期刊文献+
共找到7篇文章
< 1 >
每页显示 20 50 100
Damage response of conventionally reinforced two-way spanning concrete slab under eccentric impacting drop weight loading 被引量:2
1
作者 S.M.Anas Mehtab Alam Mohd Shariq 《Defence Technology(防务技术)》 SCIE EI CAS CSCD 2023年第1期12-34,共23页
Reinforced concrete(RC)structures are generally designed to carry quasi-static gravity loads through almost indispensable components namely slab,however,it may be subjected to high intense loads induced from the impac... Reinforced concrete(RC)structures are generally designed to carry quasi-static gravity loads through almost indispensable components namely slab,however,it may be subjected to high intense loads induced from the impact of projectiles generated by the tornado,falling construction equipment,and also from accidental explosions during their construction and service lifespan.Impacts due to rock/boulder falls do occur on the structures located especially in hilly areas.Such loadings are not predictable but may cause severe damage to the slab/structure.It stimulates structural engineers and researchers to investigate and understand the dynamic response of RC structures under such impulsive loading.This research work first investigates the performance of 1000×1000×75 mm^(3)conventionally reinforced two-way spanning normal strength concrete slab with only tension reinforcement(0.88%)under the concentric impact load(1035 N)using the finite element method based computer code,ABAQUS/Explicit-v.6.15.The impact load is delivered to the centroid of the slab using a solid-steel cylindroconical impactor(drop weight)with a flat nose of diameter 40 mm,having a total mass of 105 kg released from a fixed height of 2500 mm.Two popular concrete constitutive models in ABAQUS namely;Holmquist-Johnson-Cook(HJC)and Concrete Damage Plasticity(CDP),with strain rate effects as per fib MODEL CODE 2010,are used to model the concrete material behavior to impact loading and to simulate the damage to the slab.The slab response using these two models is analyzed and compared with the impact test results.The strain rate effect on the reinforcing steel bars has been incorporated in the analysis using the Malvar and Crawford(1998)approach.A classical elastoplastic kinematic idealization is considered to model the steel impactor and support system.Results reveal that the HJC model gives a little overestimation of peak displacement,maximum acceleration,and damage of the slab while the predictions given by the CDP model are in reasonable agreement with the experimental test results/observations available in the open literature.Following the validation of the numerical model,analyses have been extended to further investigate the damage response of the slab under eccentric impact loadings.In addition to the concentric location(P1)of the impacting device,five locations on a quarter of the slab i.e.,two along the diagonal(P2&P3),the other two along the mid-span(P4&P5),and the last one(P6)between P3 and P5,covering the entire slab,are considered.Computational results have been discussed and compared,and the evaluation of the most damaging location(s)of the impact is investigated.It has been found that the most critical location of the impact is not the centroid of the slab but the eccentric one with the eccentricity of 1/6th of the span from the centroid along the mid-span section. 展开更多
关键词 RC slabs Impact loading Eccentric impacts Concrete models Finite element analysis damage profiles Stresses Peak acceleration Failure modes damage dissipation energy CRACKING Drop-weight locations
下载PDF
Assessment of structural damage using natural frequency changes 被引量:4
2
作者 Shu-Qing Wang Hua-Jun Li 《Acta Mechanica Sinica》 SCIE EI CAS CSCD 2012年第1期118-127,共10页
The present paper develops a new method for damage localization and severity estimation based on the employment of modal strain energy. This method is able to determine the damage locations and estimate their severiti... The present paper develops a new method for damage localization and severity estimation based on the employment of modal strain energy. This method is able to determine the damage locations and estimate their severities, requiring only the information about the changes of a few lower natural frequencies. First, a damage quantification method is formulated and iterative approach is adopted for determining the damage extent. Then a damage localization algorithm is proposed, in which a damage indicator is formulated where unity value corresponds to the true damage scenario. Finally, numerical studies and model tests are conducted to demonstrate the effectiveness of the developed algorithm. 展开更多
关键词 damage assessment damage detection Strain energy - Modal analysis - Natural frequency
下载PDF
Low-energy atomic displacement model of SRIM simulations
3
作者 Sheng-Li Chen 《Nuclear Science and Techniques》 SCIE EI CAS CSCD 2021年第11期15-24,共10页
Radiation-induced atomic displacement damage is a pressing issue for materials.The present work investigates the number of atomic displacements using the Primary Knock-on Atom (PKA) energy E_(PKA)and threshold displac... Radiation-induced atomic displacement damage is a pressing issue for materials.The present work investigates the number of atomic displacements using the Primary Knock-on Atom (PKA) energy E_(PKA)and threshold displacement energy E_(d)as two major parameters via lowenergy SRIM Binary Collision Approximation (BCA) full cascade simulations.It is found that the number of atomic displacements cannot be uniquely determined by E_(PKA)/E_(d )or E_(D) /E_(d)(E_(D) refers to the damage energy) when the energy is comparable with E_(d).The effective energy E_(D,eff)proposed in the present work allows to describing the number of atomic displacements for most presently studied monatomic materials by the unique variable E_(D,eff)/E_(d).Nevertheless,it is noteworthy that the BCA simulation damage energy depends on E_(d),whereas the currently used analytical method is independent of E_(d).A more accurate analytical damage energy function should be determined by including the dependence on E_(d). 展开更多
关键词 Atomic displacement damage energy Effective energy SRIM neutron cascade simulations
下载PDF
A micromechanical damage model for rocks and concretes under triaxial compression
4
作者 任中俊 彭向和 +2 位作者 胡宁 杨春和 Xing-ming GUO 《Applied Mathematics and Mechanics(English Edition)》 SCIE EI 2009年第3期323-333,共11页
Based on analysis of deformation in an infinite isotropic elastic matrix containing an embedded elliptic crack, subject to far field triaxial compressive stress, the energy release rate and a mixed fracture criterion ... Based on analysis of deformation in an infinite isotropic elastic matrix containing an embedded elliptic crack, subject to far field triaxial compressive stress, the energy release rate and a mixed fracture criterion are obtained by using an energy balance approach. The additional compliance tensor induced by a single closed elliptic microcrack in a representative volume element and its in-plane growth is derived. The additional compliance tensor induced by the kinked growth of the elliptic microcrack is also obtained. The effect of the microcracks, randomly distributed both in geometric characteristics and orientations, is analyzed with the Taylor's scheme by introducing an appropriate probability density function. A micromechanical damage model for rocks and concretes under triaxial compression is obtained and experimentally verified. 展开更多
关键词 elliptic microcrack in-plane growth kinked growth energy release rate micro-macro damage model
下载PDF
Damage detection in beam-like structures using static shear energy redistribution 被引量:1
5
作者 Xi PENG Qiuwei YANG 《Frontiers of Structural and Civil Engineering》 SCIE EI CSCD 2022年第12期1552-1564,共13页
In this study,a static shear energy algorithm is presented for the damage assessment of beam-like structures.According to the energy release principle,the strain energy of a damaged element suddenly changes when struc... In this study,a static shear energy algorithm is presented for the damage assessment of beam-like structures.According to the energy release principle,the strain energy of a damaged element suddenly changes when structural damage occurs.Therefore,the change in the static shear energy is employed to determine the damage locations in beam-like structures.The static shear energy is derived from the spectral factorization of the elementary stiffness matrix and structural deflection variation.The advantage of using shear energy as opposed to total energy is that only a few deflection data points of the beam structure are required during the process of damage identification.Another advantage of the proposed approach is that damage detection can be performed without establishing a structural finiteelement model in advance.The proposed technique is first validated using a numerical example with single,multiple,and adjacent damage scenarios.A channel steel beam and rectangular concrete beam are employed as experimental cases to further verify the proposed approach.The results of the simulation and experiment examples indicate that the proposed algorithm provides a simple and effective method for defect localization in beam-like structures. 展开更多
关键词 damage detection beam structure strain energy static displacement variation energy damage index
原文传递
Analysis of structural behavior during collision event accounting for bow and side structure interaction 被引量:5
6
作者 Aditya Rio Prabowo Dong Myung Bae +3 位作者 Jung Min Sohn Ahmad Fauzan Zakki Bo Cao Qing Wang 《Theoretical & Applied Mechanics Letters》 CAS CSCD 2017年第1期6-12,共7页
The main goal of this study was to investigate the effects of selected ship collision parameter values on the characteristics of the absorbed energy in several ship collision scenarios. Non-linear simulations were per... The main goal of this study was to investigate the effects of selected ship collision parameter values on the characteristics of the absorbed energy in several ship collision scenarios. Non-linear simulations were performed using a finite element method (FEM) to obtain virtual experiment data. In the present research, the size of the side damage from a collision phenomenon were measured and used to verify the numerical configuration together with the calculation results using an empirical equation. Parameters in the external dynamics of a ship collision such as the location of the contact point and velocity of the striking ship were taken into consideration. The internal energy and deformation size on the side structure were discussed further in a comparative study. The effects of the selected parameters on several structural behaviors, namely energy, force, and damage extent were also observed and evaluated in this section. Stiffener on side hull was found to contribute significantly into resistance capability of the target ship against penetration of the striking bow. Remarkable force during penetration was observed to occur when inner shell was crushed as certain velocity was applied in the striking bow. 展开更多
关键词 Collision phenomenon Bow-side hull interaction Finite element analysisInternal energy damage extent
下载PDF
EMP injection damage effects of a bipolar transistor and its relationship between the injecting voltage and energy 被引量:4
7
作者 席晓文 柴常春 +3 位作者 任兴荣 杨银堂 张冰 洪潇 《Journal of Semiconductors》 EI CAS CSCD 北大核心 2010年第4期32-36,共5页
The response of a bipolar transistor (BJT) under a square-wave electromagnetic pulse (EMP) with different injecting voltages is investigated. Adopting the curve fitting method, the relationship between the burnout... The response of a bipolar transistor (BJT) under a square-wave electromagnetic pulse (EMP) with different injecting voltages is investigated. Adopting the curve fitting method, the relationship between the burnout time, the damage energy and the injecting voltage is obtained. Research shows that the damage energy is not a constant value, but changes with the injecting voltage level. By use of the device simulator Medici, the internal behavior of the burned device is analyzed. Simulation results indicate that the variation of the damage energy with injecting voltage is caused by the distribution change of hot spot position under different injection levels. Therefore, the traditional way to evaluate the trade-off between the burnout time and the injecting voltage is not comprehensive due to the variation of the damage energy. 展开更多
关键词 BJT square-wave EMP injecting voltage damage energy
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部