To explore ways to improve the accuracy of quantitative analysis of samples in the micrometer to nanometer range of magnitudes,we adopted analytical transmission electron microscopy(AEM/EDS)for qualitative and quantit...To explore ways to improve the accuracy of quantitative analysis of samples in the micrometer to nanometer range of magnitudes,we adopted analytical transmission electron microscopy(AEM/EDS)for qualitative and quantitative analysis of pyrite materials.Additionally,the k factor of pyrite is calculated experimentally.To develop an appropriate non-standard quantitative analysis model for pyrite materials,the experimentally calculated k factor is compared with that estimated from the non-standard quantitative analytical model of the instrument software.The experimental findings demonstrate that the EDS attached to a TEM can be employed for precise quantitative analysis of micro-and nanoscale regions of pyrite materials.Furthermore,it serves as a reference for improving the results of the EDS quantitative analysis of other sulfides.展开更多
This study determines the geochemical and depositional environment analysis of the sediments of the Sohnari Member of the Laki Formation, Northern Kirthar Fold Belt of Pakistan. The Energy-Dispersive-X-Ray Spectroscop...This study determines the geochemical and depositional environment analysis of the sediments of the Sohnari Member of the Laki Formation, Northern Kirthar Fold Belt of Pakistan. The Energy-Dispersive-X-Ray Spectroscopy (EDS) technique is used for the detection of major elements and the effects of shifting depositional climatic conditions of six representative samples which were acquired from the Sohnari Member of the Laki Formation at Lakhra area, Sindh, Pakistan. The sedimentological studies clarify that the sediments the Sonahri Member are relatively immature and most migrated in clastic mode. The availability of Silica shows that the Member was formed due to biochemical precipitation and detrital mode and was deposited at a fast rate of sediment deposition under the fluvio-deltaic depositional system. This is also deduced that the rapid rate of sediment deposition might be created a reducing atmosphere and allowing for the mineralization of sulphur.展开更多
Natural magnetic black sands are known from several sites often located in areas of volcanic origin. Their elemental and mineral composition provides information on the geology of their territory and depends on severa...Natural magnetic black sands are known from several sites often located in areas of volcanic origin. Their elemental and mineral composition provides information on the geology of their territory and depends on several factors occurred during their formation. A sample of black sand was collected on the seashore of the island of Mayotte in the Indian Ocean and its magnetic part was investigated by means of energy dispersive X-ray spectroscopy (EDS), powder X-ray diffraction (XRD), and MÖssbauer spectroscopy at room temperature. The mineral composition is dominantly magnetite, in good agreement with samples collected in other sites of volcanic origin. Contrary to pure magnetite, a relevant fraction of Ti was detected by EDS. The 16% Ti and 1% Mn content increase the magnetite lattice parameter to 8.4312 (25) Å. The broadening of XRD lines pointed towards a significant degree of disorder. This was confirmed by MÖssbauer spectroscopy and is attributed to the presence of Ti replacing Fe in the magnetite lattice. The presence of Ti modifies the local magnetic field on the Fe sites, leading to a broader and more complex MÖssbauer transmission spectrum with respect to the one of pure magnetite. To study the effect of temperature, samples were heated for 12 hours to 600°C and 800°C in argon and to 1000°C in air. Annealing in argon did not improve the crystallinity while annealing in air caused a complete decomposition of magnetite into hematite and pseudobrookite.展开更多
The study of natural magnetic sands is instrumental to investigate the geological aspects of their formation and of the origin of their territory. In particular, Mossbauer spectroscopy provides unique information on t...The study of natural magnetic sands is instrumental to investigate the geological aspects of their formation and of the origin of their territory. In particular, Mossbauer spectroscopy provides unique information on their iron content and on the oxidation state of iron in their mineral composition. The Italian coast on the Mediterranean Sea near Rome is known for the presence of highly magnetic black sands of volcanic origin. A study of the room temperature Mossbauer spectrum, powder X-ray diffraction, energy dispersive X-ray spectroscopy, and magnetic measurements of a sample of black magnetic sand collected on the seashore of the town of Ladispoli is performed. This study reveals magnetite as main constituent with iron in both tetrahedral and octahedral sites. Minor constituents are the iron minerals hematite and ilmenite, the iron containing minerals diopsite, gossular, and allanite, as well as ubiquitous sanidine, quartz, and calcite.展开更多
The study of the mineral and organic content of the Allende meteorite is important for our understanding of the molecular evolution of the universe as well as the ancient Earth. Previous studies have characterized the...The study of the mineral and organic content of the Allende meteorite is important for our understanding of the molecular evolution of the universe as well as the ancient Earth. Previous studies have characterized the magnetic minerals present in ordinary and carbonaceous chondrites, providing information on the evolution of magnetic fields. The interaction of organic compounds with magnetic minerals is a possible source of chemical diversity, which is crucial for molecular evolution. Carbon compounds in meteorites are of great scientific interest for a variety of reasons, such as their relevance to the origins of chirality in living organisms. This study presents the characterization of organic and mineral compounds in the Allende meteorite. The structural and physicochemical characterization of the Allende meteorite was accomplished through light microscopy, powder X-ray diffraction with complementary Rietveld refinement, Raman and infrared spectroscopy, mass spectrometry, scanning electron microscopy, and atomic force microscopy using magnetic signal methods to determine the complex structure and the interaction of organic compounds with magnetic Ni-Fe minerals. The presence of Liesegang-like patterns of chondrules in fragments of the Allende structure may also be relevant to understanding how the meteorite was formed. Other observations include the presence of magnetic materials and nanorod-like solids with relatively similar sizes as well as the heterogeneous distribution of carbon in chondrules. Signals observed in the Raman and infrared spectra resemble organic compounds such as carbon nanotubes and peptide-like molecules that have been previously reported in other meteorites, making the Mexican Allende meteorite a feasible sample for the study of the early Earth and exoplanetary bodies.展开更多
Precipites in Cu-0.42%Cr-0.21%Zr alloy were analyzed by using scanning electron microscope (SEM), energy dispersive X-ray spectroscopy (EDXS) and transmission electron microscope (TEM). After the solid solution ...Precipites in Cu-0.42%Cr-0.21%Zr alloy were analyzed by using scanning electron microscope (SEM), energy dispersive X-ray spectroscopy (EDXS) and transmission electron microscope (TEM). After the solid solution was performed at 980℃ for 2 h, water-quenched and aged at 450℃ for 20 h, the precipite had a bimodal distribution of precipitate size. The coarse precipitates are pure Cr and Cu5Zr, the dispersed fine precipitate is CrCu2(Zr, Mg) and pure Cr ranging from 1 to 50 nm. The coarse phases formed during solidification and were left undissolved during solid solution. The fine precipitates are the hardening precipitates that form due to decomposition of the supersaturated solid solution during aging.展开更多
To determinate the water diffusion coefficients and dynamics in adhesive/carben fiber reinforced epoxy resin composite joints, energy dispersive X-ray spectroscopy analysis(EDX) is used to establish the content chan...To determinate the water diffusion coefficients and dynamics in adhesive/carben fiber reinforced epoxy resin composite joints, energy dispersive X-ray spectroscopy analysis(EDX) is used to establish the content change of oxy- gen in the adhesive in adhesive/carbon fther reinforced epoxy resin composite joints. As water is made up of oxygen and hydrogen, the water diffusion coefficients and dynamics in adhesive/carben fiber reinforced epoxy resin composite joints can be obtained from the change in the content of oxygen in the adhesive during humidity aging, via EDX analy-sis. The authors have calculated the water diffusion coefficients and dynamics in the adhesive/carbon fiber reinforced epoxy resin composite joints with the aid of beth energy dispersive X-ray spectroscopy and elemental analysis. The de- termined results with EDX analysis are almost the same as those determined with elemental analysis and the results al- so show that the durability of the adhesive/carbon fther reinforced epoxy resin composite joints subjected to silane cou- pling agent treatment is better than those subjected to sand paper burnishing treatment and chemical oxidation treat- ment.展开更多
This paper presents the effect of open dumping of municipal solid waste(MSW) on soil characteristics in the mountainous region of Himachal Pradesh, India. The solid waste of dumpsite contains various complex character...This paper presents the effect of open dumping of municipal solid waste(MSW) on soil characteristics in the mountainous region of Himachal Pradesh, India. The solid waste of dumpsite contains various complex characteristics with organic fractions of the highest proportions. As leachate percolates into the soil, it migrates contaminants into the soil and affects soil stability and strength. The study includes the geotechnical investigation of dump soil characteristics and its comparison with the natural soil samples taken from outside the proximity of dumpsites. The geochemical analysis of dumpsite soil samples was also carried out by scanning electron microscopy(SEM) and energy dispersive X-ray spectroscopy(EDS).Visual inspection revealed that the MSW consists of high fraction of organics, followed by paper. The soil samples were collected from five trial pits in the dumpsites at depths of 0.5 m, 1 m and 1.5 m. Then the collected soil samples were subjected to specific gravity test, grain size analysis, Atterberg’s limit test,compaction test, direct shear test, California bearing ratio(CBR) test and permeability analysis. The study indicated that the dumpsite soils from four study regions show decreasing trends in the values of maximum dry density(MDD), specific gravity, cohesion and CBR, and increasing permeability as compared to the natural soil. The results show that the geotechnical properties of the soils at all four study locations have been severely hampered due to contamination induced by open dumping of waste.展开更多
This paper reviews research on coprolites from India,providing the first evidence of microcoprolites from the early Miocene(Aquitanian)Khari Nadi Formation sedimentary succession,exposed about 1.5 km northeast of the ...This paper reviews research on coprolites from India,providing the first evidence of microcoprolites from the early Miocene(Aquitanian)Khari Nadi Formation sedimentary succession,exposed about 1.5 km northeast of the village of Kotada,Kachchh(Kutch)District,Gujarat State,western India.Morphometric and size comparisons(in a statistical framework)with known coprolites from the Mesozoic-Cenozoic successions of India(including those recorded herein)and globally suggest that fishes were the likely producers of the Kotada coprolites.Scanning electron microscopy confirms the presence of fish dental remains within the coprolites,while both Scanning Electron Microscopy(SEM)and Energy Dispersive X-ray Spectroscopy(EDS)reveal the phosphatic nature of the microscopic coprolite specimens(recorded herein)hinting that the producer(s)were predominantly carnivorous(ichthyophagous)in their diet.Furthermore,X-Ray Fluorescence(XRF)analysis of the host and associated lithologies allows us to deduce that the Kotada coprolites were deposited in a shallow marine environment,with possible aerial exposure of the host lithology occurring at some point after deposition.To the best of our knowledge,the present report is the first record of microscopic fish coprolites from India,as well as being the first from the Aquitanian of India and the oldest Neogene record from India.展开更多
The coefficient and dynamics of water diffusion in adhesive-graphite joints were calculated in-situ with energy dispersive X-ray (EDX) analysis, a method that is significantly simpler than elemental analysis. Water di...The coefficient and dynamics of water diffusion in adhesive-graphite joints were calculated in-situ with energy dispersive X-ray (EDX) analysis, a method that is significantly simpler than elemental analysis. Water diffusion coefficient and dynamics of adhesive-graphite joints treated by different surface treatment methods were also investigated. Calculation results indicated that the water diffusion rate in adhesive-graphite joints treated by sandpaper was higher than that treated by chemical oxidation or by silane couple agent. Also the durability of graphite joints treated by coupling agent is superior to that treated by chemical oxidation or sandpaper burnishing.展开更多
Most of the materials used in engineered cementitious composite are fine in size to achieve ductile nature.Stone slurry powder(SSP)is an inert material obtained from stone industries as by-product which may cause haza...Most of the materials used in engineered cementitious composite are fine in size to achieve ductile nature.Stone slurry powder(SSP)is an inert material obtained from stone industries as by-product which may cause hazardous impact on environment.In this research work,partial replacement of silica sand(SS)and fine sand(FS)by SSP with different contents(25%and 50%each)for making engineered cementitious composite has been explored.The performance was evaluated on the basis of strength,tensile strain,mid span deflection capacity,ultra-sonic pulse velocity and microstructure.Mechanical strength was found to be increased at 25%SSP in both replacements;whereas,strength decreased slightly at 50%replacement.Tensile strain,mid span deflection and quality of concrete were enhanced with increase in SSP content.Using SSP formed denser cementitious composite can help to save the natural resources and contribute in making green cementitious composite.展开更多
Nickel sulfate doped triglycine sulfate crystals have been grown by natural evaporation method. The chemical composition of the pure triglycine sulfate crystals and the presence of nickel ion in doped triglycine sulfa...Nickel sulfate doped triglycine sulfate crystals have been grown by natural evaporation method. The chemical composition of the pure triglycine sulfate crystals and the presence of nickel ion in doped triglycine sulfate crystal were confirmed by Energy Dispersive X-ray analysis. The functional groups of the grown crystals have been identified by the Fourier Transform Infrared spectroscopy. The structural studies on the grown crystals were carried out by X-ray Diffraction analysis. All the grown crystals are found in monoclinic structure and the lattice parameters of pure TGS crystal are a = 9.6010 ?, b = 12.5600 ? and c = 5.4500 ?. The lattice parameters are slightly distorted due to the incorporation of nickel ion into the lattice sites of the TGS crystal.展开更多
The antioxidant of seeds was carried out using extracts from methanol and Silver Nanoparticles from the spice. The SEM shows the shapes, dispersion and agglomeration of the sample, while the EDX confirms the SEM and t...The antioxidant of seeds was carried out using extracts from methanol and Silver Nanoparticles from the spice. The SEM shows the shapes, dispersion and agglomeration of the sample, while the EDX confirms the SEM and the presence of some compounds. The FT-IR reveals the AgNP<sub>s</sub> capping and reducing the particular biomolecule from the functional group for identification. Compounds found in the FT-IR seeds of Capsicum annum are Ag L (Silver iodide), C K (Cyanogen chloride), P K (Phenol). Monodora myristica are Mo L (Molybdenum), Ag L (Silver iodide), C K (Cyanogen chloride), P K (Phenol), Mg K (Magnesium). Piper guineense are Ag L (Silver iodide), Ci K (Potassium chloride), C K (Cyanogen chloride), P K (Phenol). The seeds show that the AgNP<sub>S</sub> of CA and MM has a better antioxidant activity than the methanol of CA and MM, while the PG methanol has a better activity than the AgNP<sub>S</sub> PG. The control (Catechin and Galic acid) has a slight overall better DPPH activity than the AgNP<sub>S</sub>. It is important to note that there is a concentration dependency in CA, MM AgNP<sub>S,</sub> PG methanol respectively. Notably, at CA methanol, the conc. at 125 was higher than the conc. at 250. Hence, there is need to create a great part in using plant samples for making tabulated or capsulated drugs for treatment of diseases and using plant silver nanoparticles to develop a healthy food/drug preservative package material “smart packaging” that will enhance shelf-life.展开更多
基金Funded by the International Science&Technology Cooperation Program of Hubei Province of China(No.2022EHB024)。
文摘To explore ways to improve the accuracy of quantitative analysis of samples in the micrometer to nanometer range of magnitudes,we adopted analytical transmission electron microscopy(AEM/EDS)for qualitative and quantitative analysis of pyrite materials.Additionally,the k factor of pyrite is calculated experimentally.To develop an appropriate non-standard quantitative analysis model for pyrite materials,the experimentally calculated k factor is compared with that estimated from the non-standard quantitative analytical model of the instrument software.The experimental findings demonstrate that the EDS attached to a TEM can be employed for precise quantitative analysis of micro-and nanoscale regions of pyrite materials.Furthermore,it serves as a reference for improving the results of the EDS quantitative analysis of other sulfides.
文摘This study determines the geochemical and depositional environment analysis of the sediments of the Sohnari Member of the Laki Formation, Northern Kirthar Fold Belt of Pakistan. The Energy-Dispersive-X-Ray Spectroscopy (EDS) technique is used for the detection of major elements and the effects of shifting depositional climatic conditions of six representative samples which were acquired from the Sohnari Member of the Laki Formation at Lakhra area, Sindh, Pakistan. The sedimentological studies clarify that the sediments the Sonahri Member are relatively immature and most migrated in clastic mode. The availability of Silica shows that the Member was formed due to biochemical precipitation and detrital mode and was deposited at a fast rate of sediment deposition under the fluvio-deltaic depositional system. This is also deduced that the rapid rate of sediment deposition might be created a reducing atmosphere and allowing for the mineralization of sulphur.
文摘Natural magnetic black sands are known from several sites often located in areas of volcanic origin. Their elemental and mineral composition provides information on the geology of their territory and depends on several factors occurred during their formation. A sample of black sand was collected on the seashore of the island of Mayotte in the Indian Ocean and its magnetic part was investigated by means of energy dispersive X-ray spectroscopy (EDS), powder X-ray diffraction (XRD), and MÖssbauer spectroscopy at room temperature. The mineral composition is dominantly magnetite, in good agreement with samples collected in other sites of volcanic origin. Contrary to pure magnetite, a relevant fraction of Ti was detected by EDS. The 16% Ti and 1% Mn content increase the magnetite lattice parameter to 8.4312 (25) Å. The broadening of XRD lines pointed towards a significant degree of disorder. This was confirmed by MÖssbauer spectroscopy and is attributed to the presence of Ti replacing Fe in the magnetite lattice. The presence of Ti modifies the local magnetic field on the Fe sites, leading to a broader and more complex MÖssbauer transmission spectrum with respect to the one of pure magnetite. To study the effect of temperature, samples were heated for 12 hours to 600°C and 800°C in argon and to 1000°C in air. Annealing in argon did not improve the crystallinity while annealing in air caused a complete decomposition of magnetite into hematite and pseudobrookite.
文摘The study of natural magnetic sands is instrumental to investigate the geological aspects of their formation and of the origin of their territory. In particular, Mossbauer spectroscopy provides unique information on their iron content and on the oxidation state of iron in their mineral composition. The Italian coast on the Mediterranean Sea near Rome is known for the presence of highly magnetic black sands of volcanic origin. A study of the room temperature Mossbauer spectrum, powder X-ray diffraction, energy dispersive X-ray spectroscopy, and magnetic measurements of a sample of black magnetic sand collected on the seashore of the town of Ladispoli is performed. This study reveals magnetite as main constituent with iron in both tetrahedral and octahedral sites. Minor constituents are the iron minerals hematite and ilmenite, the iron containing minerals diopsite, gossular, and allanite, as well as ubiquitous sanidine, quartz, and calcite.
文摘The study of the mineral and organic content of the Allende meteorite is important for our understanding of the molecular evolution of the universe as well as the ancient Earth. Previous studies have characterized the magnetic minerals present in ordinary and carbonaceous chondrites, providing information on the evolution of magnetic fields. The interaction of organic compounds with magnetic minerals is a possible source of chemical diversity, which is crucial for molecular evolution. Carbon compounds in meteorites are of great scientific interest for a variety of reasons, such as their relevance to the origins of chirality in living organisms. This study presents the characterization of organic and mineral compounds in the Allende meteorite. The structural and physicochemical characterization of the Allende meteorite was accomplished through light microscopy, powder X-ray diffraction with complementary Rietveld refinement, Raman and infrared spectroscopy, mass spectrometry, scanning electron microscopy, and atomic force microscopy using magnetic signal methods to determine the complex structure and the interaction of organic compounds with magnetic Ni-Fe minerals. The presence of Liesegang-like patterns of chondrules in fragments of the Allende structure may also be relevant to understanding how the meteorite was formed. Other observations include the presence of magnetic materials and nanorod-like solids with relatively similar sizes as well as the heterogeneous distribution of carbon in chondrules. Signals observed in the Raman and infrared spectra resemble organic compounds such as carbon nanotubes and peptide-like molecules that have been previously reported in other meteorites, making the Mexican Allende meteorite a feasible sample for the study of the early Earth and exoplanetary bodies.
文摘Precipites in Cu-0.42%Cr-0.21%Zr alloy were analyzed by using scanning electron microscope (SEM), energy dispersive X-ray spectroscopy (EDXS) and transmission electron microscope (TEM). After the solid solution was performed at 980℃ for 2 h, water-quenched and aged at 450℃ for 20 h, the precipite had a bimodal distribution of precipitate size. The coarse precipitates are pure Cr and Cu5Zr, the dispersed fine precipitate is CrCu2(Zr, Mg) and pure Cr ranging from 1 to 50 nm. The coarse phases formed during solidification and were left undissolved during solid solution. The fine precipitates are the hardening precipitates that form due to decomposition of the supersaturated solid solution during aging.
基金Supported by Commission of Science Technology and Industry for National Defense of China(No.JPPT-115-477).
文摘To determinate the water diffusion coefficients and dynamics in adhesive/carben fiber reinforced epoxy resin composite joints, energy dispersive X-ray spectroscopy analysis(EDX) is used to establish the content change of oxy- gen in the adhesive in adhesive/carbon fther reinforced epoxy resin composite joints. As water is made up of oxygen and hydrogen, the water diffusion coefficients and dynamics in adhesive/carben fiber reinforced epoxy resin composite joints can be obtained from the change in the content of oxygen in the adhesive during humidity aging, via EDX analy-sis. The authors have calculated the water diffusion coefficients and dynamics in the adhesive/carbon fiber reinforced epoxy resin composite joints with the aid of beth energy dispersive X-ray spectroscopy and elemental analysis. The de- termined results with EDX analysis are almost the same as those determined with elemental analysis and the results al- so show that the durability of the adhesive/carbon fther reinforced epoxy resin composite joints subjected to silane cou- pling agent treatment is better than those subjected to sand paper burnishing treatment and chemical oxidation treat- ment.
文摘This paper presents the effect of open dumping of municipal solid waste(MSW) on soil characteristics in the mountainous region of Himachal Pradesh, India. The solid waste of dumpsite contains various complex characteristics with organic fractions of the highest proportions. As leachate percolates into the soil, it migrates contaminants into the soil and affects soil stability and strength. The study includes the geotechnical investigation of dump soil characteristics and its comparison with the natural soil samples taken from outside the proximity of dumpsites. The geochemical analysis of dumpsite soil samples was also carried out by scanning electron microscopy(SEM) and energy dispersive X-ray spectroscopy(EDS).Visual inspection revealed that the MSW consists of high fraction of organics, followed by paper. The soil samples were collected from five trial pits in the dumpsites at depths of 0.5 m, 1 m and 1.5 m. Then the collected soil samples were subjected to specific gravity test, grain size analysis, Atterberg’s limit test,compaction test, direct shear test, California bearing ratio(CBR) test and permeability analysis. The study indicated that the dumpsite soils from four study regions show decreasing trends in the values of maximum dry density(MDD), specific gravity, cohesion and CBR, and increasing permeability as compared to the natural soil. The results show that the geotechnical properties of the soils at all four study locations have been severely hampered due to contamination induced by open dumping of waste.
基金funding support from BSIP in the form of In-house Project No.2.17(XIII five-year plan)。
文摘This paper reviews research on coprolites from India,providing the first evidence of microcoprolites from the early Miocene(Aquitanian)Khari Nadi Formation sedimentary succession,exposed about 1.5 km northeast of the village of Kotada,Kachchh(Kutch)District,Gujarat State,western India.Morphometric and size comparisons(in a statistical framework)with known coprolites from the Mesozoic-Cenozoic successions of India(including those recorded herein)and globally suggest that fishes were the likely producers of the Kotada coprolites.Scanning electron microscopy confirms the presence of fish dental remains within the coprolites,while both Scanning Electron Microscopy(SEM)and Energy Dispersive X-ray Spectroscopy(EDS)reveal the phosphatic nature of the microscopic coprolite specimens(recorded herein)hinting that the producer(s)were predominantly carnivorous(ichthyophagous)in their diet.Furthermore,X-Ray Fluorescence(XRF)analysis of the host and associated lithologies allows us to deduce that the Kotada coprolites were deposited in a shallow marine environment,with possible aerial exposure of the host lithology occurring at some point after deposition.To the best of our knowledge,the present report is the first record of microscopic fish coprolites from India,as well as being the first from the Aquitanian of India and the oldest Neogene record from India.
文摘The coefficient and dynamics of water diffusion in adhesive-graphite joints were calculated in-situ with energy dispersive X-ray (EDX) analysis, a method that is significantly simpler than elemental analysis. Water diffusion coefficient and dynamics of adhesive-graphite joints treated by different surface treatment methods were also investigated. Calculation results indicated that the water diffusion rate in adhesive-graphite joints treated by sandpaper was higher than that treated by chemical oxidation or by silane couple agent. Also the durability of graphite joints treated by coupling agent is superior to that treated by chemical oxidation or sandpaper burnishing.
基金Project(F1-17.1/2017-18/MANF-2017-18-HAR-78129)supported by the University Grants Commission New Delhi,India。
文摘Most of the materials used in engineered cementitious composite are fine in size to achieve ductile nature.Stone slurry powder(SSP)is an inert material obtained from stone industries as by-product which may cause hazardous impact on environment.In this research work,partial replacement of silica sand(SS)and fine sand(FS)by SSP with different contents(25%and 50%each)for making engineered cementitious composite has been explored.The performance was evaluated on the basis of strength,tensile strain,mid span deflection capacity,ultra-sonic pulse velocity and microstructure.Mechanical strength was found to be increased at 25%SSP in both replacements;whereas,strength decreased slightly at 50%replacement.Tensile strain,mid span deflection and quality of concrete were enhanced with increase in SSP content.Using SSP formed denser cementitious composite can help to save the natural resources and contribute in making green cementitious composite.
文摘Nickel sulfate doped triglycine sulfate crystals have been grown by natural evaporation method. The chemical composition of the pure triglycine sulfate crystals and the presence of nickel ion in doped triglycine sulfate crystal were confirmed by Energy Dispersive X-ray analysis. The functional groups of the grown crystals have been identified by the Fourier Transform Infrared spectroscopy. The structural studies on the grown crystals were carried out by X-ray Diffraction analysis. All the grown crystals are found in monoclinic structure and the lattice parameters of pure TGS crystal are a = 9.6010 ?, b = 12.5600 ? and c = 5.4500 ?. The lattice parameters are slightly distorted due to the incorporation of nickel ion into the lattice sites of the TGS crystal.
文摘The antioxidant of seeds was carried out using extracts from methanol and Silver Nanoparticles from the spice. The SEM shows the shapes, dispersion and agglomeration of the sample, while the EDX confirms the SEM and the presence of some compounds. The FT-IR reveals the AgNP<sub>s</sub> capping and reducing the particular biomolecule from the functional group for identification. Compounds found in the FT-IR seeds of Capsicum annum are Ag L (Silver iodide), C K (Cyanogen chloride), P K (Phenol). Monodora myristica are Mo L (Molybdenum), Ag L (Silver iodide), C K (Cyanogen chloride), P K (Phenol), Mg K (Magnesium). Piper guineense are Ag L (Silver iodide), Ci K (Potassium chloride), C K (Cyanogen chloride), P K (Phenol). The seeds show that the AgNP<sub>S</sub> of CA and MM has a better antioxidant activity than the methanol of CA and MM, while the PG methanol has a better activity than the AgNP<sub>S</sub> PG. The control (Catechin and Galic acid) has a slight overall better DPPH activity than the AgNP<sub>S</sub>. It is important to note that there is a concentration dependency in CA, MM AgNP<sub>S,</sub> PG methanol respectively. Notably, at CA methanol, the conc. at 125 was higher than the conc. at 250. Hence, there is need to create a great part in using plant samples for making tabulated or capsulated drugs for treatment of diseases and using plant silver nanoparticles to develop a healthy food/drug preservative package material “smart packaging” that will enhance shelf-life.