Based on energy dissipation and structural control principle, a new structural configuration, called the megasub controlled structure (MSCS) with friction damped braces (FDBs), is first presented. Meanwhile, to ca...Based on energy dissipation and structural control principle, a new structural configuration, called the megasub controlled structure (MSCS) with friction damped braces (FDBs), is first presented. Meanwhile, to calculate the damping coefficient in the slipping state a new analytical method is proposed. The damping characteristics of one-storey friction damped braced frame (FDBF) are investigated, and the influence of the structural parameters on the energy dissipation and the practical engineering design are discussed. The nonlinear dynamic equations and the analytical model of the MSCS with FDBs are established. Three building structures with different structural configurations, which were designed with reference to the conventional mega-sub structures such as used in Tokyo City Hall, are comparatively investigated. The results illustrate that the structure presented in the paper has excellent dynamic properties and satisfactory control effectiveness.展开更多
This paper reported the diurnal variations of photochemical efficiency of PSII, thermaldissipation rate and other physiology process in the low content chlorophyll mutant rice andits wild type under field conditions, ...This paper reported the diurnal variations of photochemical efficiency of PSII, thermaldissipation rate and other physiology process in the low content chlorophyll mutant rice andits wild type under field conditions, and analyzed the difference of absorbed light distributionbetween the two rice varieties in a day. The results showed that the mutant had poor absorbedlight because of its little light absorption coefficient, but higher electron transportg ratecould partly reduce the disadvantageous effect of deficient absorbed light in mutant. Comparedwith wild-type rice, the mutant had less excess excitation energy and the fraction of absorbedlight allocated to photochemical process was more.展开更多
A distributed processing system (DPS) contains many autonomous nodes, which contribute their own computing power. DPS is considered a unified logical structure, operating in a distributed manner;the processing tasks a...A distributed processing system (DPS) contains many autonomous nodes, which contribute their own computing power. DPS is considered a unified logical structure, operating in a distributed manner;the processing tasks are divided into fragments and assigned to various nodes for processing. That type of operation requires and involves a great deal of communication. We propose to use the decentralized approach, based on a distributed hash table, to reduce the communication overhead and remove the server unit, thus avoiding having a single point of failure in the system. This paper proposes a mathematical model and algorithms that are implemented in a dedicated experimental system. Using the decentralized approach, this study demonstrates the efficient operation of a decentralized system which results in a reduced energy emission.展开更多
In this paper, we propose new finite volume element schemes to numerically solve the improved Boussinesq equation with Stokes damping. The new schemes can inherit characteristic properties of the conservation of mass ...In this paper, we propose new finite volume element schemes to numerically solve the improved Boussinesq equation with Stokes damping. The new schemes can inherit characteristic properties of the conservation of mass and the decrease of total energy from the improved Boussinesq equation with Stokes damping. Numerical experiments illustrate that the proposed schemes are second-order accuracy in space and time.展开更多
This article aims to popularize the methods for determining the vibratory damping ratio, to explain the various mathematical and physical theorems related to the establishment of literal expressions. Vibration damping...This article aims to popularize the methods for determining the vibratory damping ratio, to explain the various mathematical and physical theorems related to the establishment of literal expressions. Vibration damping is an essential parameter to reduce the dynamic responses of structures. The study aimed at its determination is necessary and essential for the safeguard of buildings and human lives during the earthquake. Among the main methods studied in this article, the free vibration attenuation method seems to be easy to implement but requires a state-of-the-art device to capture the responses. In addition to this device, the other methods require other equipment for the vibration of the system and the transformation of the responses in the frequency domain.展开更多
This paper presents exact analytical solutions for a novel damped outrigger system, in which viscous dampers are vertically installed between perimeter columns and the core of a high-rise building. An improved analyti...This paper presents exact analytical solutions for a novel damped outrigger system, in which viscous dampers are vertically installed between perimeter columns and the core of a high-rise building. An improved analytical model is developed by modeling the effect of the damped outrigger as a general rotational spring acting on a Bernoulli-Euler beam. The equivalent rotational spring stiffness incorporating the combined effects of dampers and axial stiffness of perimeter columns is derived. The dynamic stiffness method(DSM) is applied to formulate the governing equation of the damped outrigger system. The accuracy and effi ciency are verifi ed in comparison with those obtained from compatibility equations and boundary equations. Parametric analysis of three non-dimensional factors is conducted to evaluate the infl uences of various factors, such as the stiffness ratio of the core to the beam, position of the damped outrigger, and the installed damping coeffi cient. Results show that the modal damping ratio is signifi cantly infl uenced by the stiffness ratio of the core to the column, and is more sensitive to damping than the position of the damped outrigger. The proposed analytical model in combination with DSM can be extended to the study of structures with more outriggers.展开更多
In this paper, flume experiments are focused on sediment transport inside and outside the surf zone. According to the energy dissipation balance principle of sediment-laden flow and the similarity between energy dissi...In this paper, flume experiments are focused on sediment transport inside and outside the surf zone. According to the energy dissipation balance principle of sediment-laden flow and the similarity between energy dissipation of spilling breaking wave and hydraulic jump, formulas are proposed to predict time averaged suspended sediment concentration under both non-breaking and breaking waves. Assuming that the sediment diffusion coefficient, which is related with energy dissipation, is proportional to water depth, formulas are proposed to predict close-to-bed suspended sediment concentration and vertical distribution of suspended sediment under spilling breaking waves, and the prediction shows a good agreement with the measurement.展开更多
Seven distributors with different configurations are designed and optimized by constructal approach. Their flow distribution performance and energy dissipation are investigated and compared by computational fluid dyna...Seven distributors with different configurations are designed and optimized by constructal approach. Their flow distribution performance and energy dissipation are investigated and compared by computational fluid dynamics (CFD) simulation. The reliability of CFD simulation is verified by experiments on the distributor that has all distributing rectangle channels on a plate. The results show that the symmetry of the distributing channels has decisive influence on the performance of flow distribution. Increasing the generations of channel branching will improve the flow distribution uniformity, but on the other hand increase the energy dissipation. Among all the seven constructal distributors, the distributor that has dichotomy configuration, Y-type junctions and straight interconnecting channels, is recommended for its better flow distribution performance and less energy dissipation.展开更多
Flexible microporous metal rubber (FMP-MR) is a high-damping material that dissipates energy by dry friction through internal spiral metal wires in contact with each other. However, the FMP-MR energy dissipation mecha...Flexible microporous metal rubber (FMP-MR) is a high-damping material that dissipates energy by dry friction through internal spiral metal wires in contact with each other. However, the FMP-MR energy dissipation mechanism is not fully understood owing to its disordered grid interpenetrating structure. In this work, computer-aided preparation technology is used to accurately reconstruct the complex spiral network structure of FMP-MR multipoint random contact, and a cell group model with an energy dissipation mechanism is proposed to obtain the dynamic energy distribution of the contact friction in both space and time dimensions. By judging the effective contact point, a global displacement ablation phenomenon of hooked staggered porous materials is induced. The macro- and micro-equivalent frictions are introduced to effectively explain the characteristics of the strong energy dissipation in FMP-MR under fretting excitation. A real and effective damping hysteresis constitutive model is then constructed to dynamically capture the mapping relationship between the complex nonlinear topological structure effect of the materials and spatial random contact dry friction in real time. The results indicate that the contact behavior between turns of the FMP-MR wire follows a clear quasi-Gaussian distribution under an external load, forcing the topological results to change. The energy dissipation of the materials revealed peak energy consumption lagging behind the loading limit for a certain distance, which can be determined by the effective contact point and contact dry friction slip. The consistency between the quasi-static compression tests and constitutive curves of the model was quantitatively verified through residual analysis. The data demonstrated the differential behavior of the FMP-MR meso-structure to follow a phased growth law during loading with different action mechanisms in the guiding, main growth, and relaxation stages of the energy consumption displacement curve. In summary, these findings provide an acceptable theoretical basis for the damping energy consumption mechanism and lifetime prediction of FMP-MR.展开更多
To understand the mooring energy during Fositioning, the expressions of four items concerning mooring line energy are presented based on a finite element model, including gravitational and elastic potential energy, ki...To understand the mooring energy during Fositioning, the expressions of four items concerning mooring line energy are presented based on a finite element model, including gravitational and elastic potential energy, kinetic energy and dissipated energy due to mooting-induced damping. In a static case, the force calculated from the derivative of potential energy with respect to distance is compared with that of direct calculation. The results are tbund fit well, which indicates the law of conservation of energy and also shows the correctness of the potential energy results. For the cases of a single mooring line with the attaclunent point oscillating with different amplitudes in horizontal or vertical direction (corresponding to surge and roll motions respectively), and the case of the mooring line with a horizontal bicbromatic oscillation on the attachment point, the time history of the first three items are calculated and analyzed, also, the indicator diagram tbr mooring-induced damping are given. These results reveal the energy state of the mooring line and can provide a better understanding of how the mooring line works.展开更多
The weak layer of steel concrete (RC) frame structure is easy to destroy under the action of the earthquake, the damage mechanism is more difficult to control. Severe damage to the building structure after the earthqu...The weak layer of steel concrete (RC) frame structure is easy to destroy under the action of the earthquake, the damage mechanism is more difficult to control. Severe damage to the building structure after the earthquake, resulting in too high repair costs or having to dismantle and rebuild. In order to improve and enhance the anti-seismic performance of the RC framework structure, energy consumption devices are added between the frame columns to achieve the effect of reducing the RC frame structure damage and improving the seismic performance of the RC frame structure. In this article, high-performance fiber-enhanced cement base composite materials fabricated energy consumption walls are prepared in the RC frame structure to form a new type of seismic structure system of RC frame-prefabricated HPFRCC energy consumption wall. This article uses the power timing analysis of the ABAQUS finite element software to study the anti-seismic performance, influencing factors and energy consumption distribution of the RC frame-prefabricated HPFRCC energy wall structural system.展开更多
A multi-layer damper with waved plates under one-axial load is considered. A method of theoretical calculation of its energy dissipation coefficient is proposed. An experimental research of own frequencies and vibrati...A multi-layer damper with waved plates under one-axial load is considered. A method of theoretical calculation of its energy dissipation coefficient is proposed. An experimental research of own frequencies and vibration transfer ratios for different parameters of damper structure, harmonic vibration load and random load is performed. Results of this research are approximated by functions; it is possible to use these functions for the calculation of the damper too.展开更多
基金Science and Technology Fund of NWPU Under Grant No. M450211 Seed Fund of NWPU Under Grant No. Z200729
文摘Based on energy dissipation and structural control principle, a new structural configuration, called the megasub controlled structure (MSCS) with friction damped braces (FDBs), is first presented. Meanwhile, to calculate the damping coefficient in the slipping state a new analytical method is proposed. The damping characteristics of one-storey friction damped braced frame (FDBF) are investigated, and the influence of the structural parameters on the energy dissipation and the practical engineering design are discussed. The nonlinear dynamic equations and the analytical model of the MSCS with FDBs are established. Three building structures with different structural configurations, which were designed with reference to the conventional mega-sub structures such as used in Tokyo City Hall, are comparatively investigated. The results illustrate that the structure presented in the paper has excellent dynamic properties and satisfactory control effectiveness.
基金supported by the National Natural Science Foundation of China(30300217).
文摘This paper reported the diurnal variations of photochemical efficiency of PSII, thermaldissipation rate and other physiology process in the low content chlorophyll mutant rice andits wild type under field conditions, and analyzed the difference of absorbed light distributionbetween the two rice varieties in a day. The results showed that the mutant had poor absorbedlight because of its little light absorption coefficient, but higher electron transportg ratecould partly reduce the disadvantageous effect of deficient absorbed light in mutant. Comparedwith wild-type rice, the mutant had less excess excitation energy and the fraction of absorbedlight allocated to photochemical process was more.
文摘A distributed processing system (DPS) contains many autonomous nodes, which contribute their own computing power. DPS is considered a unified logical structure, operating in a distributed manner;the processing tasks are divided into fragments and assigned to various nodes for processing. That type of operation requires and involves a great deal of communication. We propose to use the decentralized approach, based on a distributed hash table, to reduce the communication overhead and remove the server unit, thus avoiding having a single point of failure in the system. This paper proposes a mathematical model and algorithms that are implemented in a dedicated experimental system. Using the decentralized approach, this study demonstrates the efficient operation of a decentralized system which results in a reduced energy emission.
文摘In this paper, we propose new finite volume element schemes to numerically solve the improved Boussinesq equation with Stokes damping. The new schemes can inherit characteristic properties of the conservation of mass and the decrease of total energy from the improved Boussinesq equation with Stokes damping. Numerical experiments illustrate that the proposed schemes are second-order accuracy in space and time.
文摘This article aims to popularize the methods for determining the vibratory damping ratio, to explain the various mathematical and physical theorems related to the establishment of literal expressions. Vibration damping is an essential parameter to reduce the dynamic responses of structures. The study aimed at its determination is necessary and essential for the safeguard of buildings and human lives during the earthquake. Among the main methods studied in this article, the free vibration attenuation method seems to be easy to implement but requires a state-of-the-art device to capture the responses. In addition to this device, the other methods require other equipment for the vibration of the system and the transformation of the responses in the frequency domain.
基金973 Program under Grant under Grant No.2012CB723304It was partially supported by the Major Research Plan of the National Natural Science Foundation of China under Grant No.91315301-07+2 种基金in part by Program for Changjiang Scholars and Innovative Research Team in University under Grant No.IRT13057the Ministry of Education Program for New Century Excellent Talents in University under Grant No.NCET-11-0914the Guangzhou Ram Scholar Program Grant No.10A032D
文摘This paper presents exact analytical solutions for a novel damped outrigger system, in which viscous dampers are vertically installed between perimeter columns and the core of a high-rise building. An improved analytical model is developed by modeling the effect of the damped outrigger as a general rotational spring acting on a Bernoulli-Euler beam. The equivalent rotational spring stiffness incorporating the combined effects of dampers and axial stiffness of perimeter columns is derived. The dynamic stiffness method(DSM) is applied to formulate the governing equation of the damped outrigger system. The accuracy and effi ciency are verifi ed in comparison with those obtained from compatibility equations and boundary equations. Parametric analysis of three non-dimensional factors is conducted to evaluate the infl uences of various factors, such as the stiffness ratio of the core to the beam, position of the damped outrigger, and the installed damping coeffi cient. Results show that the modal damping ratio is signifi cantly infl uenced by the stiffness ratio of the core to the column, and is more sensitive to damping than the position of the damped outrigger. The proposed analytical model in combination with DSM can be extended to the study of structures with more outriggers.
基金supported by special fund for important and large scientific and technical projects from the Ministry of Communications (Grant No. 201132874660)funds from Nanjing Hydraulic Research Institute (Grant No. Y210001)
文摘In this paper, flume experiments are focused on sediment transport inside and outside the surf zone. According to the energy dissipation balance principle of sediment-laden flow and the similarity between energy dissipation of spilling breaking wave and hydraulic jump, formulas are proposed to predict time averaged suspended sediment concentration under both non-breaking and breaking waves. Assuming that the sediment diffusion coefficient, which is related with energy dissipation, is proportional to water depth, formulas are proposed to predict close-to-bed suspended sediment concentration and vertical distribution of suspended sediment under spilling breaking waves, and the prediction shows a good agreement with the measurement.
基金Supported by the National Natural Science Foundation of China (20476026), the Program for New Century Excellent Talents in University (05-0416), the Creative Team Development Project of Ministry of Education (IRT0721), and the 111 Project of Ministry of Education and State Administration of Foreign Experts Affairs (B08021 ).
文摘Seven distributors with different configurations are designed and optimized by constructal approach. Their flow distribution performance and energy dissipation are investigated and compared by computational fluid dynamics (CFD) simulation. The reliability of CFD simulation is verified by experiments on the distributor that has all distributing rectangle channels on a plate. The results show that the symmetry of the distributing channels has decisive influence on the performance of flow distribution. Increasing the generations of channel branching will improve the flow distribution uniformity, but on the other hand increase the energy dissipation. Among all the seven constructal distributors, the distributor that has dichotomy configuration, Y-type junctions and straight interconnecting channels, is recommended for its better flow distribution performance and less energy dissipation.
基金supported by National Natural Science Foundation of China(61304256)Zhejiang Provincial Natural Science Foundation of China(LQ13F030013)+4 种基金Project of the Education Department of Zhejiang Province(Y201327006)Young Researchers Foundation of Zhejiang Provincial Top Key Academic Discipline of Mechanical Engineering and Zhejiang Sci-Tech University Key Laboratory(ZSTUME01B15)New Century 151 Talent Project of Zhejiang Province521 Talent Project of Zhejiang Sci-Tech UniversityYoung and Middle-aged Talents Foundation of Zhejiang Provincial Top Key Academic Discipline of Mechanical Engineering
基金the National Natural Science Foundation of China(Grant Nos.52175162,51805086,and 51975123)the Natural Science Foundation of Fujian Province(Grant No.2019J01210)Health education joint project of Fujian Province(Grant No.2019-WJ-01).
文摘Flexible microporous metal rubber (FMP-MR) is a high-damping material that dissipates energy by dry friction through internal spiral metal wires in contact with each other. However, the FMP-MR energy dissipation mechanism is not fully understood owing to its disordered grid interpenetrating structure. In this work, computer-aided preparation technology is used to accurately reconstruct the complex spiral network structure of FMP-MR multipoint random contact, and a cell group model with an energy dissipation mechanism is proposed to obtain the dynamic energy distribution of the contact friction in both space and time dimensions. By judging the effective contact point, a global displacement ablation phenomenon of hooked staggered porous materials is induced. The macro- and micro-equivalent frictions are introduced to effectively explain the characteristics of the strong energy dissipation in FMP-MR under fretting excitation. A real and effective damping hysteresis constitutive model is then constructed to dynamically capture the mapping relationship between the complex nonlinear topological structure effect of the materials and spatial random contact dry friction in real time. The results indicate that the contact behavior between turns of the FMP-MR wire follows a clear quasi-Gaussian distribution under an external load, forcing the topological results to change. The energy dissipation of the materials revealed peak energy consumption lagging behind the loading limit for a certain distance, which can be determined by the effective contact point and contact dry friction slip. The consistency between the quasi-static compression tests and constitutive curves of the model was quantitatively verified through residual analysis. The data demonstrated the differential behavior of the FMP-MR meso-structure to follow a phased growth law during loading with different action mechanisms in the guiding, main growth, and relaxation stages of the energy consumption displacement curve. In summary, these findings provide an acceptable theoretical basis for the damping energy consumption mechanism and lifetime prediction of FMP-MR.
基金supported by the Key Program of the National Natural Science Foundation of China (GrantNo.50639020)the National High Technology Research and Development Program of China (863 Program,Grant No.2006AA09Z332)
文摘To understand the mooring energy during Fositioning, the expressions of four items concerning mooring line energy are presented based on a finite element model, including gravitational and elastic potential energy, kinetic energy and dissipated energy due to mooting-induced damping. In a static case, the force calculated from the derivative of potential energy with respect to distance is compared with that of direct calculation. The results are tbund fit well, which indicates the law of conservation of energy and also shows the correctness of the potential energy results. For the cases of a single mooring line with the attaclunent point oscillating with different amplitudes in horizontal or vertical direction (corresponding to surge and roll motions respectively), and the case of the mooring line with a horizontal bicbromatic oscillation on the attachment point, the time history of the first three items are calculated and analyzed, also, the indicator diagram tbr mooring-induced damping are given. These results reveal the energy state of the mooring line and can provide a better understanding of how the mooring line works.
文摘The weak layer of steel concrete (RC) frame structure is easy to destroy under the action of the earthquake, the damage mechanism is more difficult to control. Severe damage to the building structure after the earthquake, resulting in too high repair costs or having to dismantle and rebuild. In order to improve and enhance the anti-seismic performance of the RC framework structure, energy consumption devices are added between the frame columns to achieve the effect of reducing the RC frame structure damage and improving the seismic performance of the RC frame structure. In this article, high-performance fiber-enhanced cement base composite materials fabricated energy consumption walls are prepared in the RC frame structure to form a new type of seismic structure system of RC frame-prefabricated HPFRCC energy consumption wall. This article uses the power timing analysis of the ABAQUS finite element software to study the anti-seismic performance, influencing factors and energy consumption distribution of the RC frame-prefabricated HPFRCC energy wall structural system.
基金Project supported by the Programme of Introducing Talents of Discipline to Universities(Grant No.B07018)
文摘A multi-layer damper with waved plates under one-axial load is considered. A method of theoretical calculation of its energy dissipation coefficient is proposed. An experimental research of own frequencies and vibration transfer ratios for different parameters of damper structure, harmonic vibration load and random load is performed. Results of this research are approximated by functions; it is possible to use these functions for the calculation of the damper too.