期刊文献+
共找到5,892篇文章
< 1 2 250 >
每页显示 20 50 100
Analysis on Carbon Emissions from Energy Consumption in Agriculture and Reduction Measures in Guangdong Province 被引量:1
1
作者 XIE Shu-juan1,2,3 1.Guangzhou Institute of Geochemistry,Chinese Academy of Sciences,Guangzhou 510640,China 2.Graduate University of Chinese Academy of Sciences,Beijing 100049,China 3.Guangdong Academy of Social Sciences,Guangzhou 510610,China 《Meteorological and Environmental Research》 CAS 2011年第7期66-69,73,共5页
[Objective] The aim was to study CO2 emissions from energy consumption in agricultural production in Guangdong Province and put forward feasible reduction measures.[Method] Based on the data from China Energy Statisti... [Objective] The aim was to study CO2 emissions from energy consumption in agricultural production in Guangdong Province and put forward feasible reduction measures.[Method] Based on the data from China Energy Statistical Yearbook and Guangdong Statistical Yearbook,CO2 emissions from agricultural energy use in Guangdong Province from 2000 to 2009 was estimated by using the formula of carbon emissions recommended by Intergovernmental Panel on Climate Change (IPCC),and corresponding reduction measures were put forward.[Result] With the rapid increase of agricultural output and energy consumption,CO2 emissions from energy consumption in agricultural production in Guangdong Province showed increasing trend from 2000 to 2009,that is to say,increasing from 423.63×104 t C million tons in 2000 to 605.99×104 t C in 2009,with annual growth rate of 4.1%.Meanwhile,carbon emissions intensity during energy consumption in agriculture went down in recent ten years,in other words,decreasing from 0.424 t C/×104 yuan in 2000 to 0.301 t C/×104 yuan in 2009,and its annual decreasing rate was 3.7%.The variation of CO2 emissions from energy consumption in agriculture mainly resulted from the increase of agricultural output,improvement of energy utilization efficiency,high carbonization in agricultural energy consumption structure and so forth.Therefore,in order to reduce CO2 emissions from energy consumption in agriculture,it is necessary to vigorously develop rural renewable energy,develop and popularize advanced technology for energy utilization,advance the energy conservation of agricultural machines,establish and improve the macroeconomic control mechanism for carbon emissions from the energy consumption in agricultural production in the further.[Conclusion] The study could provide references for the establishment of policy about reducing carbon emissions from agricultural energy consumption in Guangdong Province. 展开更多
关键词 energy consumption in agriculture energy consumption structure CO2 emissions carbon emissions intensity China
下载PDF
Analysis on the Change Characteristics of the Correlation between Land Use Structure and Energy Consumption and Carbon Emissions in Kunming from 1997 to 2017
2
作者 Li Zhang Ping Wang 《Journal of Geoscience and Environment Protection》 2021年第6期155-166,共12页
This study takes Kunming City, Yunnan Province, China as the research area, to provide reference basis for revealing the change law of land use structure and energy consumption and carbon emissions in Kunming, optimiz... This study takes Kunming City, Yunnan Province, China as the research area, to provide reference basis for revealing the change law of land use structure and energy consumption and carbon emissions in Kunming, optimizing land use structure and realizing the development of low-carbon city. Based on the data of land use structure and energy consumption in Kunming from 1997 to 2017, based on the estimation of total energy consumption carbon emissions, carbon intensity and per capita carbon emissions, the correlation between land use structure and energy consumption carbon emissions in Kunming has been calculated and analyzed in the past 20 years. Results: 1) The total amount of carbon emissions in Kunming has increased significantly in the past 20 years. It increased from 34.46 × 10</span><sup><span style="font-family:Verdana;">5</span></sup><span style="font-family:Verdana;"> t to 95.09 × 10</span><sup><span style="font-family:Verdana;">5</span></sup><span style="font-family:Verdana;"> t, an increase of about 2.8 times. 2) The types of land use with the highest correlation between land use structure and total carbon emissions of energy consumption, carbon emission intensity and per capita carbon emissions are urban and village and industrial and mining land (0.8258), cultivated land (0.8733) and garden land (0.7971) respectively. 3) The correlation between construction land and total carbon emissions is greater than that of agricultural land. Conclusion: There is a close correlation between land use structure and carbon emissions from energy consumption in Kunming. 展开更多
关键词 Kunming City Land Use Structure energy consumption carbon emissions Correlation Degree
下载PDF
Analysis and forecast of residential building energy consumption in Chongqing on carbon emissions 被引量:2
3
作者 李沁 刘猛 钱发 《Journal of Central South University》 SCIE EI CAS 2009年第S1期214-218,共5页
Carbon emissions mainly result from energy consumption. Carbon emissions inevitably will increase to some extent with economic expansion and rising energy consumption. We introduce a gray theory of quantitative analys... Carbon emissions mainly result from energy consumption. Carbon emissions inevitably will increase to some extent with economic expansion and rising energy consumption. We introduce a gray theory of quantitative analysis of the energy consumption of residential buildings in Chongqing,China,on the impact of carbon emission factors. Three impacts are analyzed,namely per capita residential housing area,domestic water consumption and the rate of air conditioner ownership per 100 urban households. The gray prediction model established using the Chongqing carbon emission-residential building energy consumption forecast model is sufficiently accurate to achieve a measure of feasibility and applicability. 展开更多
关键词 carbon emissions factor analysis GRAY prediction model RESIDENTIAL building energy consumption
下载PDF
A comparison of the energy consumption and carbon emissions for different modes of transportation in open-cut coal mines 被引量:13
4
作者 Liu Fuming Cai Qingxiang +1 位作者 Chen Shuzhao Zhou Wei 《International Journal of Mining Science and Technology》 SCIE EI CSCD 2015年第2期261-266,共6页
Transportation accounts for 80% of open-cut coal mine carbon emissions. With regard to the energy con- sumption and carbon emissions of transportation within an open-cut mine, this paper systematically compared the wo... Transportation accounts for 80% of open-cut coal mine carbon emissions. With regard to the energy con- sumption and carbon emissions of transportation within an open-cut mine, this paper systematically compared the work and energy consumption of a truck and belt conveyor on a theoretical basis, and con- structed a model to calculate the energy consumption of open-cut mine transportation. Life cycle carbon emission factors and power consumption calculation model were established through a Process Analysis- Life Cycle Analysis (PA-LCA). The following results were obtained: (1) the energy consumption of truck transportation was four to twelve times higher than that of the belt conveyor; (2) the C02 emissions from truck transportation were three to ten times higher than those of the belt conveyor; (3) with the increase in the slope angle for transportation, the ratio of truck to belt conveyor for both energy consumption and carbon emissions gradually decreased; (4) based on 2013 prices in China, the energy cost of transportation using a belt conveyor in open-cut coal mines could save 0.6-2.4 Yuan/(t kin) compared to truck transportation. 展开更多
关键词 Open-cut coal mine Mode of transportation energy efficiency carbon emission calculation
下载PDF
Spatial differentiation of carbon emissions from energy consumption based on machine learning algorithm:A case study during 2015–2020 in Shaanxi,China
5
作者 Hongye Cao Ling Han +1 位作者 Ming Liu Liangzhi Li 《Journal of Environmental Sciences》 2025年第3期358-373,共16页
Carbon emissions resulting from energy consumption have become a pressing issue for governments worldwide.Accurate estimation of carbon emissions using satellite remote sensing data has become a crucial research probl... Carbon emissions resulting from energy consumption have become a pressing issue for governments worldwide.Accurate estimation of carbon emissions using satellite remote sensing data has become a crucial research problem.Previous studies relied on statistical regression models that failed to capture the complex nonlinear relationships between carbon emissions and characteristic variables.In this study,we propose a machine learning algorithm for carbon emissions,a Bayesian optimized XGboost regression model,using multi-year energy carbon emission data and nighttime lights(NTL)remote sensing data from Shaanxi Province,China.Our results demonstrate that the XGboost algorithm outperforms linear regression and four other machine learning models,with an R^(2)of 0.906 and RMSE of 5.687.We observe an annual increase in carbon emissions,with high-emission counties primarily concentrated in northern and central Shaanxi Province,displaying a shift from discrete,sporadic points to contiguous,extended spatial distribution.Spatial autocorrelation clustering reveals predominantly high-high and low-low clustering patterns,with economically developed counties showing high-emission clustering and economically relatively backward counties displaying low-emission clustering.Our findings show that the use of NTL data and the XGboost algorithm can estimate and predict carbon emissionsmore accurately and provide a complementary reference for satellite remote sensing image data to serve carbon emission monitoring and assessment.This research provides an important theoretical basis for formulating practical carbon emission reduction policies and contributes to the development of techniques for accurate carbon emission estimation using remote sensing data. 展开更多
关键词 Machine learning energy carbon emissions Nighttime light Spatial distribution
原文传递
Exploring the impact of economic growth and energy consumption on SO_(2) emissions in China based on the Environmental Kuznets Curve hypothesis
6
作者 Bing-Jie Xu Yi-Fei Shen +1 位作者 Hui Qiao Zhi Gao 《Petroleum Science》 SCIE EI CAS CSCD 2024年第4期2892-2900,共9页
This study aims to analysis the influence of economic growth(EG)and energy consumption(EC)on sulfur dioxide emissions(SE)in China.Accordingly,this study explores the link between EG,EC,and SE for 30 provinces in China... This study aims to analysis the influence of economic growth(EG)and energy consumption(EC)on sulfur dioxide emissions(SE)in China.Accordingly,this study explores the link between EG,EC,and SE for 30 provinces in China over the span of 2000-2019.This study also analyzes cross-sectional dependence tests,panel unit root tests,Westerlund panel cointegration tests,Dumitrescu-Hurlin(D-H)causality tests.According to the test results,there is an inverted U-shaped association between EG and SE,and the assumption of the Environmental Kuznets Curve(EKC)is verified.The signs of EG and EC in the fixed effect(FE)and random effect(RE)methods are in line with those in the dynamic ordinary least squares(DOLS),fully modified ordinary least squares(FMOLS)and autoregressive distributed lag(ARDL)estimators.Moreover,the results verified that EC can obviously positive impact the SE.To reduce SE in China,government and policymakers can improve air quality by developing cleaner energy sources and improving energy efficiency.This requires the comprehensive use of policies,regulations,economic incentives,and public participation to promote sustainable development. 展开更多
关键词 SO_(2)emissions Economic growth energy consumption EKC China
下载PDF
The relationship between energy consumption, economic growth and carbon dioxide emissions in Pakistan 被引量:5
7
作者 Muhammad Kamran Khan Muhammad Imran Khan Muhammad Rehan 《Financial Innovation》 2020年第1期56-68,共13页
Developing countries are facing the problem of environmental degradation.Environmental degradation is caused by the use of non-renewable energy consumptions for economic growth but the consequences of environmental de... Developing countries are facing the problem of environmental degradation.Environmental degradation is caused by the use of non-renewable energy consumptions for economic growth but the consequences of environmental degradation cannot be ignored.This primary purpose of this study is to investigate the nexus between energy consumption,economic growth and CO_(2) emission in Pakistan by using annual time series data from 1965 to 2015.The estimated results of ARDL indicate that energy consumption and economic growth increase the CO_(2) emissions in Pakistan both in short run and long run.Based on the estimated results it is recommended that policy maker in Pakistan should adopt and promote such renewable energy sources that will help to meet the increased demand for energy by replacing old traditional energy sources such as coal,gas,and oil.Renewable energy sources are reusable that can reduce the CO_(2) emissions and also ensure sustainable economic development of Pakistan. 展开更多
关键词 energy consumption Economic growth CO_(2)emissions ARDL
下载PDF
Decoding the Einstein-Type Formula for Reducing Energy Conversion to Carbon Emissions in Renewables Systems
8
作者 Anjun Jerry Jin He Wang +2 位作者 Sui’an Zhang Zhirong Xu Shaoping Chen 《Journal of Power and Energy Engineering》 2024年第11期89-96,共8页
This article explores the role of distributed energy resources such as efficient solar cells that drive carbon neutrality within the solar energy. For example, the perovskite solar cells offer high efficiency and pote... This article explores the role of distributed energy resources such as efficient solar cells that drive carbon neutrality within the solar energy. For example, the perovskite solar cells offer high efficiency and potential for low-cost production. A novel theoretical model is discovered in distributed energy resources for power emissions and cost. The smart carbon neutrality approaches are analyzed in both theory and experiments. The advantages, current challenges, and future prospects of the related solutions are discussed methodically. By addressing stability and scalability issues, these approaches can contribute significantly to reducing carbon emissions and promoting sustainable energy solutions. 展开更多
关键词 Solar energy energy Storage Power emissions and Cost carbon Neutrality Distributed energy Resources Power Utility Matrix
下载PDF
Estimate of China's energy carbon emissions peak and analysis on electric power carbon emissions 被引量:7
9
作者 WANG Zhi-Xuan ZHANG Jing-Jie +2 位作者 PAN Li YANG Fan SHI Li-Na 《Advances in Climate Change Research》 SCIE 2014年第4期181-188,共8页
China's energy carbon emissions are projected to peak in 2030 with approximately 110% of its 2020 level under the following conditions: 1) China's gross primary energy consumption is 5 Gtce in 2020 and 6 Gtce in 2... China's energy carbon emissions are projected to peak in 2030 with approximately 110% of its 2020 level under the following conditions: 1) China's gross primary energy consumption is 5 Gtce in 2020 and 6 Gtce in 2030; 2) coal's share of the energy consumption is 61% in 2020 and 55% in 2030; 3) non-fossil energy's share increases from 15% in 2020 to 20% in 2030; 4) through 2030, China's GDP grows at an average annual rate of 6%; 5) the annual energy consumption elasticity coefficient is 0.30 in average; and 6) the annual growth rate of energy consumption steadily reduces to within 1%. China's electricity generating capacity would be 1,990 GW, with 8,600 TW h of power generation output in 2020. Of that output 66% would be from coal, 5% from gas, and 29% from non-fossil energy. By 2030, electricity generating capacity would reach 3,170 GW with 11,900 TW h of power generation output. Of that output, 56% would be from coal, 6% from gas, and 37% from non-fossil energy. From 2020 to 2030, CO2 emissions from electric power would relatively fall by 0.2 Gt due to lower coal consumption, and rela- tively fall by nearly 0.3 Gt with the installation of more coal-fired cogeneration units. During 2020--2030, the portion of carbon emissions from electric power in China's energy consumption is projected to increase by 3.4 percentage points. Although the carbon emissions from electric power would keep increasing to 118% of the 2020 level in 2030, the electric power industry would continue to play a decisive role in achieving the goal of increase in non-fossil energy use. This study proposes countermeasures and recommendations to control carbon emissions peak, including energy system optimization, green-coal-fired electricity generation, and demand side management. 展开更多
关键词 energy consumption Growth rate carbon emissions peak Electric power development
下载PDF
Optimization of energy consumption structure based on carbon emission reduction target:A case study in Shandong Province,China 被引量:2
10
作者 Jixiang Liu Haichao Ma +7 位作者 Qingsong Wang Shu Tian Yue Xu Yujie Zhang Xueliang Yuan Qiao Ma Yuan Xu Shuo Yang 《Chinese Journal of Population,Resources and Environment》 2022年第2期125-135,共11页
It is urgent to significantly reduce greenhouse gas emissions to actively deal with global warming.This paper investigates Shandong Province,a typical province of energy consumption,as the research object,aiming to op... It is urgent to significantly reduce greenhouse gas emissions to actively deal with global warming.This paper investigates Shandong Province,a typical province of energy consumption,as the research object,aiming to optimize total energy consumption and consumption structure in the future planning year.This paper constructs a methodological system to optimize energy consumption structure in Shandong Province,using a scenario combination of system dynamics(SD)prediction and analysis based on the coupling of key scenario elements affecting different energy consumption from different perspectives.Structural equation modeling and SD sensitivity analysis indicate an overlap between key factors restricting energy consumption.Pairing the key scenario factors can better reflect the internal mechanism of energy consumption development.Based on this,21 scenarios based on different combinations of the key elements are constructed.Through SD prediction and analysis,the most suitable scenario mode for optimizing energy consumption structure in Shandong Province is selected.This paper provides a suitable development range for the average gross domestic product growth rate,the proportion of secondary industry,energy consumption intensity of secondary industry,and the urbanization rate for Shandong Province.This paper can provide a reference for similar research and the government in formulating the optimization scheme of energy consumption structure. 展开更多
关键词 energy consumption structure System dynamics Structural equation Scenario combination analysis carbon emissions Optimization Research
下载PDF
NeTrainSim:a network-level simulator for modeling freight train longitudinal motion and energy consumption
11
作者 Ahmed S.Aredah Karim Fadhloun Hesham A.Rakha 《Railway Engineering Science》 EI 2024年第4期480-498,共19页
Although train modeling research is vast, most available simulation tools are confined to city-or trip-scale analysis, primarily offering micro-level simulations of network segments. This paper addresses this void by ... Although train modeling research is vast, most available simulation tools are confined to city-or trip-scale analysis, primarily offering micro-level simulations of network segments. This paper addresses this void by developing the Ne Train Sim simulator for heavy long-haul freight trains on a network of multiple intersecting tracks. The main objective of this simulator is to enable a comprehensive analysis of energy consumption and the associated carbon footprint for the entire train system. Four case studies were conducted to demonstrate the simulator's performance. The first case study validates the model by comparing Ne Train Sim output to empirical trajectory data. The results demonstrate that the simulated trajectory is precise enough to estimate the train energy consumption and carbon dioxide emissions. The second application demonstrates the train-following model considering six trains following each other. The results showcase the model ability to maintain safefollowing distances between successive trains. The next study highlights the simulator's ability to resolve train conflicts for different scenarios. Finally, the suitability of the Ne Train Sim for modeling realistic railroad networks is verified through the modeling of the entire US network and comparing alternative powertrains on the fleet energy consumption. 展开更多
关键词 Ne Train Sim Network train simulation Train longitudinal motion energy consumption carbon footprint
下载PDF
Spatial and temporal variation of energy carbon emissions in Yantai from 2001 to 2011 被引量:1
12
作者 Qiuhong Su Qiuxian Wang +1 位作者 Dengjie Wang Xiaomei Yan 《Chinese Journal of Population,Resources and Environment》 2016年第3期182-188,共7页
In order to understand the characteristics of spatial and temporal variation,as well as provide effective ideas on carbon emissions and regulatory policy in Yantai,this article analyzed spatial and temporal variation ... In order to understand the characteristics of spatial and temporal variation,as well as provide effective ideas on carbon emissions and regulatory policy in Yantai,this article analyzed spatial and temporal variation of carbon emissions in Yantai based on energy consumption statistics for a variety of energy sorts together with industrial sectors from 2001 to 2011.The results were as following:First of all,Yantai's carbon emissions grew by an average of 5.5%per year during the last 10 years,and there was a peak of 10.48 million carbon in the year of 2011.Second,compared with the gross domestic product(GDP) growth rate,the figures for energy carbon emissions growth rate were smaller;however the problem of carbon emissions were still more obvious.Furthermore,carbon emissions in Yantai increased rapidly before 2008;while after 2008,it increased more slowly and gradually become stable.Third,the energy consumption was different among regions in Yantai.For instance,the energy consumption in Longkou city was the largest,which occupied 50%of the total carbon emissions in Yantai;and the energy consumption in Chang Island was generally less than 1%of the Longkou consumption.Finally,there were relative close relationships among the spatial difference of carbon emissions,regional resources endowment,economic development,industrial structure,and energy efficiency. 展开更多
关键词 energy carbon emission spatial and temporal variation energy consumption carbon emission intensity
下载PDF
Residential Energy Consumption and Associated Carbon Emission in Forest Rural Area in China: A Case Study in Weichang County 被引量:1
13
作者 LUN Fei Josep G. CANADELL +5 位作者 XU Zhong-qi HE Lu YUAN Zheng ZHANG Dan LI Wen-hua LIU Mou-cheng 《Journal of Mountain Science》 SCIE CSCD 2014年第3期792-804,共13页
Rural energy consumption in China has increased dramatically in the last decades, and has become a significant contributor of carbon emissions. Yet there is limited data on energy consumption patterns and their evolut... Rural energy consumption in China has increased dramatically in the last decades, and has become a significant contributor of carbon emissions. Yet there is limited data on energy consumption patterns and their evolution in forest rural areas of China. In order to bridge this gap, we report the findings of field surveys in forest villages in Weichang County as a case study of rural energy consumption in northern China. We found that the residential energy consumption per household is 3313 kgce yr^-1 (kilogram standard coal equivalent per year), with energy content of 9.7×lO7 kJ yr^-1, including 1783 kgce yr^-1 from coal, 1386 kgce yr^-1 from fuel wood, 96 kgce yr^-1 from electricity, and 49 kgce yr^-1 from LPG. Per capita consumption is 909 kgce yr^-1 and its energy content is 2.7×lO7 kJ yr^-1. Due to a total energy utilization efficiency of 24.6%, all the consumed energy can only supply about 2.4×107 kJ yr^-1 of efficient energy content. Secondly, household energy consumption is partitioned into 2614 kgce yr^-1 for heating, 616 kgce yr^-1 for cooking, and 117 kgce yr^-1 for home appliances. Thirdly, the associated carbon emissions oer household are 2556 kzC yr^-1, includinz1022 kgC yr^-1 from unutilized fuel wood (90% of the total fuel wood). The rest of emissions come from the use of electricity (212 kgC yr^-1, coal (13Ol kgC yr^-1 and LPG (21 kgC yr^-1. Fourthly, local climate, family size and household income have strong influences on rural residential energy consumption. Changes in storage and utilization practices of fuel can lead to the lO%-30% increase in the efficiency of fuel wood use, leading to reduced energy consumption by 924 kgce yr^-1 per household (27.9% reduction) and 9Ol kgC yr^-1 of carbon emissions (35-3% reduction). 展开更多
关键词 energy consumption carbon emission Rural areas FUELWOOD Utilization efficiency
下载PDF
Review on carbon emissions, energy consumption and low-carbon economy in China from a perspective of global climate change 被引量:5
14
作者 沈镭 孙艳芝 《Journal of Geographical Sciences》 SCIE CSCD 2016年第7期855-870,共16页
Accompanying the rapid growth of China's population and economy, energy consumption and carbon emission increased significantly from 1978 to 2012. China is now the largest energy consumer and CO2 emitter of the wo... Accompanying the rapid growth of China's population and economy, energy consumption and carbon emission increased significantly from 1978 to 2012. China is now the largest energy consumer and CO2 emitter of the world, leading to much interest in researches on the nexus between energy consumption, carbon emissions and low-carbon economy. This article presents the domestic Chinese studies on this hotpot issue, and we obtain the following findings. First, most research fields involve geography, ecology and resource economics, and research contents contained some analysis of current situation, factors decomposition, predictive analysis and the introduction of methods and models. Second, there exists an inverted "U-shaped" curve connection between carbon emission, energy consumption and economic development. Energy consumption in China will be in a low-speed growth after 2035 and it is expected to peak between 6.19–12.13 billion TCE in 2050. China's carbon emissions are expected to peak in 2035, or during 2020 to 2045, and the optimal range of carbon emissions is between 2.4–3.3 PgC/year(1 PgC=1 billion tons C) in 2050. Third, future research should be focused on global carbon trading, regional carbon flows, reforming the current energy structure, reducing energy consumption and innovating the low-carbon economic theory, as well as establishing a comprehensive theoretical system of energy consumption, carbon emissions and low-carbon economy. 展开更多
关键词 carbon emissions energy consumption low-carbon economy global climate change
原文传递
The relationship between energy consumption and economic growth and the development strategy of a low-carbon economy in Kazakhstan 被引量:7
15
作者 XIONG Chuanhe YANG Degang +1 位作者 HUO Jinwei ZHAO Yannan 《Journal of Arid Land》 SCIE CSCD 2015年第5期706-715,共10页
Fossil energy is the material basis of human survival, economic development and social progress. The relationship between energy consumption and economic growth is becoming increasingly close. However, energy consumpt... Fossil energy is the material basis of human survival, economic development and social progress. The relationship between energy consumption and economic growth is becoming increasingly close. However, energy consumption is the major source of greenhouse gases, which can significantly affect the balance of the global ecosystem. It has become the common goal of countries worldwide to address climate change, reduce carbon dioxide emissions, and implement sustainable development strategies. In this study, we applied an approximate relationship analysis, a decoupling relationship analysis, and a trend analysis to explore the relationship between energy consumption and economic growth using data from Kazakhstan for the period of 1993-2010. The results demonstrated: (1) the total energy consumption and GDP in Kazakhstan showed a "U"-type curve from 1993 to 2010. This curve was observed because 1993-1999 was a period during which Kazakhstan transitioned from a republic to an independent country and experienced a difficult transition from a planned to a market economy. Then, the economic system became more stable and the industrial production increased rapidly because of the effective financial, monetary and industrial policy support from 2000 to 2010. (2) The relationships between energy con- sumption and carbon emissions, economic growth and energy exports were linked; the carbon emissions were mainly derived from energy consumption, and the dependence of economic growth on energy exports gradually increased from 1993 to 2010. Before 2000, the relationship between energy consumption and economic growth was in a recessional decoupling state because of the economic recession. After 2000, this relationship was in strong and weak decoupling states because the international crude oil prices rose and energy exports increased greatly year by year. (3) It is forecasted that Kazakhstan cannot achieve its goal of energy consumption by 2020. Therefore, a low-carbon economy is the best strategic choice to address climate change from a global perspective in Kazakhstan. Thus, we proposed strategies including the improvement of the energy consumption structure, the development of new energy and renewable energy, the use of cleaner production technologies, the adjustment and optimization of the industrial structure, and the expansion of forest areas. 展开更多
关键词 energy consumption economic growth the decoupling relationship analysis low-carbon economy Kazakhstan
下载PDF
Energy consumption forecasting for laser manufacturing of large artifacts based on fusionable transfer learning
16
作者 Linxuan Wang Jinghua Xu +5 位作者 Shuyou Zhang Jianrong Tan Shaomei Fei Xuezhi Shi Jihong Pang Sheng Luo 《Visual Computing for Industry,Biomedicine,and Art》 2024年第1期19-32,共14页
This study presents an energy consumption(EC)forecasting method for laser melting manufacturing of metal artifacts based on fusionable transfer learning(FTL).To predict the EC of manufacturing products,particularly fr... This study presents an energy consumption(EC)forecasting method for laser melting manufacturing of metal artifacts based on fusionable transfer learning(FTL).To predict the EC of manufacturing products,particularly from scale-down to scale-up,a general paradigm was first developed by categorizing the overall process into three main sub-steps.The operating electrical power was further formulated as a combinatorial function,based on which an operator learning network was adopted to fit the nonlinear relations between the fabricating arguments and EC.Parallel-arranged networks were constructed to investigate the impacts of fabrication variables and devices on power.Considering the interconnections among these factors,the outputs of the neural networks were blended and fused to jointly predict the electrical power.Most innovatively,large artifacts can be decomposed into timedependent laser-scanning trajectories,which can be further transformed into fusionable information via neural networks,inspired by large language model.Accordingly,transfer learning can deal with either scale-down or scale-up forecasting,namely,FTL with scalability within artifact structures.The effectiveness of the proposed FTL was verified through physical fabrication experiments via laser powder bed fusion.The relative error of the average and overall EC predictions based on FTL was maintained below 0.83%.The melting fusion quality was examined using metallographic diagrams.The proposed FTL framework can forecast the EC of scaled structures,which is particularly helpful in price estimation and quotation of large metal products towards carbon peaking and carbon neutrality. 展开更多
关键词 energy consumption forecasting Large metal artifacts carbon peaking and carbon neutrality Laser powder bed fusion Fusionable transfer learning
下载PDF
Carbon-emission calculation of electromechanical energy consumption of different structures during the construction phase
17
作者 魏秀萍 LAI Ji-yu ZHANG Jin 《Journal of Chongqing University》 CAS 2013年第2期67-74,共8页
Due to the use of mechanical and electrical equipments in different buildings during construction phase, energy consumption produces large amounts of carbon emissions.Based on the energy use of China, we established a... Due to the use of mechanical and electrical equipments in different buildings during construction phase, energy consumption produces large amounts of carbon emissions.Based on the energy use of China, we established a formula that was applicable to carbon-emission calculation, and discussed carbon-emission characteristics of concrete structures and steel construction.Owing to the difference of electrical and mechanical equipment used in construction phase, the results show that under the same conditions, the carbon emission intensity of a concrete structure building is much higher than that of a steel building.At last, we also put forward some emission reduction measures based on the calculation data of different buildings. 展开更多
关键词 electromechanica! energy carbon emissions concrete constructioni stee1 constr~!~ ctioni construction phase .
下载PDF
Influencing factors and contribution analysis of CO_(2) emissions originating from final energy consumption in Sichuan Province,China
18
作者 LIU Wei JIA Zhijie +5 位作者 DU Meng DONG Zhanfeng PAN Jieyu LI Qinrui PAN Linyan Chris UMOLE 《Regional Sustainability》 2022年第4期356-372,共17页
Within the context of CO_(2)emission peaking and carbon neutrality,the study of CO_(2)emissions at the provincial level is few.Sichuan Province in China has not only superior clean energy resources endowment but also ... Within the context of CO_(2)emission peaking and carbon neutrality,the study of CO_(2)emissions at the provincial level is few.Sichuan Province in China has not only superior clean energy resources endowment but also great potential for the reduction of CO_(2)emissions.Therefore,using logarithmic mean Divisia index(LMDI)model to analysis the influence degree of different influencing factors on CO_(2)emissions from final energy consumption in Sichuan Province,so as to formulate corresponding emission reduction countermeasures from different paths according to the influencing factors.Based on the data of final energy consumption in Sichuan Province from 2010 to 2019,we calculated CO_(2)emission by the indirect emission calculation method.The influencing factors of CO_(2)emissions originating from final energy consumption in Sichuan Province were decomposed into population size,economic development,industrial structure,energy consumption intensity,and energy consumption structure by the Kaya-logarithmic mean Divisia index(LMDI)decomposition model.At the same time,grey correlation analysis was used to identify the correlation between CO_(2)emissions originating from final energy consumption and the influencing factors in Sichuan Province.The results showed that population size,economic development and energy consumption structure have positive contributions to CO_(2)emissions from final energy consumption in Sichuan Province,and economic development has a significant contribution to CO_(2)emissions from final energy consumption,with a contribution rate of 519.11%.The industrial structure and energy consumption intensity have negative contributions to CO_(2)emissions in Sichuan Province,and both of them have significant contributions,among which the contribution rate of energy consumption structure was 325.96%.From the perspective of industrial structure,secondary industry makes significant contributions and will maintain a restraining effect;from the perspective of energy consumption structure,industry sector has a significant contribution.The results of this paper are conducive to the implementation of carbon emission reduction policies in Sichuan Province. 展开更多
关键词 CO_(2)emissions Final energy consumption Logarithmic mean Divisia index(LMDI)model Industrial structure Grey relation analysis Sichuan Province
下载PDF
Influencing factors and paths of direct carbon emissions from the energy consumption of rural residents in central China determined using a questionnaire survey
19
作者 Xiao-Wei MA Mei WANG +2 位作者 Jing-Ke LAN Chuan-Dong LI Le-Le ZOU 《Advances in Climate Change Research》 SCIE CSCD 2022年第5期759-767,共9页
Rural residents have unique lifestyle characteristics,energy consumption methods,energy-saving behaviors,and awareness.And the direct carbon emission from rural residents is based on the combined effect of multiple fa... Rural residents have unique lifestyle characteristics,energy consumption methods,energy-saving behaviors,and awareness.And the direct carbon emission from rural residents is based on the combined effect of multiple factors.In order to address the complexity of factors affecting the direct carbon emissions from rural household,this study used a structural equation model to examine the effect of multi-factor variables on direct carbon emissions from rural households in central China.Data were collected using questionnaires and surveys in six cities in central China to reflect the daily reality of rural residents.The results show that quality of life and awareness of energy conservation can affect the direct carbon emissions of rural residents.Family characteristics and awareness of energy conservation affected carbon emissions indirectly by affecting the daily behaviors and quality of life of the residents;consumption characteristics,energy-saving behaviors,and energy conservation policies are not the main factors contributing to the direct carbon emissions of the residents.Based on the results,future studies can focus on energy conservation education,improvement of the living habits,coal energy use efficiency,and energy consumption structure of residences. 展开更多
关键词 Rural residents Direct carbon emissions energy consumption energy-saving behavior
原文传递
CASE STUDY OF THE OPERATIONAL ENERGY CONSUMPTION AND CARBON EMISSIONS FROM A BUILDING IN NANJING BASED ON A SYSTEM DYNAMICS APPROACH
20
作者 Changhai Peng Jianqiang Yang Jinfu Huang 《Journal of Green Building》 2016年第3期126-142,共17页
Buildings are responsible for more than forty percent of global energy consump-tion and as much as one third of global greenhouse gas emissions.Meanwhile,the energy conservation and exhaust reduction of a building can... Buildings are responsible for more than forty percent of global energy consump-tion and as much as one third of global greenhouse gas emissions.Meanwhile,the energy conservation and exhaust reduction of a building can be easily understood by accurately calculating a building’s carbon emissions during its operational stage.In the present study,a system dynamics(SD)approach to calculate the energy consumption and carbon emissions from a building during its operational stage is quantitatively developed through a case study on an office building in Nanjing.The obtained results demonstrate that:a)the difference between the results of SD and that of EnergyPlus is so small that a SD approach is acceptable;b)the variation between the real monitored data and that of simulation by SD and EnergyPlus is reasonable;c)the physical meanings of the variables in the SD model are clear;d)the parameters of the SD model and the relationships between the variables can be determined by a qualitative-and-quantitative combined analysis. 展开更多
关键词 OPERATIONAL energy consumption carbon emissions BUILDINGS system dynamics approach
原文传递
上一页 1 2 250 下一页 到第
使用帮助 返回顶部