Based on wavelet packet decomposition (WPD) algorithm and Teager energy operator (TEO), a novel gearbox fault detection and diagnosis method is proposed. Its process is expatiated after the principles of WPD and T...Based on wavelet packet decomposition (WPD) algorithm and Teager energy operator (TEO), a novel gearbox fault detection and diagnosis method is proposed. Its process is expatiated after the principles of WPD and TEO modulation are introduced respectively. The preprocessed sigaaal is interpolated with the cubic spline function, then expanded over the selected basis wavelets. Grouping its wavelet packet components of the signal based on the minimum entropy criterion, the interpolated signal can be decomposed into its dominant components with nearly distinct fault frequency contents. To extract the demodulation information of each dominant component, TEO is used. The performance of the proposed method is assessed by means of several tests on vibration signals collected from the gearbox mounted on a heavy truck. It is proved that hybrid WPD-TEO method is effective and robust for detecting and diagnosing localized gearbox faults.展开更多
Although many methods have been applied to diagnose the gear thult currently, the sensitivity of them is not very good. In order to make the diagnosis methods have more excellent integrated ability in such aspects as ...Although many methods have been applied to diagnose the gear thult currently, the sensitivity of them is not very good. In order to make the diagnosis methods have more excellent integrated ability in such aspects as precision, sensitivity, reliability and compact algorithm, and so on, and enlightened by the energy operator separation algorithm (EOSA), a new demodulation method which is optimizing energy operator separation algorithm (OEOSA) is presented. In the algorithm, the non-linear differential operator is utilized to its differential equation: Choosing the unit impulse response length of filter and fixing the weighting coefficient for inportant points. The method has been applied in diagnosing tooth broden and fatiguing crack of gear faults successfully. It provides demodulation analysis of machine signal with a new approach.展开更多
Diagnostic analysis of the balance of kinetic energy (KE) is made for a decaying onland typoon, its external torrential rain area and environment. Results show that, besides low-level frictional dissipation as an ener...Diagnostic analysis of the balance of kinetic energy (KE) is made for a decaying onland typoon, its external torrential rain area and environment. Results show that, besides low-level frictional dissipation as an energy sink, upper-level horizontal export of KE is another important one for the typhoon. In its decaying KE grows in the external torrential rain area, and the KE production term Gk represents the chief energy source for the torrential rain. The growth of Gk is attributed to the development of the heavy rain and to the heating effect of released latent heat, and the external torrential rain owes its evolution to the exported KE from the strong windbelt in the east of the typhoon and the conversion of synoptic KE into mesoscale perturbation KE. The development of the torrential rain results in the KE feedback to its environment. The KE transfer from the typhoon to the external torrential rain area and then to the environmental region as a mechanism constitutes one of the causes for the rapid disintegration of the tempest.展开更多
A Compound fault signal usually contains multiple characteristic signals and strong confusion noise, which makes it difficult to separate week fault signals from them through conventional ways, such as FFT-based envel...A Compound fault signal usually contains multiple characteristic signals and strong confusion noise, which makes it difficult to separate week fault signals from them through conventional ways, such as FFT-based envelope detection, wavelet transform or empirical mode decomposition individually. In order to realize single channel compound fault diagnosis of bearings and improve the diagnosis accuracy, an improved CICA algorithm named constrained independent component analysis based on the energy method (E-CICA) is proposed. With the approach, the single channel vibration signal is firstly decomposed into several wavelet coefficients by discrete wavelet transform(DWT) method for the purpose of obtaining multichannel signals. Then the envelope signals of the reconstructed wavelet coefficients are selected as the input of E-CICA algorithm, which fulfills the requirements that the number of sensors is greater than or equal to that of the source signals and makes it more suitable to be processed by CICA strategy. The frequency energy ratio(ER) of each wavelet reconstructed signal to the total energy of the given synchronous signal is calculated, and then the synchronous signal with maximum ER value is set as the reference signal accordingly. By this way, the reference signal contains a priori knowledge of fault source signal and the influence on fault signal extraction accuracy which is caused by the initial phase angle and the duty ratio of the reference signal in the traditional CICA algorithm is avoided. Experimental results show that E-CICA algorithm can effectively separate out the outer-race defect and the rollers defect from the single channel compound fault and fulfill the needs of compound fault diagnosis of rolling bearings, and the running time is 0.12% of that of the traditional CICA algorithm and the extraction accuracy is 1.4 times of that of CICA as well. The proposed research provides a new method to separate single channel compound fault signals.展开更多
Android applications are becoming increasingly powerful in recent years. While their functionality is still of paramount importance to users, the energy efficiency of these applications is also gaining more and more a...Android applications are becoming increasingly powerful in recent years. While their functionality is still of paramount importance to users, the energy efficiency of these applications is also gaining more and more attention. Researchers have discovered various types of energy defects in Android applications, which could quickly drain the battery power of mobile devices. Such defects not only cause inconvenience to users, but also frustrate Android developers as diagnosing the energy inefficiency of a software product is a non-trivial task. In this work, we perform a literature review to understand the state of the art of energy inefficiency diagnosis for Android applications. We identified 55 research papers published in recent years and classified existing studies from four different perspectives, including power estimation method, hardware component, types of energy defects, and program analysis approach. We also did a cross-perspective analysis to summarize and compare our studied techniques. We hope that our review can help structure and unify the literature and shed light on future research, as well as drawing developers' attention to build energy-efficient Android applications.展开更多
基金This project is supported by National Natural Science Foundation of China (No.50605065)Natural Science Foundation Project of CQ CSTC (No.2007BB2142)
文摘Based on wavelet packet decomposition (WPD) algorithm and Teager energy operator (TEO), a novel gearbox fault detection and diagnosis method is proposed. Its process is expatiated after the principles of WPD and TEO modulation are introduced respectively. The preprocessed sigaaal is interpolated with the cubic spline function, then expanded over the selected basis wavelets. Grouping its wavelet packet components of the signal based on the minimum entropy criterion, the interpolated signal can be decomposed into its dominant components with nearly distinct fault frequency contents. To extract the demodulation information of each dominant component, TEO is used. The performance of the proposed method is assessed by means of several tests on vibration signals collected from the gearbox mounted on a heavy truck. It is proved that hybrid WPD-TEO method is effective and robust for detecting and diagnosing localized gearbox faults.
基金This project is supported by National Ministry of Education of China (No.020616)Science and Technology Project of Municipal Educational Committee of Chongqing(No.030602)Scientific Research Foundation of Chongqing Institute of Technology(No.2004ZD10).
文摘Although many methods have been applied to diagnose the gear thult currently, the sensitivity of them is not very good. In order to make the diagnosis methods have more excellent integrated ability in such aspects as precision, sensitivity, reliability and compact algorithm, and so on, and enlightened by the energy operator separation algorithm (EOSA), a new demodulation method which is optimizing energy operator separation algorithm (OEOSA) is presented. In the algorithm, the non-linear differential operator is utilized to its differential equation: Choosing the unit impulse response length of filter and fixing the weighting coefficient for inportant points. The method has been applied in diagnosing tooth broden and fatiguing crack of gear faults successfully. It provides demodulation analysis of machine signal with a new approach.
文摘Diagnostic analysis of the balance of kinetic energy (KE) is made for a decaying onland typoon, its external torrential rain area and environment. Results show that, besides low-level frictional dissipation as an energy sink, upper-level horizontal export of KE is another important one for the typhoon. In its decaying KE grows in the external torrential rain area, and the KE production term Gk represents the chief energy source for the torrential rain. The growth of Gk is attributed to the development of the heavy rain and to the heating effect of released latent heat, and the external torrential rain owes its evolution to the exported KE from the strong windbelt in the east of the typhoon and the conversion of synoptic KE into mesoscale perturbation KE. The development of the torrential rain results in the KE feedback to its environment. The KE transfer from the typhoon to the external torrential rain area and then to the environmental region as a mechanism constitutes one of the causes for the rapid disintegration of the tempest.
基金Supported by National Natural Science Foundation of China(Grant No.51475034)
文摘A Compound fault signal usually contains multiple characteristic signals and strong confusion noise, which makes it difficult to separate week fault signals from them through conventional ways, such as FFT-based envelope detection, wavelet transform or empirical mode decomposition individually. In order to realize single channel compound fault diagnosis of bearings and improve the diagnosis accuracy, an improved CICA algorithm named constrained independent component analysis based on the energy method (E-CICA) is proposed. With the approach, the single channel vibration signal is firstly decomposed into several wavelet coefficients by discrete wavelet transform(DWT) method for the purpose of obtaining multichannel signals. Then the envelope signals of the reconstructed wavelet coefficients are selected as the input of E-CICA algorithm, which fulfills the requirements that the number of sensors is greater than or equal to that of the source signals and makes it more suitable to be processed by CICA strategy. The frequency energy ratio(ER) of each wavelet reconstructed signal to the total energy of the given synchronous signal is calculated, and then the synchronous signal with maximum ER value is set as the reference signal accordingly. By this way, the reference signal contains a priori knowledge of fault source signal and the influence on fault signal extraction accuracy which is caused by the initial phase angle and the duty ratio of the reference signal in the traditional CICA algorithm is avoided. Experimental results show that E-CICA algorithm can effectively separate out the outer-race defect and the rollers defect from the single channel compound fault and fulfill the needs of compound fault diagnosis of rolling bearings, and the running time is 0.12% of that of the traditional CICA algorithm and the extraction accuracy is 1.4 times of that of CICA as well. The proposed research provides a new method to separate single channel compound fault signals.
基金supported by the Guangdong Basic and Applied Basic Research Foundation(2021A1515012297)the Shenzhen Science and Technology Innovation Commission(R2020A045)the Open Project of Guangdong Provincial Key Laboratory of High-Performance Computing(2021).
文摘Android applications are becoming increasingly powerful in recent years. While their functionality is still of paramount importance to users, the energy efficiency of these applications is also gaining more and more attention. Researchers have discovered various types of energy defects in Android applications, which could quickly drain the battery power of mobile devices. Such defects not only cause inconvenience to users, but also frustrate Android developers as diagnosing the energy inefficiency of a software product is a non-trivial task. In this work, we perform a literature review to understand the state of the art of energy inefficiency diagnosis for Android applications. We identified 55 research papers published in recent years and classified existing studies from four different perspectives, including power estimation method, hardware component, types of energy defects, and program analysis approach. We also did a cross-perspective analysis to summarize and compare our studied techniques. We hope that our review can help structure and unify the literature and shed light on future research, as well as drawing developers' attention to build energy-efficient Android applications.