期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
Interannual variations in energy conversion and interaction between the mesoscale eddy field and mean flow in the Kuroshio south of Japan 被引量:2
1
作者 马利斌 王强 《Chinese Journal of Oceanology and Limnology》 SCIE CAS CSCD 2014年第1期210-222,共13页
Using 19-year satellite altimetric data, variations in the eddy kinetic energy, energy exchanges and interaction between the eddy fi eld and mean fl ow are discussed for the Kuroshio south of Japan. In the seasonal cy... Using 19-year satellite altimetric data, variations in the eddy kinetic energy, energy exchanges and interaction between the eddy fi eld and mean fl ow are discussed for the Kuroshio south of Japan. In the seasonal cycle, the eddy kinetic energy level is a minimum in December/January and a maximum in April/May. In addition to seasonal variations, the eddy kinetic energy undergoes interannual changes. The energy transfers mainly from the mean fl ow to the eddy fi eld in the Kuroshio south of Japan, and dominant energy exchanges mainly occur along the Kuroshio path south of Japan in each year from 1993 to 2011. In addition, there is often barotropic instability south of Honshu. Regarding interactions between the eddy fi eld and mean fl ow, cyclonic and anticyclonic accelerations are also found along the Kuroshio path and they fl ank each other. There is cyclonic acceleration always imposed on southeast of Kyushu, and anticyclonic acceleration dominates south of Honshu from 2001 to mid-2005. Reynolds stress is used to explain the dynamic process of energy exchange. Furthermore, lag-correlation and linear regression analysis show that variability of the energy conversion rate and Reynolds stress involve responses to eddy acceleration at two time scales. The enhanced eddy acceleration induces large Reynolds stress, and enhanced Reynolds stress or barotropic instability further enforces energy transfer from the mean fl ow to the eddy fi eld. 展开更多
关键词 eddy kinetic energy energy conversion rate eddy-mean flow interaction Reynolds stress
下载PDF
The decadally modulating eddy field in the upstream Kuroshio Extension and its related mechanisms 被引量:2
2
作者 WANG Shihong LIU Zhiliang +1 位作者 PANG Chongguang LIU Huiqing 《Acta Oceanologica Sinica》 SCIE CAS CSCD 2016年第5期9-17,共9页
Both the level of the high-frequency eddy kinetic energy(HF-EKE) and the energy-containing scale in the upstream Kuroshio Extension(KE) undergo a well-defined decadal modulation, which correlates well with the dec... Both the level of the high-frequency eddy kinetic energy(HF-EKE) and the energy-containing scale in the upstream Kuroshio Extension(KE) undergo a well-defined decadal modulation, which correlates well with the decadal KE path variability. The HF-EKE level and the energy-containing scales will increase with unstable KE path and decrease with stable KE path. Also the mesoscale eddies are a little meridionally elongated in the stable state, while they are much zonally elongated in the unstable state. The local baroclinic instability and the barotropic instability associated with the decadal modulation of HF-EKE have been investigated. The results show that the baroclinic instability is stronger in the stable state than that in the unstable state, with a shorter characteristic temporal scale and a larger characteristic spatial scale. Meanwhile, the regional-averaged barotropic conversion rate is larger in the unstable state than that in the stable state. The results also demonstrate that the baroclinic instability is not the dominant mechanism influencing the decadal modulation of the mesoscale eddy field, while the barotropic instability makes a positive contribution to the decadal modulation. 展开更多
关键词 Kuroshio Extension mesoscale eddy decadal modulation baroclinic instability barotropic energy conversion rate nonlinear eddy-eddy interaction
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部