The transition to sustainable energy systems is one of the defining challenges of our time, necessitating innovations in how we generate, distribute, and manage electrical power. Micro-grids, as localized energy hubs,...The transition to sustainable energy systems is one of the defining challenges of our time, necessitating innovations in how we generate, distribute, and manage electrical power. Micro-grids, as localized energy hubs, have emerged as a promising solution to integrate renewable energy sources, ensure energy security, and improve system resilience. The Autonomous multi-factor Energy Flow Controller (AmEFC) introduced in this paper addresses this need by offering a scalable, adaptable, and resilient framework for energy management within an on-grid micro-grid context. The urgency for such a system is predicated on the increasing volatility and unpredictability in energy landscapes, including fluctuating renewable outputs and changing load demands. To tackle these challenges, the AmEFC prototype incorporates a novel hierarchical control structure that leverages Renewable Energy Sources (RES), such as photovoltaic systems, wind turbines, and hydro pumps, alongside a sophisticated Battery Management System (BMS). Its prime objective is to maintain an uninterrupted power supply to critical loads, efficiently balance energy surplus through hydraulic storage, and ensure robust interaction with the main grid. A comprehensive Simulink model is developed to validate the functionality of the AmEFC, simulating real-world conditions and dynamic interactions among the components. The model assesses the system’s reliability in consistently powering critical loads and its efficacy in managing surplus energy. The inclusion of advanced predictive algorithms enables the AmEFC to anticipate energy production and consumption trends, integrating weather forecasting and inter-controller communication to optimize energy flow within and across micro-grids. This study’s significance lies in its potential to facilitate the seamless incorporation of RES into existing power systems, thus propelling the energy sector towards a more sustainable, autonomous, and resilient future. The results underscore the potential of such a system to revolutionize energy management practices and highlight the importance of smart controller systems in the era of smart grids.展开更多
The construction of relevant standards for building carbon emission assessment in China has just started,and the quantitative analysis method and evaluation system are still imperfect,which hinders the development of ...The construction of relevant standards for building carbon emission assessment in China has just started,and the quantitative analysis method and evaluation system are still imperfect,which hinders the development of low-carbon building design.Therefore,the use of intelligent energy management system is very necessary.The purpose of this paper is to explore the design optimization of low-carbon buildings based on intelligent energy management systems.Based on the proposed quantitative method of building carbon emission,this paper establishes the quota theoretical system of building carbon emission analysis,and develops the quota based carbon emission calculation software.Smart energy management system is a low-carbon energy-saving system based on the reference of large-scale building energy-saving system and combined with energy consumption.It provides a fast and effective calculation tool for the quantitative evaluation of carbon emission of construction projects,so as to realize the carbon emission control and optimization in the early stage of architectural design and construction.On this basis,the evaluation,analysis and calculation method of building structure based on carbon reduction target is proposed,combined with the carbon emission quota management standard proposed in this paper.Taking small high-rise residential buildings as an example,this paper compares and analyzes different building structural systems from the perspectives of structural performance,economy and carbon emission level.It provides a reference for the design and evaluation of low-carbon building structures.The smart energy management system collects user energy use parameters.It uses time period and time sequence to obtain a large amount of data for analysis and integration,which provides users with intuitive energy consumption data.Compared with the traditional architectural design method,the industrialized construction method can save 589.22 megajoules(MJ)per square meter.Based on 29270 megajoules(MJ)per ton of standard coal,the construction area of the case is about 8000 m2,and the energy saving of residential buildings is 161.04 tons of standard coal.This research is of great significance in reducing the carbon emission intensity of buildings.展开更多
This paper presents the design and implementation of an energy management system (EMS) with wavelet transform and fuzzy control for a residential micro-grid. The hybrid system in this paper consists of a wind turbin...This paper presents the design and implementation of an energy management system (EMS) with wavelet transform and fuzzy control for a residential micro-grid. The hybrid system in this paper consists of a wind turbine generator, photovoltaic (PV) panels, an electric vehicle (EV), and a super capacitor (SC), which is able to connect or disconnect to the main grid. The control strategy is responsible for compensating the difference between the generated power by the wind and solar generators and the demanded power by the loads. Wavelet transform decomposes the power difference into a smoothed component and a fast fluctuated component. The command approach used for fuzzy logic rules considers the state of charging (SOC) of EV, renewable production, and the load demand as parameters. Furthermore, the command rules are developed in order to ensure a reliable grid when taking into account the EV battery protection to decide the output power of the EV. The model of the hybrid system is developed in detail under Matlab/Simulink software environment.展开更多
To achieve the controllable release of energy of nitrocellulose-based propellants,this paper combines the cellulose-based nanocomposites aqueous coating(Surelease®-NC)with fluidized bed coating equipment to succe...To achieve the controllable release of energy of nitrocellulose-based propellants,this paper combines the cellulose-based nanocomposites aqueous coating(Surelease®-NC)with fluidized bed coating equipment to successfully prepare the coated spherical propellant for the first time.The effects of fluidized bed coating temperature,air velocity,flow speed and atomization pressure on the adhesion rate,coating integrity and coating uniformity of the coated spherical propellant were investigated,and the preparation of coated spherical propellant with homogeneous size and structural integrity was achieved for the first time.The microscopic morphology,chemical structure,water vapor adsorption behavior,combustion performance,and ageing resistance property of the coated spherical propellant were systematically investigated by,Fourier transforms infrared spectroscopy(FTIR),Micro confocal raman spectrometer,field scanning electron microscopy(SEM),dynamic vapor adsorption techniques,and closed bomb test,confirming the surface core-shell structure and the tightly bonded interfacial structure of coated spherical propellant.Meanwhile,the coated spherical propellant has good hygroscopic,excellent progressive burning and long storage stability.展开更多
In order to solve the problems of poor informationflow,low energy utilization rate and energy consumption data reuse in the heavy equipment industrial park,the Internet of Things(IoT)technology is applied to construct...In order to solve the problems of poor informationflow,low energy utilization rate and energy consumption data reuse in the heavy equipment industrial park,the Internet of Things(IoT)technology is applied to construct the intelligent energy management and control system(IEMCS).The application architecture and function module planning are analyzed and designed.Furthermore,the IEMCS scheme is not unique due to the fuzziness of customer demand and the understanding deviation of designer to customer demand in the design stage.Scheme assessment is of great significance for the normal subsequent implementation of the system.A fuzzy assessment method for IEMCS scheme alternatives is proposed to achieve scheme selection.Fuzzy group decision using triangular fuzzy number to express the vague assessment of experts is adopted to determine the index value.TOPSIS is modified by replacing Euclidean distance with contact vector distance in IEMCS scheme alternative assessment.An experiment with eight IEMCS scheme alternatives in a heavy equipment industrial park is given for the validation.The experiment result shows that eight IEMCS scheme alternatives can be assessed.Through the comparisons with other methods,the reliability of the results obtained by the proposed method is discussed.展开更多
I.I NTRODUCTION W ITH the advent of low-carbon economy,there has been a growing interest in harnessing renewable energy resources particularly for electricity generation.Renewable energy resources are advocated for th...I.I NTRODUCTION W ITH the advent of low-carbon economy,there has been a growing interest in harnessing renewable energy resources particularly for electricity generation.Renewable energy resources are advocated for the economic and environ-展开更多
Owing to increasing environmental concerns and resource scarcity, integrated energy system shave become widely used in communities. Rural energy systems, as one of the important links of the energy network in China, s...Owing to increasing environmental concerns and resource scarcity, integrated energy system shave become widely used in communities. Rural energy systems, as one of the important links of the energy network in China, suffer from low energy efficiency and weak infrastructure. Therefore, it is particularly important to increase the proportion of electricity consumption and build an integrated energy system for rural electrification in China(IESREIC) with a rural distribution network as the core, in line with national conditions. In this study, by analyzing the Chinese regional differences and natural resource endowments, the development characteristics of the IESREIC are summarized. Then, according to the existing rural energy problems, key technologies are proposed for the IESREIC, such as those for planning and operation, value sharing, infrastructure, and a management and control platform. Finally, IESREIC demonstration projects and business models are introduced for agricultural production, rural industrial systems, and rural life. The purpose is to propose research concepts for the IESREIC, provide suggestions for the development of rural energy, and provide a reference for the construction of rural energy systems in countries with characteristics similar to those of China.展开更多
Secure control against cyber attacks becomes increasingly significant in cyber-physical systems(CPSs).False data injection attacks are a class of cyber attacks that aim to compromise CPS functions by injecting false d...Secure control against cyber attacks becomes increasingly significant in cyber-physical systems(CPSs).False data injection attacks are a class of cyber attacks that aim to compromise CPS functions by injecting false data such as sensor measurements and control signals.For quantified false data injection attacks,this paper establishes an effective defense framework from the energy conversion perspective.Then,we design an energy controller to dynamically adjust the system energy changes caused by unknown attacks.The designed energy controller stabilizes the attacked CPSs and ensures the dynamic performance of the system by adjusting the amount of damping injection.Moreover,with the disturbance attenuation technique,the burden of control system design is simplified because there is no need to design an attack observer.In addition,this secure control method is simple to implement because it avoids complicated mathematical operations.The effectiveness of our control method is demonstrated through an industrial CPS that controls a permanent magnet synchronous motor.展开更多
China is a country where 100% of the territory is located in a seismic zone. Most of the strong earthquakes are over prediction. Most fatalities are caused by structural collapse. Earthquakes not only cause severe dam...China is a country where 100% of the territory is located in a seismic zone. Most of the strong earthquakes are over prediction. Most fatalities are caused by structural collapse. Earthquakes not only cause severe damage to structures, but can also damage non-structural elements on and inside of facilities. This can halt city life, and disrupt hospitals, airports, bridges, power plants, and other infrastructure. Designers need to use new techniques to protect structures and facilities inside. Isolation, energy dissipation and, control systems are more and more widely used in recent years in China. Currently, there are nearly 6,500 structures with isolation and about 3,000 structures with passive energy dissipation or hybrid control in China. The mitigation techniques are applied to structures like residential buildings, large or complex structures, bridges, underwater tunnels, historical or cultural relic sites, and industrial facilities, and are used for retrofitting of existed structures. This paper introduces design rules and some new and innovative devices for seismic isolation, energy dissipation and hybrid control for civil and industrial structures. This paper also discusses the development trends for seismic resistance, seismic isolation, passive and active control techniques for the future in China and in the world.展开更多
Aimed at the relatively lower energy density and complicated coordinating operation between two power sources,a special energy control strategy is required to maximize the fuel saving potential.Then a new type of conf...Aimed at the relatively lower energy density and complicated coordinating operation between two power sources,a special energy control strategy is required to maximize the fuel saving potential.Then a new type of configuration for hydrostatic transmission hybrid vehicles(PHHV) and the selection criterion for important components are proposed.Based on the optimization of planet gear transmission ratio and the analysis of optimal energy distribution for the proposed PHHV on a representative urban driving cycle,a fuzzy torque control strategy and a braking energy regeneration strategy are designed and developed to realize the real-time control of energy for the proposed PHHV.Simulation results demonstrate that the energy control strategy effectively improves the fuel economy of PHHV.展开更多
A novel energy-regenerative active suspension(NEAS) system was designed to solve the problem of low energy recovery efficiency caused by frequent alternation of energy-recovery mode and active-control mode in a tradit...A novel energy-regenerative active suspension(NEAS) system was designed to solve the problem of low energy recovery efficiency caused by frequent alternation of energy-recovery mode and active-control mode in a traditional energyregenerative active suspension(TEAS) system. The energy recovery and active control could be implemented simultaneously in the NEAS. The transforming processes and the corresponding computational formulas of power conversion in the NEAS were provided. The simulation results show that the performances of energy recovery of the NEAS are improved, and the selfsustaining of power supply for the NEAS can be realized.展开更多
This paper examined the impacts of the total energy consumption control policy and energy quota allocation plans on China′s regional economy. This research analyzed the influences of different energy quota allocation...This paper examined the impacts of the total energy consumption control policy and energy quota allocation plans on China′s regional economy. This research analyzed the influences of different energy quota allocation plans with various weights of equity and efficiency, using a dynamic computable general equilibrium(CGE) model for 30 province-level administrative regions. The results show that the efficiency-first allocation plan costs the least but widens regional income gap, whereas the outcomes of equity-first allocation plan and intensity target-based allocation plan are similar and are both opposite to the efficiency-first allocation plan′ outcome. The plan featuring a balance between efficiency and equity is more feasible, which can bring regional economic losses evenly and prevent massive interregional migration of energy-related industries. Furthermore, the effects of possible induced energy technology improvements in different energy quota allocation plans were studied. Induced energy technology improvements can add more feasibility to all allocation plans under the total energy consumption control policy. In the long term, if the policy of the total energy consumption control continues and more market-based tools are implemented to allocate energy quotas, the positive consequences of induced energy technology improvements will become much more obvious.展开更多
Urban rail trains have undergone rapid development in recent years due to their punctuality,high capacity and energy efficiency.Urban trains require frequent start/stop operations and are,therefore,prone to high energ...Urban rail trains have undergone rapid development in recent years due to their punctuality,high capacity and energy efficiency.Urban trains require frequent start/stop operations and are,therefore,prone to high energy losses.As trains have high inertia,the energy that can be recovered from braking comes in short bursts of high power.To effectively recover such braking energy,an onboard supercapacitor system based on a radial basis function neural networkbased sliding mode control system is proposed,which provides robust adaptive performance.The supercapacitor energy storage system is connected to a bidirectional DC/DC converter to provide traction energy or absorb regenerative braking energy.In the Boost and Buck modes,the state-space averaging method is used to establish a model and perform exact linearization.An adaptive sliding mode controller is designed,and simulation results show that it can effectively solve the problems of low energy utilization and large voltage fluctuations in urban rail electricity grids,and maximise the recovery and utilization of regenerative braking energy.展开更多
An experimental investigation was carried out to study the energy absorption characteristics of thin-walled square tubes subjected to dynamic crushing by impact loading to develop the optimum structural members. Here,...An experimental investigation was carried out to study the energy absorption characteristics of thin-walled square tubes subjected to dynamic crushing by impact loading to develop the optimum structural members. Here, the controller is introduced to improve and control the absorbed energy of thin-walled square tubes in this paper. When the controller were used, the experimental results of crushing of square tubes controlled by the controller's elements showed a good candidate for a controllable energy absorption capability in impact crushing.展开更多
This paper considers minimization of resistive and frictional power dissipation in a separately excited DC motor based incremental motion drive (IMD). The drive is required to displace a given, fixed load through a ...This paper considers minimization of resistive and frictional power dissipation in a separately excited DC motor based incremental motion drive (IMD). The drive is required to displace a given, fixed load through a definite angle in specified time, with minimum energy dissipation in the motor windings and minimum frictional losses. Accordingly, an energy optimal (EO) control strategy is proposed in which the motor is first accelerated to track a specific speed profile for a pre-determined optimal time period. Thereafter, both armature and field power supplies are disconnected, and the motor decelerates and comes to a halt at the desired displacement point in the desired total displacement time. The optimal time period for the initial acceleration phase is computed so that the motor stores just enough energy to decelerate to the final position at the specified displacement time. The parameters, such as the moment of inertia and coefficient of friction, which depend on the load and other external conditions, have been obtained using system identification method. Comparison with earlier control techniques is included. The results show that the proposed EO control strategy results in significant reduction of energy losses compared to the existing ones.展开更多
This paper presents the analysis of the control energy consumed in model reference adaptive control(MRAC)schemes using fractional adaptive laws, through simulation studies. The analysis is focused on the energy spent ...This paper presents the analysis of the control energy consumed in model reference adaptive control(MRAC)schemes using fractional adaptive laws, through simulation studies. The analysis is focused on the energy spent in the control signal represented by means of the integral of the squared control input(ISI). Also, the behavior of the integral of the squared control error(ISE) is included in the analysis.The orders of the adaptive laws were selected by particle swarm optimization(PSO), using an objective function including the ISI and the ISE, with different weighting factors. The results show that, when ISI index is taken into account in the optimization process to determine the orders of adaptive laws,the resulting values are fractional, indicating that control energy of the scheme might be better managed if fractional adaptive laws are used.展开更多
This paper has investigated best tracking performance for linear feedback control systems in the case that plant uncertainty and control effort need to be considered simultaneously. Firstly, an average integral square...This paper has investigated best tracking performance for linear feedback control systems in the case that plant uncertainty and control effort need to be considered simultaneously. Firstly, an average integral square criterion of the tracking error and the plant input energy over a class of additive model errors is defined. Then, utilizing spectral factorization to minimize the performance index, we obtain an optimal controller design method, and furthermore study optimal tracking performance under plant uncertainty and control energy constraint. The results can be used to evaluate optimal average tracking performance and control energy in designing practical control systems.展开更多
The control of complex networks is affected by their structural characteristic. As a type of key nodes in a network structure, cut vertexes are essential for network connectivity because their removal will disconnect ...The control of complex networks is affected by their structural characteristic. As a type of key nodes in a network structure, cut vertexes are essential for network connectivity because their removal will disconnect the network. Despite their fundamental importance, the influence of the cut vertexes on network control is still uncertain. Here, we reveal the relationship between the cut vertexes and the driver nodes, and find that the driver nodes tend to avoid the cut vertexes.However, driving cut vertexes reduce the energy required for controlling complex networks, since cut vertexes are located near the middle of the control chains. By employing three different node failure strategies, we investigate the impact of cut vertexes failure on the energy required. The results show that cut vertex failures markedly increase the control energy because the cut vertexes are larger-degree nodes. Our results deepen the understanding of the structural characteristic in network control.展开更多
To satisfy the need of good quality and high yield primary production,the farmland information management system based on wireless Sensor Network has been proposed.We give priority to analyzing the basic function of t...To satisfy the need of good quality and high yield primary production,the farmland information management system based on wireless Sensor Network has been proposed.We give priority to analyzing the basic function of the system,building the systematic structure of applied system and network system,and implementing the energy control and safety design of system.The system can reduce manpower operation and the error of manual measuration in the course of practical production,reduce the cost of agricultural production,and realize automatization of agricultural production to the largest extent to provide an effective way to realize good quality and high yield primary production,which has an important realistic meaning.展开更多
The modular multilevel matrix converter(M3C)is a potential frequency converter for low-frequency AC transmission.However,capacitor voltage control of high-voltage and largecapacity M3C is more difficult,especially for...The modular multilevel matrix converter(M3C)is a potential frequency converter for low-frequency AC transmission.However,capacitor voltage control of high-voltage and largecapacity M3C is more difficult,especially for voltage balancing between branches.To solve this problem,this paper defines sequence circulating components and theoretically analyzes the influence mechanism of different sequence circulating components on branch capacitor voltage.A fully decoupled branch energy balancing control method based on four groups of sequence circulating components is proposed.This method can control capacitor voltages of nine branches in horizontal,vertical and diagonal directions.Considering influences of both circulating current and voltage,a cross decoupled control is designed to improve control precision.Simulation results are taken from a low-frequency transmission system based on PSCAD/EMTDC,and effectiveness and precision of the proposed branch energy balancing control method are verified in the case of nonuniform parameters and an unbalanced power system.展开更多
文摘The transition to sustainable energy systems is one of the defining challenges of our time, necessitating innovations in how we generate, distribute, and manage electrical power. Micro-grids, as localized energy hubs, have emerged as a promising solution to integrate renewable energy sources, ensure energy security, and improve system resilience. The Autonomous multi-factor Energy Flow Controller (AmEFC) introduced in this paper addresses this need by offering a scalable, adaptable, and resilient framework for energy management within an on-grid micro-grid context. The urgency for such a system is predicated on the increasing volatility and unpredictability in energy landscapes, including fluctuating renewable outputs and changing load demands. To tackle these challenges, the AmEFC prototype incorporates a novel hierarchical control structure that leverages Renewable Energy Sources (RES), such as photovoltaic systems, wind turbines, and hydro pumps, alongside a sophisticated Battery Management System (BMS). Its prime objective is to maintain an uninterrupted power supply to critical loads, efficiently balance energy surplus through hydraulic storage, and ensure robust interaction with the main grid. A comprehensive Simulink model is developed to validate the functionality of the AmEFC, simulating real-world conditions and dynamic interactions among the components. The model assesses the system’s reliability in consistently powering critical loads and its efficacy in managing surplus energy. The inclusion of advanced predictive algorithms enables the AmEFC to anticipate energy production and consumption trends, integrating weather forecasting and inter-controller communication to optimize energy flow within and across micro-grids. This study’s significance lies in its potential to facilitate the seamless incorporation of RES into existing power systems, thus propelling the energy sector towards a more sustainable, autonomous, and resilient future. The results underscore the potential of such a system to revolutionize energy management practices and highlight the importance of smart controller systems in the era of smart grids.
基金supported by“Key Technology Research on Operational Performance Improvement of the Green Building”(2020YFS0060)Key Project of Science and Technology Department of Sichuan Province+2 种基金supported by“Creative VR Teaching and Learning Research Based on‘PBL+’and Multidimensional Collaboration”(JG2021-721)“Reform in the Mode and Practice of Architecture Education with the Characteristics of Geology”(JG2021-672)Education Quality and Teaching Reform Project of Higher Education in Sichuan Province in 2021–2023.
文摘The construction of relevant standards for building carbon emission assessment in China has just started,and the quantitative analysis method and evaluation system are still imperfect,which hinders the development of low-carbon building design.Therefore,the use of intelligent energy management system is very necessary.The purpose of this paper is to explore the design optimization of low-carbon buildings based on intelligent energy management systems.Based on the proposed quantitative method of building carbon emission,this paper establishes the quota theoretical system of building carbon emission analysis,and develops the quota based carbon emission calculation software.Smart energy management system is a low-carbon energy-saving system based on the reference of large-scale building energy-saving system and combined with energy consumption.It provides a fast and effective calculation tool for the quantitative evaluation of carbon emission of construction projects,so as to realize the carbon emission control and optimization in the early stage of architectural design and construction.On this basis,the evaluation,analysis and calculation method of building structure based on carbon reduction target is proposed,combined with the carbon emission quota management standard proposed in this paper.Taking small high-rise residential buildings as an example,this paper compares and analyzes different building structural systems from the perspectives of structural performance,economy and carbon emission level.It provides a reference for the design and evaluation of low-carbon building structures.The smart energy management system collects user energy use parameters.It uses time period and time sequence to obtain a large amount of data for analysis and integration,which provides users with intuitive energy consumption data.Compared with the traditional architectural design method,the industrialized construction method can save 589.22 megajoules(MJ)per square meter.Based on 29270 megajoules(MJ)per ton of standard coal,the construction area of the case is about 8000 m2,and the energy saving of residential buildings is 161.04 tons of standard coal.This research is of great significance in reducing the carbon emission intensity of buildings.
基金supported by the National Science Foundation of China under Grant No.51205046
文摘This paper presents the design and implementation of an energy management system (EMS) with wavelet transform and fuzzy control for a residential micro-grid. The hybrid system in this paper consists of a wind turbine generator, photovoltaic (PV) panels, an electric vehicle (EV), and a super capacitor (SC), which is able to connect or disconnect to the main grid. The control strategy is responsible for compensating the difference between the generated power by the wind and solar generators and the demanded power by the loads. Wavelet transform decomposes the power difference into a smoothed component and a fast fluctuated component. The command approach used for fuzzy logic rules considers the state of charging (SOC) of EV, renewable production, and the load demand as parameters. Furthermore, the command rules are developed in order to ensure a reliable grid when taking into account the EV battery protection to decide the output power of the EV. The model of the hybrid system is developed in detail under Matlab/Simulink software environment.
基金supported by the National Natural Science Foundation of China (Grant No.22005143)Young Elite Scientists Sponsorship Program by CAST (Grant No.2022QNRC001)。
文摘To achieve the controllable release of energy of nitrocellulose-based propellants,this paper combines the cellulose-based nanocomposites aqueous coating(Surelease®-NC)with fluidized bed coating equipment to successfully prepare the coated spherical propellant for the first time.The effects of fluidized bed coating temperature,air velocity,flow speed and atomization pressure on the adhesion rate,coating integrity and coating uniformity of the coated spherical propellant were investigated,and the preparation of coated spherical propellant with homogeneous size and structural integrity was achieved for the first time.The microscopic morphology,chemical structure,water vapor adsorption behavior,combustion performance,and ageing resistance property of the coated spherical propellant were systematically investigated by,Fourier transforms infrared spectroscopy(FTIR),Micro confocal raman spectrometer,field scanning electron microscopy(SEM),dynamic vapor adsorption techniques,and closed bomb test,confirming the surface core-shell structure and the tightly bonded interfacial structure of coated spherical propellant.Meanwhile,the coated spherical propellant has good hygroscopic,excellent progressive burning and long storage stability.
文摘In order to solve the problems of poor informationflow,low energy utilization rate and energy consumption data reuse in the heavy equipment industrial park,the Internet of Things(IoT)technology is applied to construct the intelligent energy management and control system(IEMCS).The application architecture and function module planning are analyzed and designed.Furthermore,the IEMCS scheme is not unique due to the fuzziness of customer demand and the understanding deviation of designer to customer demand in the design stage.Scheme assessment is of great significance for the normal subsequent implementation of the system.A fuzzy assessment method for IEMCS scheme alternatives is proposed to achieve scheme selection.Fuzzy group decision using triangular fuzzy number to express the vague assessment of experts is adopted to determine the index value.TOPSIS is modified by replacing Euclidean distance with contact vector distance in IEMCS scheme alternative assessment.An experiment with eight IEMCS scheme alternatives in a heavy equipment industrial park is given for the validation.The experiment result shows that eight IEMCS scheme alternatives can be assessed.Through the comparisons with other methods,the reliability of the results obtained by the proposed method is discussed.
文摘I.I NTRODUCTION W ITH the advent of low-carbon economy,there has been a growing interest in harnessing renewable energy resources particularly for electricity generation.Renewable energy resources are advocated for the economic and environ-
基金supported by the National Natural Science Foundation of China(No.51977141)headquarters technology project of State Grid Corporation of China(No.5400-202025208A-0-0-00)
文摘Owing to increasing environmental concerns and resource scarcity, integrated energy system shave become widely used in communities. Rural energy systems, as one of the important links of the energy network in China, suffer from low energy efficiency and weak infrastructure. Therefore, it is particularly important to increase the proportion of electricity consumption and build an integrated energy system for rural electrification in China(IESREIC) with a rural distribution network as the core, in line with national conditions. In this study, by analyzing the Chinese regional differences and natural resource endowments, the development characteristics of the IESREIC are summarized. Then, according to the existing rural energy problems, key technologies are proposed for the IESREIC, such as those for planning and operation, value sharing, infrastructure, and a management and control platform. Finally, IESREIC demonstration projects and business models are introduced for agricultural production, rural industrial systems, and rural life. The purpose is to propose research concepts for the IESREIC, provide suggestions for the development of rural energy, and provide a reference for the construction of rural energy systems in countries with characteristics similar to those of China.
基金supported in part by the National Science Foundation of China(61873103,61433006)。
文摘Secure control against cyber attacks becomes increasingly significant in cyber-physical systems(CPSs).False data injection attacks are a class of cyber attacks that aim to compromise CPS functions by injecting false data such as sensor measurements and control signals.For quantified false data injection attacks,this paper establishes an effective defense framework from the energy conversion perspective.Then,we design an energy controller to dynamically adjust the system energy changes caused by unknown attacks.The designed energy controller stabilizes the attacked CPSs and ensures the dynamic performance of the system by adjusting the amount of damping injection.Moreover,with the disturbance attenuation technique,the burden of control system design is simplified because there is no need to design an attack observer.In addition,this secure control method is simple to implement because it avoids complicated mathematical operations.The effectiveness of our control method is demonstrated through an industrial CPS that controls a permanent magnet synchronous motor.
文摘China is a country where 100% of the territory is located in a seismic zone. Most of the strong earthquakes are over prediction. Most fatalities are caused by structural collapse. Earthquakes not only cause severe damage to structures, but can also damage non-structural elements on and inside of facilities. This can halt city life, and disrupt hospitals, airports, bridges, power plants, and other infrastructure. Designers need to use new techniques to protect structures and facilities inside. Isolation, energy dissipation and, control systems are more and more widely used in recent years in China. Currently, there are nearly 6,500 structures with isolation and about 3,000 structures with passive energy dissipation or hybrid control in China. The mitigation techniques are applied to structures like residential buildings, large or complex structures, bridges, underwater tunnels, historical or cultural relic sites, and industrial facilities, and are used for retrofitting of existed structures. This paper introduces design rules and some new and innovative devices for seismic isolation, energy dissipation and hybrid control for civil and industrial structures. This paper also discusses the development trends for seismic resistance, seismic isolation, passive and active control techniques for the future in China and in the world.
基金Sponsored by the National Natural Science Foundation of China(Grant No.50375033)the National Key Laboratory of Vehicular Transmission(Grant No.51457050105HT0112)
文摘Aimed at the relatively lower energy density and complicated coordinating operation between two power sources,a special energy control strategy is required to maximize the fuel saving potential.Then a new type of configuration for hydrostatic transmission hybrid vehicles(PHHV) and the selection criterion for important components are proposed.Based on the optimization of planet gear transmission ratio and the analysis of optimal energy distribution for the proposed PHHV on a representative urban driving cycle,a fuzzy torque control strategy and a braking energy regeneration strategy are designed and developed to realize the real-time control of energy for the proposed PHHV.Simulation results demonstrate that the energy control strategy effectively improves the fuel economy of PHHV.
文摘A novel energy-regenerative active suspension(NEAS) system was designed to solve the problem of low energy recovery efficiency caused by frequent alternation of energy-recovery mode and active-control mode in a traditional energyregenerative active suspension(TEAS) system. The energy recovery and active control could be implemented simultaneously in the NEAS. The transforming processes and the corresponding computational formulas of power conversion in the NEAS were provided. The simulation results show that the performances of energy recovery of the NEAS are improved, and the selfsustaining of power supply for the NEAS can be realized.
基金National Natural Science Foundation of China(No.41101556,71173212,71203215)
文摘This paper examined the impacts of the total energy consumption control policy and energy quota allocation plans on China′s regional economy. This research analyzed the influences of different energy quota allocation plans with various weights of equity and efficiency, using a dynamic computable general equilibrium(CGE) model for 30 province-level administrative regions. The results show that the efficiency-first allocation plan costs the least but widens regional income gap, whereas the outcomes of equity-first allocation plan and intensity target-based allocation plan are similar and are both opposite to the efficiency-first allocation plan′ outcome. The plan featuring a balance between efficiency and equity is more feasible, which can bring regional economic losses evenly and prevent massive interregional migration of energy-related industries. Furthermore, the effects of possible induced energy technology improvements in different energy quota allocation plans were studied. Induced energy technology improvements can add more feasibility to all allocation plans under the total energy consumption control policy. In the long term, if the policy of the total energy consumption control continues and more market-based tools are implemented to allocate energy quotas, the positive consequences of induced energy technology improvements will become much more obvious.
基金the Science and Technology Project of Henan Province under Grant No.14210221036.
文摘Urban rail trains have undergone rapid development in recent years due to their punctuality,high capacity and energy efficiency.Urban trains require frequent start/stop operations and are,therefore,prone to high energy losses.As trains have high inertia,the energy that can be recovered from braking comes in short bursts of high power.To effectively recover such braking energy,an onboard supercapacitor system based on a radial basis function neural networkbased sliding mode control system is proposed,which provides robust adaptive performance.The supercapacitor energy storage system is connected to a bidirectional DC/DC converter to provide traction energy or absorb regenerative braking energy.In the Boost and Buck modes,the state-space averaging method is used to establish a model and perform exact linearization.An adaptive sliding mode controller is designed,and simulation results show that it can effectively solve the problems of low energy utilization and large voltage fluctuations in urban rail electricity grids,and maximise the recovery and utilization of regenerative braking energy.
文摘An experimental investigation was carried out to study the energy absorption characteristics of thin-walled square tubes subjected to dynamic crushing by impact loading to develop the optimum structural members. Here, the controller is introduced to improve and control the absorbed energy of thin-walled square tubes in this paper. When the controller were used, the experimental results of crushing of square tubes controlled by the controller's elements showed a good candidate for a controllable energy absorption capability in impact crushing.
文摘This paper considers minimization of resistive and frictional power dissipation in a separately excited DC motor based incremental motion drive (IMD). The drive is required to displace a given, fixed load through a definite angle in specified time, with minimum energy dissipation in the motor windings and minimum frictional losses. Accordingly, an energy optimal (EO) control strategy is proposed in which the motor is first accelerated to track a specific speed profile for a pre-determined optimal time period. Thereafter, both armature and field power supplies are disconnected, and the motor decelerates and comes to a halt at the desired displacement point in the desired total displacement time. The optimal time period for the initial acceleration phase is computed so that the motor stores just enough energy to decelerate to the final position at the specified displacement time. The parameters, such as the moment of inertia and coefficient of friction, which depend on the load and other external conditions, have been obtained using system identification method. Comparison with earlier control techniques is included. The results show that the proposed EO control strategy results in significant reduction of energy losses compared to the existing ones.
基金supported by CONICYT-Chile,under the Basal Financing Program(FB0809)Advanced Mining Technology Center,FONDECYT Project(1150488)+1 种基金Fractional Error Models in Adaptive Control and Applications,FONDECYT(3150007)Postdoctoral Program 2015
文摘This paper presents the analysis of the control energy consumed in model reference adaptive control(MRAC)schemes using fractional adaptive laws, through simulation studies. The analysis is focused on the energy spent in the control signal represented by means of the integral of the squared control input(ISI). Also, the behavior of the integral of the squared control error(ISE) is included in the analysis.The orders of the adaptive laws were selected by particle swarm optimization(PSO), using an objective function including the ISI and the ISE, with different weighting factors. The results show that, when ISI index is taken into account in the optimization process to determine the orders of adaptive laws,the resulting values are fractional, indicating that control energy of the scheme might be better managed if fractional adaptive laws are used.
基金High Technology Research and Development (863) Program(No.2003AA517020)
文摘This paper has investigated best tracking performance for linear feedback control systems in the case that plant uncertainty and control effort need to be considered simultaneously. Firstly, an average integral square criterion of the tracking error and the plant input energy over a class of additive model errors is defined. Then, utilizing spectral factorization to minimize the performance index, we obtain an optimal controller design method, and furthermore study optimal tracking performance under plant uncertainty and control energy constraint. The results can be used to evaluate optimal average tracking performance and control energy in designing practical control systems.
基金supported by the National Natural Science Foundation of China (Grant No. 61763013)the Natural Science Foundation of Jiangxi Province of China (Grant No. 20202BABL212008)+1 种基金the Jiangxi Provincial Postdoctoral Preferred Project of China (Grant No. 2017KY37)the Key Research and Development Project of Jiangxi Province of China (Grant No. 20202BBEL53018)。
文摘The control of complex networks is affected by their structural characteristic. As a type of key nodes in a network structure, cut vertexes are essential for network connectivity because their removal will disconnect the network. Despite their fundamental importance, the influence of the cut vertexes on network control is still uncertain. Here, we reveal the relationship between the cut vertexes and the driver nodes, and find that the driver nodes tend to avoid the cut vertexes.However, driving cut vertexes reduce the energy required for controlling complex networks, since cut vertexes are located near the middle of the control chains. By employing three different node failure strategies, we investigate the impact of cut vertexes failure on the energy required. The results show that cut vertex failures markedly increase the control energy because the cut vertexes are larger-degree nodes. Our results deepen the understanding of the structural characteristic in network control.
基金Supported by National 863 Plan Project (2008AA10Z220 )Key Technological Task Project of Henan Agricultural Domain(082102140004)~~
文摘To satisfy the need of good quality and high yield primary production,the farmland information management system based on wireless Sensor Network has been proposed.We give priority to analyzing the basic function of the system,building the systematic structure of applied system and network system,and implementing the energy control and safety design of system.The system can reduce manpower operation and the error of manual measuration in the course of practical production,reduce the cost of agricultural production,and realize automatization of agricultural production to the largest extent to provide an effective way to realize good quality and high yield primary production,which has an important realistic meaning.
基金supported by National Key R&D Program of China(No.2021YFB2401100).
文摘The modular multilevel matrix converter(M3C)is a potential frequency converter for low-frequency AC transmission.However,capacitor voltage control of high-voltage and largecapacity M3C is more difficult,especially for voltage balancing between branches.To solve this problem,this paper defines sequence circulating components and theoretically analyzes the influence mechanism of different sequence circulating components on branch capacitor voltage.A fully decoupled branch energy balancing control method based on four groups of sequence circulating components is proposed.This method can control capacitor voltages of nine branches in horizontal,vertical and diagonal directions.Considering influences of both circulating current and voltage,a cross decoupled control is designed to improve control precision.Simulation results are taken from a low-frequency transmission system based on PSCAD/EMTDC,and effectiveness and precision of the proposed branch energy balancing control method are verified in the case of nonuniform parameters and an unbalanced power system.