期刊文献+
共找到7,729篇文章
< 1 2 250 >
每页显示 20 50 100
High energy density in ultra-thick and flexible electrodes enabled by designed conductive agent/binder composite
1
作者 Xiaoyu Shen Hailong Yu +6 位作者 Liubin Ben Wenwu Zhao Qiyu Wang Guanjun Cen Ronghan Qiao Yida Wu Xuejie Huang 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2024年第3期133-143,I0005,共12页
Thick electrodes can increase incorporation of active electrode materials by diminishing the proportion of inactive constituents,improving the overall energy density of batteries.However,thick electrodes fabricated us... Thick electrodes can increase incorporation of active electrode materials by diminishing the proportion of inactive constituents,improving the overall energy density of batteries.However,thick electrodes fabricated using the conventional slurry casting approach frequently exhibit an exacerbated accumulation of carbon additives and binders on their surfaces,invariably leading to compromised electrochemical properties.In this study,we introduce a designed conductive agent/binder composite synthesized from carbon nanotube and polytetrafluoroethylene.This agent/binder composite facilitates production of dry-process-prepared ultra-thick electrodes endowed with a three-dimensional and uniformly distributed percolative architecture,ensuring superior electronic conductivity and remarkable mechanical resilience.Using this approach,ultra-thick LiCoO_(2)(LCO) electrodes demonstrated superior cycling performance and rate capabilities,registering an impressive loading capacity of up to 101.4 mg/cm^(2),signifying a 242% increase in battery energy density.In another analytical endeavor,time-of-flight secondary ion mass spectroscopy was used to clarify the distribution of cathode electrolyte interphase(CEI) in cycled LCO electrodes.The results provide unprecedented evidence explaining the intricate correlation between CEI generation and carbon distribution,highlighting the intrinsic advantages of the proposed dry-process approach in fine-tu ning the CEI,with excellent cycling performance in batteries equipped with ultra-thick electrodes. 展开更多
关键词 Conductive agent/binder composite Dry process Ultra-thick electrodes High energy density CEI reconstruction ToF-SIMS
下载PDF
3D printing encouraging desired in-situ polypyrrole seed-polymerization for ultra-high energy density supercapacitors
2
作者 Tiantian Zhou Shangwen Ling +6 位作者 Shuxian Sun Ruoxin Yuan Ziqin Wu Mengyuan Fu Hanna He Xiaolong Li Chuhong Zhang 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2024年第8期117-125,I0004,共10页
The tireless pursuit of supercapacitors with high energy density entails the parallel advancement of wellsuited electrode materials and elaborately engineered architectures.Polypyrrole(PPy)emerges as an exceedingly co... The tireless pursuit of supercapacitors with high energy density entails the parallel advancement of wellsuited electrode materials and elaborately engineered architectures.Polypyrrole(PPy)emerges as an exceedingly conductive polymer and a prospective pseudocapacitive materials for supercapacitors,yet the inferior cyclic stability and unpredictable polymerization patterns severely impede its real-world applicability.Here,for the first time,an innovative seed-induced in-situ polymerization assisted 3D printing strategy is proposed to fabricate PPy-reduced graphene oxide/poly(vinylidene difluoride-cohexafluoropropylene)(PVDF-HFP)(PPy-rGO/PH)electrodes with controllable polymerization behavior and exceptional areal mass loading.The preferred active sites uniformly pre-planted on the 3D-printed graphene substrates serve as reliable seeds to induce efficient polypyrrole deposition,achieving an impressive mass loading of 185.6 mg cm^(-2)(particularly 79.2 mg cm^(-2)for polypyrrole)and a superior areal capacitance of 25.2 F cm^(-2)at 2 mA cm^(-2)for a 12-layer electrode.In agreement with theses appealing features,an unprecedented areal energy density of 1.47 mW h cm^(-2)for a symmetrical device is registered,a rarely achieved value for other PPy/rGO-based supercapacitors.This work highlights a promising route to preparing high energy density energy storage modules for real-world applications. 展开更多
关键词 3D printing Seed-induced polymerization SUPERCAPACITOR POLYPYRROLE High energy density
下载PDF
Boosting Pseudocapacitive Behavior of Supercapattery Electrodes by Incorporating a Schottky Junction for Ultrahigh Energy Density 被引量:2
3
作者 Selvaraj Seenivasan Kyu In Shim +4 位作者 Chaesung Lim Thangavel Kavinkumar Amarnath T.Sivagurunathan Jeong Woo Han Do-Heyoung Kim 《Nano-Micro Letters》 SCIE EI CAS CSCD 2023年第5期15-35,共21页
Pseudo-capacitive negative electrodes remain a major bottleneck in the development of supercapacitor devices with high energy density because the electric double-layer capacitance of the negative electrodes does not m... Pseudo-capacitive negative electrodes remain a major bottleneck in the development of supercapacitor devices with high energy density because the electric double-layer capacitance of the negative electrodes does not match the pseudocapacitance of the corresponding positive electrodes.In the present study,a strategically improved Ni-Co-Mo sulfide is demonstrated to be a promising candidate for high energy density supercapattery devices due to its sustained pseudocapacitive charge storage mechanism.The pseudocapacitive behavior is enhanced when operating under a high current through the addition of a classical Schottky junction next to the electrode-electrolyte interface using atomic layer deposition.The Schottky junction accelerates and decelerates the diffusion of OH-/K+ions during the charging and discharging processes,respectively,to improve the pseudocapacitive behavior.The resulting pseudocapacitive negative electrodes exhibits a specific capacity of 2,114 C g^(-1)at 2 A g^(-1)matches almost that of the positive electrode’s 2,795 C g^(-1)at 3 A g^(-1).As a result,with the equivalent contribution from the positive and negative electrodes,an energy density of 236.1 Wh kg^(-1)is achieved at a power density of 921.9 W kg^(-1)with a total active mass of 15 mg cm-2.This strategy demonstrates the possibility of producing supercapacitors that adapt well to the supercapattery zone of a Ragone plot and that are equal to batteries in terms of energy density,thus,offering a route for further advances in electrochemical energy storage and conversion processes. 展开更多
关键词 PSEUDO-CAPACITANCE Negative electrode Supercapattery Atomic layer deposition energy density
下载PDF
Multilevel carbon architecture of subnanoscopic silicon for fast‐charging high‐energy‐density lithium‐ion batteries
4
作者 Meisheng Han Yongbiao Mu +2 位作者 Lei Wei Lin Zeng Tianshou Zhao 《Carbon Energy》 SCIE EI CAS CSCD 2024年第4期256-268,共13页
Silicon(Si)is widely used as a lithium‐ion‐battery anode owing to its high capacity and abundant crustal reserves.However,large volume change upon cycling and poor conductivity of Si cause rapid capacity decay and p... Silicon(Si)is widely used as a lithium‐ion‐battery anode owing to its high capacity and abundant crustal reserves.However,large volume change upon cycling and poor conductivity of Si cause rapid capacity decay and poor fast‐charging capability limiting its commercial applications.Here,we propose a multilevel carbon architecture with vertical graphene sheets(VGSs)grown on surfaces of subnanoscopically and homogeneously dispersed Si–C composite nanospheres,which are subsequently embedded into a carbon matrix(C/VGSs@Si–C).Subnanoscopic C in the Si–C nanospheres,VGSs,and carbon matrix form a three‐dimensional conductive and robust network,which significantly improves the conductivity and suppresses the volume expansion of Si,thereby boosting charge transport and improving electrode stability.The VGSs with vast exposed edges considerably increase the contact area with the carbon matrix and supply directional transport channels through the entire material,which boosts charge transport.The carbon matrix encapsulates VGSs@Si–C to decrease the specific surface area and increase tap density,thus yielding high first Coulombic efficiency and electrode compaction density.Consequently,C/VGSs@Si–C delivers excellent Li‐ion storage performances under industrial electrode conditions.In particular,the full cells show high energy densities of 603.5 Wh kg^(−1)and 1685.5 Wh L^(−1)at 0.1 C and maintain 80.7%of the energy density at 3 C. 展开更多
关键词 fast charging high energy densities lithium‐ion batteries multilevel carbon architecture subnanoscopic silicon anode
下载PDF
Fluorinated soft carbon as an ultra-high energy density potassium-ion battery cathode enabled by a ternary phase K_(x)FC 被引量:1
5
作者 Pengyu Chen Bojun Wang +4 位作者 Zhenrui Wu Xiaobin Niu Chuying Ouyang Hong Li Liping Wang 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2023年第2期38-44,I0002,共8页
Fluorinated carbons(CFx)have been widely applied as lithium primary batteries due to their ultra-high energy density.It will be a great promise if CFx can be rechargeable.In this study,we rationally tune the C-F bond ... Fluorinated carbons(CFx)have been widely applied as lithium primary batteries due to their ultra-high energy density.It will be a great promise if CFx can be rechargeable.In this study,we rationally tune the C-F bond strength for the alkaline intercalated CFx via importing an electronegative weaker element K instead of Li.It forms a ternary phase K_(x)FC instead of two phases(LiF+C)in lithium-ion batteries.Meanwhile,we choose a large layer distance and more defects CFx,namely fluorinated soft carbon,to accommodate K.Thus,we enable CFx rechargeable as a potassium-ion battery cathode.In detail fluorinated soft carbon CF_(1.01) presents a reversible specific capacity of 339 mA h g^(-1)(797 Wh kg^(-1))in the 2nd cycle and maintains 330 mA h g^(-1)(726 Wh kg^(-1))in the 15th cycle.This study reveals the importance of tuning chemical bond stability using different alkaline ions to endow batteries with rechargeability.This work provides good references for focusing on developing reversible electrode materials from popular primary cell configurations. 展开更多
关键词 Fluorinated carbon High energy density battery Potassium-ion battery Conversion reaction K-free cathode
下载PDF
Spontaneous local redox reaction to passivate CNTs as lightweight current collector for high energy density lithium ion batteries 被引量:1
6
作者 Chao Lv Zhen Tong +4 位作者 Shi-Yuan Zhou Si-Yu Pan Hong-Gang Liao Yao Zhou Jun-Tao Li 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2023年第5期553-561,I0013,共10页
Extensive usage of highly conductive carbon materials with large specific surface area(e.g.,carbon nanotubes,CNTs)in lithium ion batteries(LIBs),especially as current collector of anodes,suffers from low initial coulo... Extensive usage of highly conductive carbon materials with large specific surface area(e.g.,carbon nanotubes,CNTs)in lithium ion batteries(LIBs),especially as current collector of anodes,suffers from low initial coulombic efficiency(ICE),large interfacial resistance,and severe embrittlement,as the large specific surface area often results in severe interfacial decomposition of the electrolyte and the formation of thick and fluffy solid electrolyte interphase(SEI)during cycling of LIBs.Herein,we demonstrate that when the CNT-based current collector and Na foil(which are being stacked intimately upon each other)are being placed in Na+-based organic electrolyte,local redox reaction between the Na foil and the electrolyte would occur spontaneously,generating a thin and homogeneous NaF-based passivating layer on the CNTs.More importantly,we found that owing to the weak solvation behaviors of Na+in the organic electrolyte,the resulting passivation layer,which is rich in NaF,is thin and dense;when used as the anode current collector in LIBs,the pre-existing passivating layer can function effectively in isolating the anode from the solvated Li+,thus suppressing the formation of bulky SEI and the destructive intercalation of solvated Li+.The relevant half-cell(graphite as anode)exhibits a high ICE of 92.1%;the relevant pouch cell with thus passivated CNT film as current collectors for both electrodes(LiCoO_(2)as cathode,graphite as anode)displays a high energy density of 255 Wh kg^(-1),spelling an increase of 50%compared with that using the conventional metal current collectors. 展开更多
关键词 Lightweight current collector Passivating layer Initial coulombic efficiency High energy density storage
下载PDF
A Number Theoretic Analysis of the Enthalpy, Enthalpy Energy Density, Thermodynamic Volume, and the Equation of State of a Modified White Hole, and the Implications to the Quantum Vacuum Spacetime, Matter Creation and the Planck Frequency
7
作者 Michele Nardelli Amos S. Kubeka Alizera Amani 《Journal of Modern Physics》 2024年第1期1-50,共50页
In this paper, we analyze the enthalpy, enthalpy energy density, thermodynamic volume, and the equation of state of a modified white hole. We obtain new possible mathematical connections with some sectors of Number Th... In this paper, we analyze the enthalpy, enthalpy energy density, thermodynamic volume, and the equation of state of a modified white hole. We obtain new possible mathematical connections with some sectors of Number Theory, Ramanujan Recurring Numbers, DN Constant and String Theory, that enable us to extract the quantum geometrical properties of these thermodynamic equations and the implication to the quantum vacuum spacetime geometry of our early universe as they act as the constraints to the nature of quantum gravity of the universe. 展开更多
关键词 Number Theory Ramanujan Recurring Numbers DN Constant String Theory Loop Quantum Gravity Matter Creation Enthalpy energy density Thermodynamic Volume ENTHALPY
下载PDF
The Fluorination of Boron-Doped Graphene for CF_(x) Cathode with Ultrahigh Energy Density 被引量:1
8
作者 Kai Wang Yiyu Feng +5 位作者 Lingchen Kong Cong Peng Yuanhang Hu Weiyu Li Yu Li Wei Feng 《Energy & Environmental Materials》 SCIE EI CAS CSCD 2023年第4期49-57,共9页
The enhancement of the fluorination degree of carbon fluorides(CF_(x))compounds is the most effective method to improve the energy densities of Li/CF_(x)batteries because the specific capacity of CF_(x)is proportional... The enhancement of the fluorination degree of carbon fluorides(CF_(x))compounds is the most effective method to improve the energy densities of Li/CF_(x)batteries because the specific capacity of CF_(x)is proportional to the molar ratio of F to C atoms(F/C).In this study,B-doped graphene(BG)is prepared by using boric acid as the doping source and then the prepared BG is utilized as the starting material for the preparation of CF_(x).The B-doping enhances the F/C ratio of CF_(x)without hindering the electrochemical activity of the C–F bond.During the fluorination process,B-containing functional groups are removed from the graphene lattice.This facilitates the formation of a defect-rich graphene matrix,which not only enhances the F/C ratio due to abundant perfluorinated groups at the defective edges but also serves as the active site for extra Li+storage.The prepared CF_(x)exhibits the maximum specific capacity of 1204 mAh g^(−1),which is 39.2%higher than that of CF_(x)obtained directly from graphene oxide(without B-doping).An unprecedented energy density of 2974 Wh kg^(−1)is achieved for the asprepared CF_(x)samples,which is significantly higher than the theoretically calculated energy density of commercially available fluorinated graphite(2180 Wh kg^(−1)).Therefore,this study demonstrates a great potential of B-doping to realize the ultrahigh energy density of CF_(x)cathodes for practical applications. 展开更多
关键词 boron doping energy density fluorinated graphene lithium primary battery rate capability
下载PDF
Superior corrosion resistance-dependent laser energy density in(CoCrFeNi)95Nb5 high entropy alloy coating fabricated by laser cladding 被引量:10
9
作者 Wen-rui Wang Wu Qi +4 位作者 Xiao-li Zhang Xiao Yang Lu Xie Dong-yue Li Yong-hua Xiang 《International Journal of Minerals,Metallurgy and Materials》 SCIE EI CAS CSCD 2021年第5期888-897,共10页
(CoCrFeNi)95Nb5 high entropy alloy(HEA)coatings were successfully fabricated on a substrate of Q235 steel by laser cladding technology.These(CoCrFeNi)95Nb5 HEA coatings possess excellent properties,particularly corros... (CoCrFeNi)95Nb5 high entropy alloy(HEA)coatings were successfully fabricated on a substrate of Q235 steel by laser cladding technology.These(CoCrFeNi)95Nb5 HEA coatings possess excellent properties,particularly corrosion resistance,which is clearly superior to that of some typical bulk HEA and common engineering alloys.In order to obtain appropriate laser cladding preparation process parameters,the effects of laser energy density on the microstructure,microhardness,and corrosion resistance of(CoCrFeNi)95Nb5 HEA coating were closely studied.Results showed that as the laser energy density increases,precipitation of the Laves phase in(CoCrFeNi)95Nb5 HEA coating gradually decreases,and diffusion of the Fe element in the substrate intensifies,affecting the integrity of the(CoCrFeNi)95Nb5 HEA.This decreases the microhardness of(CoCrFeNi)95Nb5 HEA coatings.Moreover,the relative content of Cr2O3,Cr(OH)3,and Nb2O5 in the surface passive film of the coating decreases with increasing energy density,causing corrosion resistance to decrease.This study demonstrates the controllability of a high-performance HEA coating using laser cladding technology,which has significance for the laser cladding preparation of other CoCrFeNi-system HEA coatings. 展开更多
关键词 high entropy alloy coating laser cladding technology laser energy density corrosion resistance
下载PDF
Thin NASICON Electrolyte to Realize High Energy Density Solid-State Sodium Metal Battery
10
作者 Jin An Sam Oh Xiaoyu Xu +5 位作者 Zhihan Zeng Kexin Wang Nicholas Yew Jin Tan Eugene Kok Jiemin Huang Li Lu 《Energy & Environmental Materials》 SCIE EI CAS CSCD 2023年第6期419-426,共8页
The solid-state electrolyte in a solid-state battery acts as an electrons'barrier and an ions'bridge between the two electrodes.As solid-state electrolyte does not store the mobile ions,it is necessary to achi... The solid-state electrolyte in a solid-state battery acts as an electrons'barrier and an ions'bridge between the two electrodes.As solid-state electrolyte does not store the mobile ions,it is necessary to achieve a thin solid-state electrolyte to reduce the internal resistance and enhance the energy density.In this work,a thin NASICON solid-state electrolyte,with a stoichiometry of Na_(3)Zr_(2)Si_(2)PO_(12),is fabricated by the tape-casting method and its thickness can be easily controlled by the gap between substrate and scraper.The areal-specific resistance and the flexural strength increase with the electrolyte thickness.A solid-state sodium metal battery with 86 pm thick Na_(3)Zr_(2)Si_(2)PO_(12)exhibits a reversible specific capacity of 73-78 mAh g^(-1)with a redox potential of 3.4 V at 0.2 C.This work presents the importance of electrolyte thickness to reduce internal resistance and achieve a high energy density for sodium batteries. 展开更多
关键词 high energy density NASICON solid-state battery solid-state electrolyte tape casting
下载PDF
Green and sustainably designed intercalation-type anodes for emerging lithium dual-ion batteries with high energy density
11
作者 Tejaswi Tanaji Salunkhe Abhijit Nanaso Kadam +1 位作者 Jaehyun Hur Il Tae Kim 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2023年第5期466-478,I0011,共14页
Lithium dual-ion batteries(LiDIBs)have attracted significant attention owing to the growing demand for modern anode materials with high energy density.Herein,rust encapsulated in graphite was achieved by utilizing amm... Lithium dual-ion batteries(LiDIBs)have attracted significant attention owing to the growing demand for modern anode materials with high energy density.Herein,rust encapsulated in graphite was achieved by utilizing ammonium bicarbonate(ABC)as a template,which resulted in mesoporous Fe3O4embedded in expanded carbon(Fe3O4@G(ABC))via simple ball milling followed by annealing.This self-assembly approach for graphite-encapsulated Fe3O4composites helps enhance the electrochemical performance,such as the cycling stability and superior rate stability(at 3 A/g),with improved conductivity in Li DIBs.Specifically,Fe3O4@G-1:4(ABC)and Fe3O4@G-1:6(ABC)anodes in a half-cell at 0.1 A/g delivered initial capacities of 1390.6 and 824.4 mA h g^(-1),respectively.The optimized anode(Fe3O4@G-1:4(ABC))coupled with the expanded graphite(EG)cathode in Li DIBs provided a substantial initial specific capacity of 260.9 mA h g^(-1)at 1 A/g and a specific capacity regain of 106.3 mA h g^(-1)(at 0.1 A/g)after 250 cycles,with a very high energy density of 387.9 Wh kg^(-1).The strategically designed Fe3O4@G accelerated Li-ion kinetics,alleviated the volume change,and provided an efficient conductive network with excellent mechanical flexibility,resulting in exceptional performance in Li DIBs.Various postmortem analyses of the anode and cathode(XRD,Raman,EDS,and XPS)are presented to explain the intercalation-type electrochemical mechanisms of Li DIBs.This study offers several advantages,including safety,low cost,sustainability,environmental friendliness,and high energy density. 展开更多
关键词 Lithium dual-ion batteries Rust encapsulated graphite Ammonium bicarbonate Intercalation-type anode energy density
下载PDF
New carbon-nitrogen-oxygen compounds as high energy density materials
12
作者 沈俊宇 段青卓 +4 位作者 苗俊一 何适 何开华 戴伟 卢成 《Chinese Physics B》 SCIE EI CAS CSCD 2023年第9期381-385,共5页
Molecular crystals are complex systems exhibiting various crystal structures,and accurately modeling the crystal structures is essential for understanding their physical behaviors under high pressure.Here,we perform a... Molecular crystals are complex systems exhibiting various crystal structures,and accurately modeling the crystal structures is essential for understanding their physical behaviors under high pressure.Here,we perform an extensive structure search of ternary carbon-nitrogen-oxygen(CNO)compound under high pressure with the CALYPSO method and first principles calculations,and successfully identify three polymeric CNO compounds with Pbam,C2/m and I4m2symmetries under 100 GPa.More interestingly,these structures are also dynamically stable at ambient pressure,and are potential high energy density materials(HEDMs).The energy densities of Pbam,C2/m and I4m2 phases of CNO are about2.30 kJ/g,1.37 kJ/g and 2.70 kJ/g,respectively,with the decompositions of graphitic carbon and molecular carbon dioxide andα-N(molecular N_(2))at ambient pressure.The present results provide in-depth insights into the structural evolution and physical properties of CNO compounds under high pressures,which offer crucial insights for designs and syntheses of novel HEDMs. 展开更多
关键词 molecular crystals high pressure structure searches first principles calculations high energy density materials
下载PDF
Sb-Cu alloy cathode with a novel lithiation mechanism of ternary intermetallic formation: Enabling high energy density and superior rate capability of liquid metal battery
13
作者 Peng Chu Jie Wang +5 位作者 Hongliang Xie Qian Zhang Jiangyuan Feng Zehao Li Zhao Yang Hailei Zhao 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2023年第3期393-400,I0011,共9页
Antimony(Sb) is an attractive cathode for liquid metal batteries(LMBs) because of its high theoretical voltage and low cost.The main obstacles associated with the Sb-based cathodes are unsatisfactory energy density an... Antimony(Sb) is an attractive cathode for liquid metal batteries(LMBs) because of its high theoretical voltage and low cost.The main obstacles associated with the Sb-based cathodes are unsatisfactory energy density and poor rate-capability.Herein,we propose a novel Sb_(64)Cu_(36)cathode that effectively tackles these issues.The Sb_(64)Cu_(36)(melting point:525℃) cathode presents a novel lithiation mechanism involving sequentially the generation of Li_(2)CuSb,the formation of Li_(3)Sb,and the conversion reaction of Li_(2)CuSb to Li_(3)Sb and Cu.The generated intermetallic compounds show a unique microstructure of the upper floated Li_(2)CuSb layer and the below cross-linked structure with interpenetrated Li_(2)CuSb and Li_(3)Sb phases.Compared with Li_(3)Sb,the lower Li migration energy barrier(0.188 eV) of Li_(2)CuSb significantly facilitates the lithium diffusion across the intermediate compounds and accelerates the reaction kinetics.Consequently,the Li‖Sb_(64)Cu_(36)cell delivers a more excellent electrochemical performance(energy density:353 W h kg^(-1)at 0.4 A cm^(-2);rate capability:0.59 V at 2.0 A cm^(-2)),and a much lower energy storage cost of only 38.45 $ kW h^(-1)than other previously reported Sb-based LMBs.This work provides a novel cathode design concept for the development of high-performance LMBs in applications for large-scale energy storage. 展开更多
关键词 Liquid metal battery energy density Rate capability Low cost Sb_(64)Cu_(36)cathode
下载PDF
On a New Equation for Critical Current Density Directly in Terms of the BCS Interaction Parameter, Debye Temperature and the Fermi Energy of the Superconductor 被引量:2
14
作者 G. P. Malik 《World Journal of Condensed Matter Physics》 2013年第2期103-110,共8页
Recasting the BCS theory in the larger framework of the Bethe-Salpeter equation, a new equation is derived for the temperature-dependent critical current density jc(T) of an elemental superconductor (SC) directly in t... Recasting the BCS theory in the larger framework of the Bethe-Salpeter equation, a new equation is derived for the temperature-dependent critical current density jc(T) of an elemental superconductor (SC) directly in terms of the basic parameters of the theory, namely the dimensionless coupling constant [N(0)V], the Debye temperature θD and, additionally, the Fermi energy EF—unlike earlier such equations based on diverse, indirect criteria. Our approach provides an ab initio theoretical justification for one of the latter, text book equations invoked at T = 0 which involves Fermi momentum;additionally, it relates jc with the relevant parameters of the problem at T ≠ 0. Noting that the numerical value of EF of a high-Tc SC is a necessary input for the construction of its Fermi surface—which sheds light on its gap-structure, we also briefly discuss extension of our approach for such SCs. 展开更多
关键词 Critical Current density BCS Parameters FERMI energy Elemental/Non-Elemental SUPERCONDUCTORS
下载PDF
Mechanical behavior of rock under uniaxial tension:Insights from energy storage and dissipation
15
作者 Guanshuang Tan Chunde Ma +3 位作者 Junjie Zhang Wenyuan Yang Guiyin Zhang Zihao Kang 《Journal of Rock Mechanics and Geotechnical Engineering》 SCIE CSCD 2024年第7期2466-2481,共16页
Many rock engineering projects show that the growth of tensile cracks is often an important cause of engineering disasters,and the mechanical behavior of rocks is essentially the transmission,storage,dissipation and r... Many rock engineering projects show that the growth of tensile cracks is often an important cause of engineering disasters,and the mechanical behavior of rocks is essentially the transmission,storage,dissipation and release of energy.To investigate the tensile behavior of rock from the perspective of energy,uniaxial tension tests(UTTs)and uniaxial compression tests(UCTs)were carried out on three typical rocks(granite,sandstone and marble).Different unloading points were set before the peak stress to separate elastic energy and dissipated energy.The input energy density ut,elastic energy density ue,and dissipated energy density ud at each unloading point were calculated by integrating stress-strain curves.The results show that there is a strong linear relationship between the three energy parameters and the square of the unloading stress in UCT,but this linear relationship is weaker in UTT.The ue and ud increase linearly with the increase in ut in UCT and UTT.Based on the phenomenon that ue and ud increase linearly with ut,the applicability of W_(et)^(p) index in UTT was proved and the relative energy storage capacity and absolute energy distribution characteristics of three rocks in UCT and UTT were evaluated.The tensile behavior of marble and sandstone in UTT can be divided into two stages vaguely according to the energy distribution,but granite is not the case.In addition,based on dissipated energy,the damage evolution of three types of rocks in UCT and UTT was discussed.This study provides some new insights for understanding the tensile behavior of rock. 展开更多
关键词 Uniaxial tension energy density Mechanical behavior energy storage coefficient energy dissipation coefficient
下载PDF
Revealing the correlation between adsorption energy and activation energy to predict the catalytic activity of metal oxides for HMX using DFT
16
作者 Xiurong Yang Chi Zhang +6 位作者 Wujing Jin Zhaoqi Guo Hongxu Gao Shiyao Niu Fengqi Zhao Bo Liu Haixia Ma 《Defence Technology(防务技术)》 SCIE EI CAS CSCD 2024年第1期262-270,共9页
Traditional selection of combustion catalysis is time-consuming and labor-intensive.Theoretical calculation is expected to resolve this problem.The adsorption energy of HMX and O atoms on 13 metal oxides was calculate... Traditional selection of combustion catalysis is time-consuming and labor-intensive.Theoretical calculation is expected to resolve this problem.The adsorption energy of HMX and O atoms on 13 metal oxides was calculated using DMol3,since HMX and O are key substances in decomposition process.And the relationship between the adsorption energy of HMX,O on metal oxides(TiO_(2),Al_(2)O_(3),PbO,CuO,Fe_(2)O_(3),Co_(3)O_(4),Bi_(2)O_(3),NiO)and experimental T30 values(time required for the decomposition depth of HMX to reach 30%)was depicted as volcano plot.Thus,the T30 values of other metal oxides was predicted based on their adsorption energy on volcano plot and validated by previous experimental data.Further,the adsorption energy of HMX on ZrO_(2)and MnO_(2)was predicted based on the linear relationship between surface energy and adsorption energy,and T30 values were estimated based on volcano plot.The apparent activation energy data of HMX/MgO,HMX/SnO_(2),HMX/ZrO_(2),and HMX/MnO_(2)obtained from DSC experiments are basically consistent with our predicted T30 values,indicating that it is feasible to predict the catalytic activity based on the adsorption calculation,and it is expected that these simple structural properties can predict adsorption energy to reduce the large quantities of computation and experiment cost. 展开更多
关键词 density functional theory HMX Metal oxides Adsorption energy Activation energy
下载PDF
Analysis of Tidal Current Energy Potential in the Major Channels of the Bohai Strait Based on Delft3D
17
作者 MA Pengcheng SHI Hongyuan +2 位作者 XUE Huaiyuan LI Pingping SUN Yongkang 《Journal of Ocean University of China》 SCIE CAS CSCD 2024年第4期859-870,共12页
The utilization and development of tidal current energy can help alleviate the current energy shortage,improve the global ecological environment,and maintain sustainable development.In this study,numerical simulation ... The utilization and development of tidal current energy can help alleviate the current energy shortage,improve the global ecological environment,and maintain sustainable development.In this study,numerical simulation is carried out on a rectangular grid using Delft3D.The tidal current energy potential of the major channels in the Bohai Strait is further simulated and estimated by comparing the simulated and measured data.Results show that the flow module in Delft3D has good modeling ability for the assessment of tidal current energy potential.The average flow velocity,maximum flow velocity,and energy flow density are consistent.The Laotieshan Channel,located in the northern part of the Bohai Strait,shows a large tidal current energy potential.The maximum flow velocity of this channel can reach 2 m s-1,and the maximum energy flow density can exceed 500 W m-2.The tidal current energy in the Laotieshan Channel is more than 10 times that in other channels.Therefore,this study advocates for the continued exploration and exploitation of the tidal current energy resources in the Laotieshan Channel. 展开更多
关键词 Delft3D Bohai Strait tidal current energy numerical simulation power density
下载PDF
Carbon efficiency evaluation method for urban energy system with multiple energy complementary
18
作者 Xianan Jiao Jiekang Wu +1 位作者 Yunshou Mao Mengxuan Yan 《Global Energy Interconnection》 EI CSCD 2024年第2期142-154,共13页
Urban energy systems(UESs)play a pivotal role in the consumption of clean energy and the promotion of energy cascade utilization.In the context of the construction and operation strategy of UESs with multiple compleme... Urban energy systems(UESs)play a pivotal role in the consumption of clean energy and the promotion of energy cascade utilization.In the context of the construction and operation strategy of UESs with multiple complementary energy resources,a comprehensive assessment of the energy efficiency is of paramount importance.First,a multi-dimensional evaluation system with four primary indexes of energy utilization,environmental protection,system operation,and economic efficiency and 21 secondary indexes is constructed to comprehensively portray the UES.Considering that the evaluation system may contain a large number of indexes and that there is overlapping information among them,an energy efficiency evaluation method based on data processing,dimensionality reduction,integration of combined weights,and gray correlation analysis is proposed.This method can effectively reduce the number of calculations and improve the accuracy of energy efficiency assessments.Third,a demonstration project for a UES in China is presented.The energy efficiency of each scenario is assessed using six operational scenarios.The results show that Scenario 5,in which parks operate independently and investors build shared energy-storage equipment,has the best results and is best suited for green and low-carbon development.The results of the comparative assessment methods show that the proposed method provides a good energy efficiency assessment.This study provides a reference for the optimal planning,construction,and operation of UESs with multiple energy sources. 展开更多
关键词 Urban energy systems(UESs) Multiple energy complementary system Carbon efficiency evaluation Data downscaling Subjective and objective weight Gray correlation analysis
下载PDF
Sensitivity impacts owing to the variations in the type of zero-range pairing forces on the fission properties using the density functional theory
19
作者 Yang Su Ze-Yu Li +3 位作者 Li-Le Liu Guo-Xiang Dong Xiao-Bao Wang Yong-Jing Chen 《Nuclear Science and Techniques》 SCIE EI CAS CSCD 2024年第3期198-207,共10页
Using the Skyrme density functional theory,potential energy surfaces of^(240)Pu with constraints on the axial quadrupole and octupole deformations(q_(20)and q_(30))were calculated.The volume-like and surface-like pair... Using the Skyrme density functional theory,potential energy surfaces of^(240)Pu with constraints on the axial quadrupole and octupole deformations(q_(20)and q_(30))were calculated.The volume-like and surface-like pairing forces,as well as a combination of these two forces,were used for the Hartree–Fock–Bogoliubov approximation.Variations in the least-energy fission path,fission barrier,pairing energy,total kinetic energy,scission line,and mass distribution of the fission fragments based on the different forms of the pairing forces were analyzed and discussed.The fission dynamics were studied based on the timedependent generator coordinate method plus the Gaussian overlap approximation.The results demonstrated a sensitivity of the mass and charge distributions of the fission fragments on the form of the pairing force.Based on the investigation of the neutron-induced fission of^(239)Pu,among the volume,mixed,and surface pairing forces,the mixed pairing force presented a good reproduction of the experimental data. 展开更多
关键词 Nuclear fission density functional theory Pairing force Potential energy surfaces Fission fragment distribution
下载PDF
Free Energy Level Correction by Monte Carlo Resampling with Weighted Histogram Analysis Method
20
作者 Seyoung Chung Sun Mi Choi +2 位作者 Wook Lee Kwang Hyun Cho Young Min Rhee 《Chinese Journal of Chemical Physics》 SCIE CAS CSCD 2020年第2期183-195,I0003,I0010-I0017,共22页
Free energy calculations may provide vital information for studying various chemical and biological processes.Quantum mechanical methods are required to accurately describe interaction energies,but their computations ... Free energy calculations may provide vital information for studying various chemical and biological processes.Quantum mechanical methods are required to accurately describe interaction energies,but their computations are often too demanding for conformational sampling.As a remedy,level correction schemes that allow calculating high level free energies based on conformations from lower level simulations have been developed.Here,we present a variation of a Monte Carlo(MC)resampling approach in relation to the weighted histogram analysis method(WHAM).We show that our scheme can generate free energy surfaces that can practically converge to the exact one with sufficient sampling,and that it treats cases with insufficient sampling in a more stable manner than the conventional WHAM-based level correction scheme.It can also provide a guide for checking the uncertainty of the levelcorrected surface and a well-defined criterion for deciding the extent of smoothing on the free energy surface for its visual improvement.We demonstrate these aspects by obtaining the free energy maps associated with the alanine dipeptide and proton transfer network of the KillerRed protein in explicit water,and exemplify that the MC resampled WHAM scheme can be a practical tool for producing free energy surfaces of realistic systems. 展开更多
关键词 Free energy level correction weighted histogram analysis method Monte Carlo resampling
下载PDF
上一页 1 2 250 下一页 到第
使用帮助 返回顶部