive materials Shaped charge Impact energy release characteristics
下载PDF
Analysis of combustion characteristics and chemical properties for biocoke fuel
5
作者 Asri Gani Mahidin +6 位作者 Muhammad Faisal Erdiwansyah Hera Desvita Muhammad Alif Kinan Ikhlasul Khair Yeggi Darnas Rizalman Mamat 《Energy Geoscience》 EI 2024年第4期133-141,共9页
Analyses of the characteristics and properties of biocoke fuel from several biomass wastes were carried out to determine the energy potential of the fuel.Biocoke production in this research uses heating and pressure m... Analyses of the characteristics and properties of biocoke fuel from several biomass wastes were carried out to determine the energy potential of the fuel.Biocoke production in this research uses heating and pressure methods simultaneously under constant conditions.Experimental results using thermogravimetric analysis show that biocoke empty-fruit-bunches(EFB)have a higher energy potential of 26.57 MJ/kg.Meanwhile,mangrove biocoke recorded the lowest ash content at 1.81%compared to EFB at 5.09%.The carbon content of mangrove biocoke is 58.02%,slightly higher than that of EFB,56.70%,but EFB is higher than that of other biomass.Overall,the energy content recorded in biocoke increased significantly compared to raw biomass. 展开更多
关键词 Combustion characteristics Green energy Biocoke BIOenergy energy production
下载PDF
Dynamic response mechanism and precursor characteristics of gneiss rockburst under different initial burial depths
6
作者 LIU Dongqiao SUN Jie +4 位作者 MENG Wen HE Manchao ZHANG Chongyuan LI Ran CAO Binghao 《Journal of Mountain Science》 SCIE CSCD 2024年第3期1004-1018,共15页
To investigate the influence mechanism of geostress on rockburst characteristics,three groups of gneiss rockburst experiments were conducted under different initial geostress conditions.A high-speed photography system... To investigate the influence mechanism of geostress on rockburst characteristics,three groups of gneiss rockburst experiments were conducted under different initial geostress conditions.A high-speed photography system and acoustic emission(AE)monitoring system were used to monitor the entire rockburst process in real time.The experimental results show that when the initial burial depth increases from 928 m to 1320 m,the proportion of large fracture scale in rockburst increases by 154.54%,and the AE energy increases by 565.63%,reflecting that the degree and severity of rockburst increase with the increase of burial depth.And then,two mechanisms are proposed to explain this effect,including(i)the increase of initial geostress improves the energy storage capacity of gneiss,and then,the excess energy which can be converted into kinetic energy of debris ejection increases,consequently,a more pronounced violent ejection phenomenon is observed at rockburst;(ii)the increase of initial geostress causes more sufficient plate cracks of gneiss after unloading ofσh,which provides a basis for more severe ejection of rockburst.What’s more,a precursor with clear physical meaning for rockburst is proposed under the framework of dynamic response process of crack evolution.Finally,potential value in long term rockburst warning of the precursor obtained in this study is shown via the comparison of conventional precursor. 展开更多
关键词 Traffic Engineering Gneiss Rockburst Crack propagation Excess energy Precursor characteristic
下载PDF
Compressive property and energy absorption characteristic of interconnected porous Mg-Zn-Y alloys with adjusting Y addition
7
作者 J.A.Liu S.J.Liu +3 位作者 B.Wang W.B.Sun X.J.Liu Z.W.Han 《Journal of Magnesium and Alloys》 SCIE EI CAS CSCD 2024年第1期171-185,共15页
In this study,interconnected porous Mg-2Zn-xY alloys with different phase compositions were prepared by various Y additions(x=0.4,3,and 6 wt.%)to adjust the compressive properties and energy absorption characteristics... In this study,interconnected porous Mg-2Zn-xY alloys with different phase compositions were prepared by various Y additions(x=0.4,3,and 6 wt.%)to adjust the compressive properties and energy absorption characteristics.Several characterization methods were then applied to identify the microstructure of the porous Mg-Zn-Y and describe the details of the second phase.Compressive tests were performed at room temperature(RT),200℃,and 300℃to study the impact of the Y addition and testing temperature on the compressive properties of the porous Mg-Zn-Y.The experimental results showed that a high Y content promotes a microstructure refinement and increases the volume fraction of the second phase.When the Y content increases,different Mg-Zn-Y ternary phases appear:I-phase(Mg_(3)Zn_(6)Y),W-phase(Mg_(3)Zn_(3)Y_(2)),and LPSO phase(Mg_(12)ZnY).When the Y content ranges between 0.4%and 6%,the compressive strength increases from 6.30MPa to 9.23 MPa,and the energy absorption capacity increases from 7.33 MJ/m^(3)to 10.97 MJ/m^(3)at RT,which is mainly attributed to the phase composition and volume fraction of the second phase.However,the average energy absorption efficiency is independent of the Y content.In addition,the compressive deformation behaviors of the porous Mg-Zn-Y are altered by the testing temperature.The compressive strength and energy absorption capacity of the porous Mg-Zn-Y decrease due to the softening effect of the high temperature on the struts.The deformation behaviors at different temperatures are finally observed to reflect the failure mechanisms of the struts. 展开更多
关键词 Porous magnesium Rare earth elements Microstructure Compressive behavior energy absorption characteristic
下载PDF
Research on Leading Edge Erosion and Aerodynamic Characteristics of Wind Turbine Blade Airfoil
8
作者 Xin Guan Yuqi Xie +2 位作者 Shuaijie Wang Mingyang Li Shiwei Wu 《Fluid Dynamics & Materials Processing》 EI 2024年第9期2045-2058,共14页
The effects of the erosion present on the leading edge of a wind turbine airfoil(DU 96-W-180)on its aerodynamic performances have been investigated numerically in the framework of a SST k–ωturbulence model based on ... The effects of the erosion present on the leading edge of a wind turbine airfoil(DU 96-W-180)on its aerodynamic performances have been investigated numerically in the framework of a SST k–ωturbulence model based on the Reynolds Averaged Navier-Stokes equations(RANS).The results indicate that when sand-induced holes and small pits are involved as leading edge wear features,they have a minimal influence on the lift and drag coefficients of the airfoil.However,if delamination occurs in the same airfoil region,it significantly impacts the lift and resistance characteristics of the airfoil.Specifically,as the angle of attack grows,there is a significant decrease in the lift coefficient accompanied by a sharp increase in the drag coefficient.As wear intensifies,these effects gradually increase.Moreover,the leading edge wear can exacerbate flow separation near the trailing edge suction surface of the airfoil and cause forward displacement of the separation point. 展开更多
关键词 Wind energy wind turbine EROSION AIRFOIL leading edge erosion characteristics aerodynamic performance numerical simulation
下载PDF
Empowering the Future: Exploring the Construction and Characteristics of Lithium-Ion Batteries
9
作者 Dan Tshiswaka Dan 《Advances in Chemical Engineering and Science》 CAS 2024年第2期84-111,共28页
Lithium element has attracted remarkable attraction for energy storage devices, over the past 30 years. Lithium is a light element and exhibits the low atomic number 3, just after hydrogen and helium in the periodic t... Lithium element has attracted remarkable attraction for energy storage devices, over the past 30 years. Lithium is a light element and exhibits the low atomic number 3, just after hydrogen and helium in the periodic table. The lithium atom has a strong tendency to release one electron and constitute a positive charge, as Li<sup> </sup>. Initially, lithium metal was employed as a negative electrode, which released electrons. However, it was observed that its structure changed after the repetition of charge-discharge cycles. To remedy this, the cathode mainly consisted of layer metal oxide and olive, e.g., cobalt oxide, LiFePO<sub>4</sub>, etc., along with some contents of lithium, while the anode was assembled by graphite and silicon, etc. Moreover, the electrolyte was prepared using the lithium salt in a suitable solvent to attain a greater concentration of lithium ions. Owing to the lithium ions’ role, the battery’s name was mentioned as a lithium-ion battery. Herein, the presented work describes the working and operational mechanism of the lithium-ion battery. Further, the lithium-ion batteries’ general view and future prospects have also been elaborated. 展开更多
关键词 Lithium-Ion Batteries Battery Construction Battery characteristics energy Storage Electrochemical Cells Anode Materials Cathode Materials State of Charge (SOC) Depth of Discharge (DOD) Solid Electrolyte Interface (SEI)
下载PDF
Improvement in discharge characteristics and energy yield of ozone generation via configuration optimization of a coaxial dielectric barrier discharge reactor
10
作者 Chuang Liang Zhihao Liu +2 位作者 Baochang Sun Haikui Zou Guangwen Chu 《Chinese Journal of Chemical Engineering》 SCIE EI CAS CSCD 2023年第8期61-68,共8页
Dielectric barrier discharge (DBD) has been widely employed in ozone generation.However,the technology still exhibits relatively low energy yield (E_(Y)) referring to its theoretical value.In this work,E_(Y)of ozone g... Dielectric barrier discharge (DBD) has been widely employed in ozone generation.However,the technology still exhibits relatively low energy yield (E_(Y)) referring to its theoretical value.In this work,E_(Y)of ozone generation was improved by optimizing the mesh number,electrode length,and dielectric material in a coaxial DBD reactor with two wire mesh electrodes.Meanwhile,the discharge characteristics were investigated to elucidate the effect of reactor configuration on E_(Y).Results showed that the discharge characteristics were improved by increasing the mesh number,electrode length,and relative permittivity.When the mesh number was increased from 40 to 100,an improvement of approximately 48%in E_(Y) was obtained.Additionally,higher E_(Y) values were obtained using corundum as the dielectric material relative to polytetrafluoroethylene and quartz.Ultimately,E_(Y) in the optimal DBD reactor could reach 326.77 g·(k W·h)^(-1).Compared with the reported DBD reactor,the coaxial DBD reactor with the mesh electrode and the dielectric material of corundum could effectively improve E_(Y),which lays a foundation for the design of high-efficiency coaxial DBD reactor. 展开更多
关键词 Coaxial DBD reactor Configuration optimization Ozone generation Discharge characteristics energy yield
下载PDF
Anisotropic characteristics of layered backfill:Mechanical properties and energy dissipation
11
作者 Huisheng Qu Lang Liu +4 位作者 Yonglu Suo Mengbo Zhu Pan Yang Caixing Zhang Geng Xie 《Journal of Rock Mechanics and Geotechnical Engineering》 SCIE CSCD 2023年第12期3188-3208,共21页
Layered backfill is commonly used in mining operations,and its mechanical behavior is strongly influenced by delamination parameters.In this study,13 specimens with different numbers of delamination and delamination a... Layered backfill is commonly used in mining operations,and its mechanical behavior is strongly influenced by delamination parameters.In this study,13 specimens with different numbers of delamination and delamination angle were prepared to investigate the anisotropic mechanical behavior,energy dissipation characteristics and crack development of backfill.P-wave velocity,uniaxial compression,scanning electron microscope(SEM),and acoustic emission(AE)experiments were conducted.The results indicate that:(1)The P-wave velocity has linear and elliptical relationships with the number of delamination surface and delamination angle,respectively;the strength,delamination parameters and P-wave velocity show a high degree of coincidence in terms of their function relationship,which can realize the rapid prediction of strength.(2)The microstructure of the delaminated surface is looser than that of the matrix,leading to a decrease in strength and an increase at the pore-fissure compaction stage.The number and angle of delamination increase linearly with the anisotropy coefficient.(3)The energy evolution in angle-cut backfill can be divided into four stages,with a decrease in the proportion of elastic energy at the initiation stress and peak stress with increasing number of delamination planes and delamination angle.(4)Crack development increases with the number of delamination surface and delamination angle,resulting in a decrease in energy dissipation coefficient and peak AE energy.These findings provide valuable insights for the design of filling materials and processes in mining operations. 展开更多
关键词 Layered backfill Delamination par ameters Anisotropic mechanical behavior P-wave velocity energy dissipation characteristics Acoustic emission(AE)
下载PDF
Varietal Characteristics and Nutrition Characteristics of Several New Varieties of High Biomass Sugarcanes for Sugar and Energy 被引量:1
12
作者 唐仕云 黄家雍 +6 位作者 李翔 王伦旺 方锋学 许树宁 黄海荣 谭芳 黎焕光 《Agricultural Science & Technology》 CAS 2010年第8期45-48,共4页
[Objective] The aim was to study the varietal characteristics of six new varieties of high biomass sugarcanes for sugar and energy namely GT02-833,GT97-69,GT02-351,GT03-2287,B9 and GT02-770,as well as the nutrition ch... [Objective] The aim was to study the varietal characteristics of six new varieties of high biomass sugarcanes for sugar and energy namely GT02-833,GT97-69,GT02-351,GT03-2287,B9 and GT02-770,as well as the nutrition characteristics of them under drip irrigation conditions. [Method] Industrial and agronomic characters,total N,total P,total K and chlorophyll content were determined. [Result] Cane yield,total biomass yield and sugar content of six varieties were more than 180,200 and 25 t/hm2 respectively,which were higher than that of the control Xintaitang 22. The total nitrogen and total phosphorus contents of six varieties were high and persistent from Jul to Nov,but they decreased sharply in Dec. Total potassium content of all varieties increased from Jul to Dec. Chlorophyll content of all varieties were high from Aug to Oct,but they decreased sharply in Nov. Total nitrogen,total phosphorus and total potassium content of GT02-833,GT97-69 and B9 were higher than that of CK. [Conclusion] GT02-833,GT97-69 and B9 had characteristic of efficient use of nutrients,thus should be extended as elite varieties. 展开更多
关键词 Sugar and energy SUGARCANE VARIETY Nutrition characteristics
下载PDF
Electrical characteristics of new three-phase traction power supply system for rail transit 被引量:1
13
作者 Xiaohong Huang Hanlin Wang +4 位作者 Qunzhan Li Naiqi Yang Tao Ren You Peng Haoyang Li 《Railway Engineering Science》 2023年第1期75-88,共14页
A novel three-phase traction power supply system is proposed to eliminate the adverse effects caused by electric phase separation in catenary and accomplish a unifying manner of traction power supply for rail transit.... A novel three-phase traction power supply system is proposed to eliminate the adverse effects caused by electric phase separation in catenary and accomplish a unifying manner of traction power supply for rail transit.With the application of two-stage three-phase continuous power supply structure,the electrical characteristics exhibit new features differing from the existing traction system.In this work,the principle for voltage levels determining two-stage network is dissected in accordance with the requirements of traction network and electric locomotive.The equivalent model of three-phase traction system is built for deducing the formula of current distribution and voltage losses.Based on the chain network model of the traction network,a simulation model is established to analyze the electrical characteristics such as traction current distribution,voltage losses,system equivalent impedance,voltage distribution,voltage unbalance and regenerative energy utilization.In a few words,quite a lot traction current of about 99%is undertaken by long-section cable network.The proportion of system voltage losses is small attributed to the two-stage three-phase power supply structure,and the voltage unbal-ance caused by impedance asymmetry of traction network is less than 1‰.In addition,the utilization rate of regenerative energy for locomotive achieves a significant promotion of over 97%. 展开更多
关键词 Three-phase AC power supply Two-stage power supply structure Electrical characteristics Current distribution Voltage losses Regenerative energy
下载PDF
Effects of 4f Electron Characteristics and Alternation Valence of Rare Earths on Photosynthesis: Regulating Distribution of Energy and Activities of Spinach Chloroplast 被引量:7
14
作者 刘晓晴 苏明玉 +3 位作者 刘超 张易 司文会 洪法水 《Journal of Rare Earths》 SCIE EI CAS CSCD 2007年第4期495-501,共7页
Chloroplasts were isolated from spinach treated with taCl3, CeCl3, and NdCl3. Because of owning 4f electron characteristics and alternation valence, Ce treatment presented the highest enhancement in light absorption, ... Chloroplasts were isolated from spinach treated with taCl3, CeCl3, and NdCl3. Because of owning 4f electron characteristics and alternation valence, Ce treatment presented the highest enhancement in light absorption, energy transfer from LHC Ⅱ to PS Ⅱ, excitation energy distribution from PS Ⅰ to PS Ⅱ, and fluorescence quantum yield around 680 nm. Compared with Ce treatment, Nd treatment resulted in relatively lower enhancement in these physiological indices, as Nd did not have alternation valence. La treatment presented the lowest enhancement, as La did not have either 4f electron or alternation valence. The increase in activities of whole chain electron transport, PS ⅡDCPIP photoreduction, and oxygen evolution of chloroplasts was of the following order: Ce〉Nd 〉La〉 control. However, the photoreduction activities of spinach PS I almost did not change with La, Ce, or Nd treatments. The results suggested that 4f electron characteristics and alternation valence of rare earths had a close relationship with photosynthesis improvement. 展开更多
关键词 4f electron characteristic and alternation valence SPINACH CHLOROPLAST energy transfer and distribution photochemical activity rare earths
下载PDF
Experimental Study on Hydrodynamic Characteristics of Vertical-Axis Floating Tidal Current Energy Power Generation Device 被引量:3
15
作者 MAYong LI Teng-fei +3 位作者 ZHANG Liang SHENG Qi-hu ZHANG Xue-wei JIANG Jin 《China Ocean Engineering》 SCIE EI CSCD 2016年第5期749-762,共14页
To study the characteristics of attenuation, hydrostatic towage and wave response of the vertical-axis floating tidal current energy power generation device (VAFTCEPGD), a prototype is designed and experiment is car... To study the characteristics of attenuation, hydrostatic towage and wave response of the vertical-axis floating tidal current energy power generation device (VAFTCEPGD), a prototype is designed and experiment is carried out in the towing tank. Free decay is conducted to obtain attenuation characteristics of the VAFTCEPGD, and characteristics of mooring forces and motion response, floating condition, especially the lateral displacement of the VAFTCEPGD are obtained from the towing in still water. Tension response of the #1 mooring line and vibration characteristics of the VAFTCEPGD in regular waves as well as in level 4 irregular wave sea state with the current velocity of 0.6 m/s. The results can be reference for theoretical study and engineering applications related to VAFTCEPGD. 展开更多
关键词 tidal current energy power generation device EXPERIMENT hydrodynamic characteristics ATTENUATION wave response lateral displacement
下载PDF
Spatiotemporal characteristics of wind energy resources from 1960 to 2016 over China 被引量:9
16
作者 FENG Yucheng QUE Linjing FENG Jinming 《Atmospheric and Oceanic Science Letters》 CSCD 2020年第2期136-145,共10页
In the paper,daily near-surface wind speed data from 462 stations are used to study the spatiotemporal characteristics of the annual and seasonal mean wind speed(MWS)and effective wind energy density(EWED)from 1960 to... In the paper,daily near-surface wind speed data from 462 stations are used to study the spatiotemporal characteristics of the annual and seasonal mean wind speed(MWS)and effective wind energy density(EWED)from 1960 to 2016,through the methods of kriging interpolation,leastsquares,correlation coefficient testing,and empirical orthogonal function(EOF)analysis.The results show that the annual MWS is larger than 3 m s-1 and the EWED is larger than 75 W m-2 in northern China and parts of coastal areas.However,the MWS and EWED values in southern China are all smaller than in northern China.Over the past 50 years,the annual and seasonal MWS in China has shown a significant decreasing trend,with the largest rate of decline in spring for northern China and winter for coastal areas.The annual MWS in some areas of Guangdong has an increasing trend,but it shows little change in southwestern China,South China,and west of Central China.Where the MWS is high,the rate of decline is also high.The main spatial distributions of the annual MWS and the annual EWED show high consistency,with a decreasing trend year by year.The decreasing trend of wind speed and wind energy resources in China is mainly related to global warming and land use/cover change. 展开更多
关键词 Wind speed wind energy resources effective wind energy density empirical orthogonal function spatiotemporal characteristics
下载PDF
Experimental study of power consumption, local characteristics distributions and homogenization energy in gas–liquid stirred tank reactors 被引量:2
17
作者 Facheng Qiu Zuohua Liu +3 位作者 Renlong Liu Xuejun Quan Changyuan Tao Yundong Wang 《Chinese Journal of Chemical Engineering》 SCIE EI CAS CSCD 2019年第2期278-285,共8页
In this paper, the power consumption, the vertical local void fraction and the local gas–liquid interfacial area are investigated in the aerated stirred tank reactors(STRs) equipped with a rigid-flexible impeller. Me... In this paper, the power consumption, the vertical local void fraction and the local gas–liquid interfacial area are investigated in the aerated stirred tank reactors(STRs) equipped with a rigid-flexible impeller. Meanwhile, the regressive correlation based on power consumption and interfacial area is proposed. Then a novel homogenization energy(HE = RSDPtm) expression based on power consumption and local interfacial area is redefined and used to indicate the mixing efficiency. The optimal operating mode is selected based on the change of the HE value. This paper can provide research ideas for structural optimization of stirred reactors. 展开更多
关键词 Stirred TANK GAS-LIQUID TWO-PHASE Power consumption Local characteristics HOMOGENIZATION energy
下载PDF
Study on energy release characteristics of reactive material casings under explosive loading 被引量:6
18
作者 Ning Du Wei Xiong +3 位作者 Tao Wang Xian-feng Zhang Hai-hua Chen Meng-ting Tan 《Defence Technology(防务技术)》 SCIE EI CAS CSCD 2021年第5期1791-1803,共13页
Reactive Materials(RMs),a new material with structural and energy release characteristics under shockinduced chemical reactions,are promising in extensive applications in national defense and military fields.They can ... Reactive Materials(RMs),a new material with structural and energy release characteristics under shockinduced chemical reactions,are promising in extensive applications in national defense and military fields.They can increase the lethality of warheads due to their dual functionality.This paper focuses on the energy release characteristics of RM casings prepared by alloy melting and casting process under explosive loading.Explosion experiments of RM and conventional 2A12 aluminum alloy casings were conducted in free field to capture the explosive fireballs,temperature distribution,peak overpressure of the air shock wave and the fracture morphology of fragments of reactive material(RM)warhead casings by using high-speed camera,infrared thermal imager temperature and peak overpressure testing and scanning electron microscope.Results showed that an increase of both the fireball temperature and air shock wave were observed in all RM casings compared to conventional 2A12 aluminum ally casings.The RM casings can improve the peak overpressure of the air shock wave under explosion loading,though the results are different with different charge ratios.According to the energy release characteristics of the RM,increasing the thickness of RM casings will increase the peak overpressure of the near-field air shock wave,while reducing the thickness will increase the peak overpressure of the far-field air shock wave. 展开更多
关键词 Reactive materials Explosive loading Shock-induced chemical reaction energy release characteristics FRAGMENTATION
下载PDF
Analysis of Energy Characteristics in the Process of Freak Wave Generation 被引量:2
19
作者 胡金鹏 张运秋 《China Ocean Engineering》 SCIE EI CSCD 2014年第2期193-205,共13页
The energy characteristics in the evolution of the wave train are investigated to understand the inherent cause of the freak wave generation. The Morlet wavelet spectrum method is employed to analyze the numerical, la... The energy characteristics in the evolution of the wave train are investigated to understand the inherent cause of the freak wave generation. The Morlet wavelet spectrum method is employed to analyze the numerical, laboratory and field evolution data of this generation process. Their energy distributions and variations are discussed with consideration of corresponding surface elevations. Through comparing the energy characteristics of three cases, it is shown that the freak wave generation depends not only on the continuous transfer of wave train energy to a certain region where finally the maximum energy occurs, but also on the distinct shift of the converged energy to high-frequency components in a very short time. And the typical energy characteristics of freak waves are also given. 展开更多
关键词 freak wave generation process wavelet spectrum energy characteristics
下载PDF
Near-surface structure and energy characteristics of the Antarctic Circumpolar Current 被引量:3
20
作者 GAO Libao YU Weidong +1 位作者 WANG Haiyuan LIU Yanliang 《Advances in Polar Science》 2013年第4期265-272,共8页
Historical surface drifter observations collected from the Southern Ocean are used to study the near-surface structure, variability, and energy characteristics of the Antarctic Circumpolar Current (ACC). A strong, n... Historical surface drifter observations collected from the Southern Ocean are used to study the near-surface structure, variability, and energy characteristics of the Antarctic Circumpolar Current (ACC). A strong, nearly zonal ACC combined with complex fronts dominates the circulation system in the Southern Ocean. Standard variance ellipses indicate that both the Agulhas Return Current and the East Australian Warm Current are stable supplements of the near-surface ACC, and that the anticyclonic gyre formed by the Brazil warm current and the Malvinas cold current is stable throughout the year. During austral winter, the current velocity increases because of the enhanced westerly wind. Aroused by the meridional motion of the ACC, the meridional velocity shows greater instability characteristics than the zonal velocity does over the core current. Additionally, the ACC exhibits an eastward declining trend in the core current velocity from southern Africa. The characteristics of the ACC are also argued from the perspective of energy. The energy distribution suggests that the mean kinetic energy (MKE), eddy kinetic energy (EKE), and are strong over the core currents of the ACC. However, in contrast, EKE/MKE suggests there is much less (more) eddy dissipation in regions with strong (weak) energy distribution. Both meridional and zonal energy variations are studied to illustrate additional details of the ACC energy characteristics. Generally, all the energy forms except EKE/MKE present west-east reducing trends, which coincide with the velocity statistics. Eddy dissipation has a much greater effect on MKE in the northern part of the Southern Ocean. 展开更多
关键词 mean structure energy characteristic ACC
下载PDF
上一页 1 2 250 下一页 到第
使用帮助 返回顶部