Although train modeling research is vast, most available simulation tools are confined to city-or trip-scale analysis, primarily offering micro-level simulations of network segments. This paper addresses this void by ...Although train modeling research is vast, most available simulation tools are confined to city-or trip-scale analysis, primarily offering micro-level simulations of network segments. This paper addresses this void by developing the Ne Train Sim simulator for heavy long-haul freight trains on a network of multiple intersecting tracks. The main objective of this simulator is to enable a comprehensive analysis of energy consumption and the associated carbon footprint for the entire train system. Four case studies were conducted to demonstrate the simulator's performance. The first case study validates the model by comparing Ne Train Sim output to empirical trajectory data. The results demonstrate that the simulated trajectory is precise enough to estimate the train energy consumption and carbon dioxide emissions. The second application demonstrates the train-following model considering six trains following each other. The results showcase the model ability to maintain safefollowing distances between successive trains. The next study highlights the simulator's ability to resolve train conflicts for different scenarios. Finally, the suitability of the Ne Train Sim for modeling realistic railroad networks is verified through the modeling of the entire US network and comparing alternative powertrains on the fleet energy consumption.展开更多
Based on deterministic NaSch model, we propose a new cellular automation model for simulating train movement. In the proposed model, the reaction time of driver/train equipment is considered. Our study is focused on t...Based on deterministic NaSch model, we propose a new cellular automation model for simulating train movement. In the proposed model, the reaction time of driver/train equipment is considered. Our study is focused on the additional energy consumption arising by train delay around a traffic bottle (station). The simulation results demonstrate that the proposed model is suitable for simulating the train movement under high speed condition. Further, we discuss the relationship between the additional energy consumption and some factors which affect the formation of train delay, such as the maximum speed of trains and the station dwell time etc.展开更多
The research background is based on great consumption of urban rail transit energy, through summarizing the research of scholars at home and abroad, the comprehensive research including train operation pattern, the tr...The research background is based on great consumption of urban rail transit energy, through summarizing the research of scholars at home and abroad, the comprehensive research including train operation pattern, the train traction characteristics and optimization design of integrated research has carried out in this paper, by using OPENTRACK software simulation to verify the optimization results according to different line features finally. The aim of this paper is to explore ways and methods of traction strategy optimization under the condition of trains timing energy saving. The main research contents of this paper are based on the research status at home and abroad, first of all, the different operating modes of the train running on the line are analysed, including the time saving mode, the energy saving mode and timing energy saving mode, and quantitative analysed the influence of different operation modes on vehicle energy consumption. The influence factors and traction calculation method of energy consumption of train running are studied. Firstly, the factors that affect the energy consumption of the train are analysed, including the basic facilities and transport organization mode. On the basis of this, the train load and running status of the train are analysed, and the model of the train movement and energy consumption are calculated. The OPENTRACK software is used to establish the actual circuit model, and the simulation is verified. The results show that the reasonable operation mode of the train operation mode can greatly reduce the energy consumption.展开更多
Railway train energy simulation is an important and popular research topic.Locomotive traction force simulations are a fundamental part of such research.Conventional energy calculation models are not able to consider ...Railway train energy simulation is an important and popular research topic.Locomotive traction force simulations are a fundamental part of such research.Conventional energy calculation models are not able to consider locomotive wheel-rail adhesions,traction adhesion control,and locomotive dynamics.This paper has developed two models to fill this research gap.The first model uses a 2D locomotive model with 27 degrees of freedom and a simplified wheel-rail contact model.The second model uses a 3D locomotive model with 54 degrees of freedom and a fully detailed wheel-rail contact model.Both models were integrated into a longitudinal train dynamics model with the consideration of locomotive adhesion control.Energy consumption simulations using a conventional model(1D model)and the two new models(2D and 3D models)were conducted and compared.The results show that,due to the consideration of wheel-rail adhesion model and traction control in the 3D model,it reports less energy consumption than the 1D model.The maximum difference in energy consumption rate between the 3D model and the 1D model was 12.5%.Due to the consideration of multiple wheel-rail contact points in the 3D model,it reports higher energy consumption than the 2D model.An 8.6%maximum difference in energy consumption rate between the 3D model and the 1D model was reported during curve negotiation.展开更多
According to the Action plan of the Ministry of Environmental Protection, Physical Planning and Construction, the engagement of the implementation of the Directive 2002/91/EC to the Croatian legislation has to be comp...According to the Action plan of the Ministry of Environmental Protection, Physical Planning and Construction, the engagement of the implementation of the Directive 2002/91/EC to the Croatian legislation has to be completed in 2009. The final goal of the Directive is the achievement of energy efficiency in buildings, with emphasis on design of building and building elements, heating and cooling systems and use of renewable energy sources. The presentation of energy performances of the building should be visible in energy label that will classify the building in comparison to energy consumption and must be submitted while buying, selling or renting the building. For the realization of energy certification of the building it is required to provide training for wide number of experts. The production of professional basis is ongoing, where besides the building classification and modification or production of correspondingly technical regulations, are determining the conditions and standards for persons who should provide the certification, as well the method of providing.展开更多
The electricity consumption of the urban metro system can be mainly divided into the following two categories:the electricity consumption for train traction(E_(t))and the electricity consumption for station operation(...The electricity consumption of the urban metro system can be mainly divided into the following two categories:the electricity consumption for train traction(E_(t))and the electricity consumption for station operation(E_(s)).Although understanding the hourly fluctuation characteristics of E_(t) and E_(s) contributes to renewable energy inte-gration and achieving carbon emission reduction of the metro system,the hourly fluctuation characteristics have been poorly reported in the literature.Thus,a typical underground non-transfer metro station of a city’s metro system in the North China Plain is selected in this study,and E_(t) and E_(s) were monitored to portray their hourly fluctuation characteristics.Results reveal that the hourly E_(t) shows a significant intraday“U”shape on weekdays,indicating two symmetric peaks in morning and evening rush hours.While the hourly E_(s) shows an intraday“flat”shape,indicating it is nearly free from the effect of rush hour.Moreover,it is statistically proved that the train frequency is the core influencing factor resulting in the intraday fluctuation of hourly E_(t).In the case study,when the train frequency increases from the mean(20 trains per hour)to maximum(32 trains per hour),the hourly E_(t) will increase by 53.4%.展开更多
The variable gas exchange valve actuation systems have been developed in order to improve the efficiency of the combustion process. The electro-hydraulic valve actuation (EHVA) systems have good power to weight rati...The variable gas exchange valve actuation systems have been developed in order to improve the efficiency of the combustion process. The electro-hydraulic valve actuation (EHVA) systems have good power to weight ratio, high maximum force and good controllability. The disadvantages are limited frequency bandwidth and energy recovery. Each component of the EHVA system has certain energy consumption, which is characteristic to the component. In this study the power consumptions of the components are investigated by means of the simulation. The investigated components are a hydraulic pump, a hydraulic accumulator, a control valve, and hydraulic lines connecting the components. The pressure losses caused by the oil flow are most significant in the control valves, 50-60% of the total energy consumption. If the stored kinetic energy of the actuator and moving oil masses could be reused, the energy consumption could be up to 25% better.展开更多
This paper discusses the design of the propulsion system of the UAQ4 (University of L'Aquila, model 4) magnetic levitating train which is used for transportation applications in urban environments. UAQ4 is the only...This paper discusses the design of the propulsion system of the UAQ4 (University of L'Aquila, model 4) magnetic levitating train which is used for transportation applications in urban environments. UAQ4 is the only magnetic levitating vehicle with resistance motion, except for aerodynamic drag and with energy consumption near zero at low speed. The feasibility of the system has been successfully verified and tested in the laboratory. Propulsion and braking are provided by a novel direct-current linear stepper motor, with the primary formed by permanent magnets distributed on central beam of the track, and the secondary by coils on board the vehicle, instead of the present alternate current linear motors that have well-known disadvantages. The motor working principles are described, and its performances are analyzed, by a finite element numerical model which allows modifying the most important parameters of the system. The main components of a full scale motor for urban transportation are measured and discussed.展开更多
基金funded in part by the Advanced Research Projects AgencyEnergy (ARPA-E), U.S. Department of Energy, under award number DE-AR0001471。
文摘Although train modeling research is vast, most available simulation tools are confined to city-or trip-scale analysis, primarily offering micro-level simulations of network segments. This paper addresses this void by developing the Ne Train Sim simulator for heavy long-haul freight trains on a network of multiple intersecting tracks. The main objective of this simulator is to enable a comprehensive analysis of energy consumption and the associated carbon footprint for the entire train system. Four case studies were conducted to demonstrate the simulator's performance. The first case study validates the model by comparing Ne Train Sim output to empirical trajectory data. The results demonstrate that the simulated trajectory is precise enough to estimate the train energy consumption and carbon dioxide emissions. The second application demonstrates the train-following model considering six trains following each other. The results showcase the model ability to maintain safefollowing distances between successive trains. The next study highlights the simulator's ability to resolve train conflicts for different scenarios. Finally, the suitability of the Ne Train Sim for modeling realistic railroad networks is verified through the modeling of the entire US network and comparing alternative powertrains on the fleet energy consumption.
基金Project supported by the National Natural Science Foundation of China (Grant Nos. 60634010 and 60776829)the Changjiang Scholars and Innovative Research Team in University (Grant No. IRT0605)the State Key Laboratory of Rail Traffic Control and Safety of Beijing Jiaotong University (Grant No. RCS2008ZZ001)
文摘Based on deterministic NaSch model, we propose a new cellular automation model for simulating train movement. In the proposed model, the reaction time of driver/train equipment is considered. Our study is focused on the additional energy consumption arising by train delay around a traffic bottle (station). The simulation results demonstrate that the proposed model is suitable for simulating the train movement under high speed condition. Further, we discuss the relationship between the additional energy consumption and some factors which affect the formation of train delay, such as the maximum speed of trains and the station dwell time etc.
文摘The research background is based on great consumption of urban rail transit energy, through summarizing the research of scholars at home and abroad, the comprehensive research including train operation pattern, the train traction characteristics and optimization design of integrated research has carried out in this paper, by using OPENTRACK software simulation to verify the optimization results according to different line features finally. The aim of this paper is to explore ways and methods of traction strategy optimization under the condition of trains timing energy saving. The main research contents of this paper are based on the research status at home and abroad, first of all, the different operating modes of the train running on the line are analysed, including the time saving mode, the energy saving mode and timing energy saving mode, and quantitative analysed the influence of different operation modes on vehicle energy consumption. The influence factors and traction calculation method of energy consumption of train running are studied. Firstly, the factors that affect the energy consumption of the train are analysed, including the basic facilities and transport organization mode. On the basis of this, the train load and running status of the train are analysed, and the model of the train movement and energy consumption are calculated. The OPENTRACK software is used to establish the actual circuit model, and the simulation is verified. The results show that the reasonable operation mode of the train operation mode can greatly reduce the energy consumption.
基金The editing contribution of Mr.Tim McSweeney(Adjunct Research Fellow,Centre for Railway Engineering)is gratefully acknowledged.
文摘Railway train energy simulation is an important and popular research topic.Locomotive traction force simulations are a fundamental part of such research.Conventional energy calculation models are not able to consider locomotive wheel-rail adhesions,traction adhesion control,and locomotive dynamics.This paper has developed two models to fill this research gap.The first model uses a 2D locomotive model with 27 degrees of freedom and a simplified wheel-rail contact model.The second model uses a 3D locomotive model with 54 degrees of freedom and a fully detailed wheel-rail contact model.Both models were integrated into a longitudinal train dynamics model with the consideration of locomotive adhesion control.Energy consumption simulations using a conventional model(1D model)and the two new models(2D and 3D models)were conducted and compared.The results show that,due to the consideration of wheel-rail adhesion model and traction control in the 3D model,it reports less energy consumption than the 1D model.The maximum difference in energy consumption rate between the 3D model and the 1D model was 12.5%.Due to the consideration of multiple wheel-rail contact points in the 3D model,it reports higher energy consumption than the 2D model.An 8.6%maximum difference in energy consumption rate between the 3D model and the 1D model was reported during curve negotiation.
文摘According to the Action plan of the Ministry of Environmental Protection, Physical Planning and Construction, the engagement of the implementation of the Directive 2002/91/EC to the Croatian legislation has to be completed in 2009. The final goal of the Directive is the achievement of energy efficiency in buildings, with emphasis on design of building and building elements, heating and cooling systems and use of renewable energy sources. The presentation of energy performances of the building should be visible in energy label that will classify the building in comparison to energy consumption and must be submitted while buying, selling or renting the building. For the realization of energy certification of the building it is required to provide training for wide number of experts. The production of professional basis is ongoing, where besides the building classification and modification or production of correspondingly technical regulations, are determining the conditions and standards for persons who should provide the certification, as well the method of providing.
基金This research was supported by the Science&Technology Project of the State Grid Corporation of China(5400-202219175A-1-1-ZN)Sichuan Science and Technology Planning Project(2019YFSY0009).
文摘The electricity consumption of the urban metro system can be mainly divided into the following two categories:the electricity consumption for train traction(E_(t))and the electricity consumption for station operation(E_(s)).Although understanding the hourly fluctuation characteristics of E_(t) and E_(s) contributes to renewable energy inte-gration and achieving carbon emission reduction of the metro system,the hourly fluctuation characteristics have been poorly reported in the literature.Thus,a typical underground non-transfer metro station of a city’s metro system in the North China Plain is selected in this study,and E_(t) and E_(s) were monitored to portray their hourly fluctuation characteristics.Results reveal that the hourly E_(t) shows a significant intraday“U”shape on weekdays,indicating two symmetric peaks in morning and evening rush hours.While the hourly E_(s) shows an intraday“flat”shape,indicating it is nearly free from the effect of rush hour.Moreover,it is statistically proved that the train frequency is the core influencing factor resulting in the intraday fluctuation of hourly E_(t).In the case study,when the train frequency increases from the mean(20 trains per hour)to maximum(32 trains per hour),the hourly E_(t) will increase by 53.4%.
文摘The variable gas exchange valve actuation systems have been developed in order to improve the efficiency of the combustion process. The electro-hydraulic valve actuation (EHVA) systems have good power to weight ratio, high maximum force and good controllability. The disadvantages are limited frequency bandwidth and energy recovery. Each component of the EHVA system has certain energy consumption, which is characteristic to the component. In this study the power consumptions of the components are investigated by means of the simulation. The investigated components are a hydraulic pump, a hydraulic accumulator, a control valve, and hydraulic lines connecting the components. The pressure losses caused by the oil flow are most significant in the control valves, 50-60% of the total energy consumption. If the stored kinetic energy of the actuator and moving oil masses could be reused, the energy consumption could be up to 25% better.
文摘This paper discusses the design of the propulsion system of the UAQ4 (University of L'Aquila, model 4) magnetic levitating train which is used for transportation applications in urban environments. UAQ4 is the only magnetic levitating vehicle with resistance motion, except for aerodynamic drag and with energy consumption near zero at low speed. The feasibility of the system has been successfully verified and tested in the laboratory. Propulsion and braking are provided by a novel direct-current linear stepper motor, with the primary formed by permanent magnets distributed on central beam of the track, and the secondary by coils on board the vehicle, instead of the present alternate current linear motors that have well-known disadvantages. The motor working principles are described, and its performances are analyzed, by a finite element numerical model which allows modifying the most important parameters of the system. The main components of a full scale motor for urban transportation are measured and discussed.