Many rock engineering projects show that the growth of tensile cracks is often an important cause of engineering disasters,and the mechanical behavior of rocks is essentially the transmission,storage,dissipation and r...Many rock engineering projects show that the growth of tensile cracks is often an important cause of engineering disasters,and the mechanical behavior of rocks is essentially the transmission,storage,dissipation and release of energy.To investigate the tensile behavior of rock from the perspective of energy,uniaxial tension tests(UTTs)and uniaxial compression tests(UCTs)were carried out on three typical rocks(granite,sandstone and marble).Different unloading points were set before the peak stress to separate elastic energy and dissipated energy.The input energy density ut,elastic energy density ue,and dissipated energy density ud at each unloading point were calculated by integrating stress-strain curves.The results show that there is a strong linear relationship between the three energy parameters and the square of the unloading stress in UCT,but this linear relationship is weaker in UTT.The ue and ud increase linearly with the increase in ut in UCT and UTT.Based on the phenomenon that ue and ud increase linearly with ut,the applicability of W_(et)^(p) index in UTT was proved and the relative energy storage capacity and absolute energy distribution characteristics of three rocks in UCT and UTT were evaluated.The tensile behavior of marble and sandstone in UTT can be divided into two stages vaguely according to the energy distribution,but granite is not the case.In addition,based on dissipated energy,the damage evolution of three types of rocks in UCT and UTT was discussed.This study provides some new insights for understanding the tensile behavior of rock.展开更多
Dilatancy is a fundamental volumetric growth behavior observed during loading and serves as a key index to comprehending the intricate nonlinear behavior and constitutive equation structure of rock.This study focuses ...Dilatancy is a fundamental volumetric growth behavior observed during loading and serves as a key index to comprehending the intricate nonlinear behavior and constitutive equation structure of rock.This study focuses on Jinping marble obtained from the Jinping Underground Laboratory in China at a depth of 2400 m.Various uniaxial and triaxial tests at different strain rates,along with constant confining pressure tests and reduced confining pressure tests under different confining pressures were conducted to analyze the mechanical response and dilatancy characteristics of the marble under four stress paths.Subsequently,a new empirical dilatancy coefficient is proposed based on the energy dissipation method.The results show that brittle failure characteristics of marble under uniaxial compression are more obvious with the strain rate increasing,and plastic failure characteristics of marble under triaxial compression are gradually strengthened.Furthermore,compared to the constant confining pressure,the volume expansion is relatively lower under unloading condition.The energy dissipation is closely linked to the process of dilatancy,with a rapid increase of dissipated energy coinciding with the beginning of dilatancy.A new empirical dilatancy coefficient is defined according to the change trend of energy dissipation rate curve,of which change trend is consistent with the actual dilatancy response in marble under different stress paths.The existing empirical and theoretical dilatancy models are analyzed,which shows that the empirical dilatancy coefficient based on the energy background is more universal.展开更多
The geomorphic minimum energy dissipation principle is important in the development of gully evolutionary theory.The impact of debris flows on channels during movement also adheres to this theory.A minimum energy diss...The geomorphic minimum energy dissipation principle is important in the development of gully evolutionary theory.The impact of debris flows on channels during movement also adheres to this theory.A minimum energy dissipation model for debris flows has been obtained from previous studies,which is derived from the flow rules of runoff along a channel under rainfall or ice-snow meltwater conditions.However,the lack of consideration for erosion characteristics has hindered a comprehensive understanding of the movement characteristics of debris flow.In this paper,the phenomenon of volume increase resulting from the entrainment along debris flow movement is considered in order to derive a model for the mean velocity,reflecting the minimum energy dissipation principle.The entire expression of the mean velocity model is determined through 38 typical glacial and rainstorm debris flow cases.To evaluate the reliability of the proposed model,we employed 164 monitoring data from 1995 to 2000 in the Jiangjia gully,Yunnan,China.The results show that the velocity calculated by the proposed model are highly correlated with those obtained from the monitoring data.Additionally,a comparison is made between the mean velocities calculated by the proposed model and those obtained from previous studies,highlighting the exceptional applicability of the proposed model.This study will contribute to reveal the movement laws of debris flow along the channel.展开更多
High temperature treatment causes thermal damage to rocks in deep mining.To study the thermal effect on the energy dissipation of rocks during the dynamic cyclic loading,cyclic impact loading experiments of heat-treat...High temperature treatment causes thermal damage to rocks in deep mining.To study the thermal effect on the energy dissipation of rocks during the dynamic cyclic loading,cyclic impact loading experiments of heat-treated rocks were carried out using the splitting Hopkinson pressure bar(SHPB)experimental system.The correlations among the energy dissipation,energy dissipation rate,impact times,accumulated absorbed energy per volume,failure mode and temperature were analyzed.The results show that the reflected energy under the first impact increases and finally exceeds the absorbed energy when the temperature increases;however,the total reflected energy decreases above 200℃.The absorbed energy under the first impact and the total absorbed energy all decrease as the temperature increases,the rates of which decrease accordingly.And the same phenomenon appears for the transmitted energy and the rate of the transmitted energy.On the contrary,the rate of the reflected energy increases with the rising temperature.When the temperature increases,the fewer impact times are needed to destroy the sample.In addition,the failure modes are different when the rock is treated at different temperatures;that is,when the temperature is high,even though the absorbed energy is low,the sample breaks into powder after several impacts.展开更多
The physical and mechanical change processes of coal and rock are closely related to energy transformation,and the destruction and failure of coal and rock is an instability phenomena driven by energy change.However,t...The physical and mechanical change processes of coal and rock are closely related to energy transformation,and the destruction and failure of coal and rock is an instability phenomena driven by energy change.However,the energy change of large-scale coal rock in the mine site is hardly calculated accurately,making it difficult to monitor coal-rock systematic failure and collapse from the perspective of energy.By the energy dissipation EMR monitoring system,we studied the damage and failure of coal and rock with bursting liability from the energy dissipation point using the geophysical method-EMR,and explored the energy dissipation characteristics during uniaxial compression and their main influencing factors.The results show that under displacement-control loading mode,there are 2 types of energy dissipation trends for both coal and rock with bursting liability.The type Ⅰ trend is a steady increase one during the whole process,therein,the energy dissipation of rock samples is accelerated at the peak load.The type Ⅱ trend energy is a W-shaped fluctuating one containing 6 stages.Under load-control loading mode,there is one energy dissipation trend of shock downward-steady rise.Besides that,rock samples also present a trend of 4 stages.The energy dissipation characteristics of coal and rockduring loading failure process can be used as effective criteria to assess whether they are in a stable or destructive stage.The factors influencing energy dissipation in the loading failure process of coal and rock mainly include strength,homogeneity,and energy input efficiency.展开更多
This study investigated the effect of repeated blasting on the stability of surrounding rock during the construction of a tunnel or city underground engineering.The split Hopkinson pressure bar(SHPB)was used to carry ...This study investigated the effect of repeated blasting on the stability of surrounding rock during the construction of a tunnel or city underground engineering.The split Hopkinson pressure bar(SHPB)was used to carry out cyclic impact tests on granite samples,each having a circular hole,under different axial pressures,and the cumulative specific energy was proposed to characterize the damage characteristics of the rock during the cyclic impact.The mechanical properties and the energy absorbed by the granite samples under cyclic impact loads were analyzed.The results showed that under different axial pressures,the reflected waveform from the samples was characterized by“double-peak”phenomenon,which gradually changed to“single-peak”wi th the increase in damage value.The dynamic peak stress of the sample first increased and then decreased with an increase in impact times.The damage value criterion established based on the energy dissipation could well characterize the relationship between the damage and the number of impacts,which showed a slow increase,steady increase,and high-speed increase,and the damage value depended mainly on the last impact.Under the action of different axial pressures,all the failure modes of the samples were axial splitting failures.As the strain rate increased,with an increase in the dimension of the block,the sizes of the rock fragments decreased,and the fragmentation became more severe.展开更多
Metal rubber (MR) is a kind of homogeneous poroelastic damping material made of metal wire. In this paper, by ana- lyzing the forces on the MR isolator and the MR element, the hysteresis loops of the force and defor...Metal rubber (MR) is a kind of homogeneous poroelastic damping material made of metal wire. In this paper, by ana- lyzing the forces on the MR isolator and the MR element, the hysteresis loops of the force and deformation are studied and verified by experiments. The results show that the force and displacement hysteresis loop of the MR isolator is described by the force and deformation hysteresis loops of the MR elements. In addition, the relationship between the energy dissipation coefficient of the MR element and that of the MR isolator is derived. The energy dissipation coefficient is programmed and calculated by MATLAB using experimental data, and the results are compared with the theoretical value. It is the basis for the design and applied research of the MR isolator in a future study.展开更多
In this paper, a steel-concrete multi-energy dissipation composite shear wall, comprised of steel-reinforced concrete (SRC) columns, steel plate (SP) deep beams, a concrete wall and energy dissipation strips, is p...In this paper, a steel-concrete multi-energy dissipation composite shear wall, comprised of steel-reinforced concrete (SRC) columns, steel plate (SP) deep beams, a concrete wall and energy dissipation strips, is proposed. In order to study the multi-energy dissipation behavior and restorability after an earthquake, two stages of low cyclic loading tests were carded out on ten test specimens. In the first stage, test on five specimens with different number of SP deep beams was carried out, and the test lasted until the displacement drift reached 2%. In the second stage, thin SPs were welded to both sides of the five specimens tested in the first stage, and the same test was carried out on the repaired specimens (designated as new specimens). The load-bearing capacity, stiffness, ductility, hysteretic behavior and failure characteristics were analyzed for both stages and the results are discussed herein. Extrapolating from these results, strength calculation models and formulas are proposed herein and simulations using ABAQUS carried out, they show good agreement with the test results. The study demonstrates that SRC columns, SP deep beams, concrete wall and energy dissipation strips cooperate well and play an important role in energy dissipation. In addition, this study shows that the shear wall has good recoverability after an earthquake, and that the welding of thin SP's to repair a deformed wall is a practicable technique.展开更多
To determine the ultimate bearing capacity of foundations on sloping ground surface in practice, energy dissipation method was used to formulate the beating capacity as programming problem, and full-scale model experi...To determine the ultimate bearing capacity of foundations on sloping ground surface in practice, energy dissipation method was used to formulate the beating capacity as programming problem, and full-scale model experiments were investigated to analyze the performance of the soil slopes loaded by a strip footing in laboratory. The soil failure is governed by a linear Mohr-Coulomb yield criterion, and soil deformation follows an associated flow rule. Based on the energy dissipation method of plastic mechanics, a multi-wedge translational failure mechanism was employed to obtain the three bearing capacity factors related to cohesion, equivalent surcharge load and the unit gravity for various slope inclination angles. Numerical results were compared with those of the published solutions using finite element method and those of model experiments. The bearing capacity factors were presented in the form of design charts for practical use in engineering. The results show that limit analysis solutions approximate to those of model tests, and that the energy dissipation method is effective to estimate bearing capacity of soil slope.展开更多
In this article, we mainly study the local equation of energy for weak solutions of 3D MHD equations. We define a dissipation term D(u, B) that steins from an eventual lack of smoothness in the solution, and then ob...In this article, we mainly study the local equation of energy for weak solutions of 3D MHD equations. We define a dissipation term D(u, B) that steins from an eventual lack of smoothness in the solution, and then obtain a local equation of energy for weak solutions of 3D MHD equations. Finally, we consider the 2D case at the end of this article.展开更多
Dynamic disasters in Chinese coal mines pose a significant threat to coal productivity. Thus, a thorough understanding of the deformation and failure processes of coal is necessary. In this study, the energy dissipati...Dynamic disasters in Chinese coal mines pose a significant threat to coal productivity. Thus, a thorough understanding of the deformation and failure processes of coal is necessary. In this study, the energy dissipation rate is proposed as a novel indicator of coal deformation and failure under static and dynamic compressive loads. The relationship between stress-strain, uniaxial compressive strength, displacement rate, loading rate, fractal dimension, and energy dissipation rate was investigated through experiments conducted using the MTS C60 tests(static loads) and split Hopkinson pressure bar system(dynamic loads). The results show that the energy dissipation rate peaks are associated with stress drop during coal deformation, and also positively related to the uniaxial compressive strength. A higher displacement rate of quasi-static loads leads to an initial increase and then a decrease in energy dissipation rate, whereas a higher loading rate of dynamic loads results in larger energy dissipation rate. Theoretical analysis indicates that a sudden increase in energy dissipation rate suggests partial fracture occurring within coal under both quasi-static and dynamic loads. Hence, the energy dissipation rate is an essential indicator of partial fracture and final failure within coal, as well as a prospective precursor for catastrophic failure in coal mine.展开更多
The generalized thermo-elasticity theory, i.e., Green and Naghdi (G-N) Ⅲ theory, with energy dissipation (TEWED) is employed in the study of time-harmonic plane wave propagation in an unbounded, perfectly electri...The generalized thermo-elasticity theory, i.e., Green and Naghdi (G-N) Ⅲ theory, with energy dissipation (TEWED) is employed in the study of time-harmonic plane wave propagation in an unbounded, perfectly electrically conducting elastic medium subject to primary uniform magnetic field. A more general dispersion equation with com- plex coefficients is obtained for coupled magneto-thermo-elastic wave solved in complex domain by using the Leguerre's method. It reveals that the coupled magneto-thermoelastic wave corresponds to modified dilatational and thermal wave propagation with finite speeds modified by finite thermal wave speeds, thermo-elastic coupling, thermal diffusivity, and the external magnetic field. Numerical results for a copper-like material are presented.展开更多
China is a country where 100% of the territory is located in a seismic zone. Most of the strong earthquakes are over prediction. Most fatalities are caused by structural collapse. Earthquakes not only cause severe dam...China is a country where 100% of the territory is located in a seismic zone. Most of the strong earthquakes are over prediction. Most fatalities are caused by structural collapse. Earthquakes not only cause severe damage to structures, but can also damage non-structural elements on and inside of facilities. This can halt city life, and disrupt hospitals, airports, bridges, power plants, and other infrastructure. Designers need to use new techniques to protect structures and facilities inside. Isolation, energy dissipation and, control systems are more and more widely used in recent years in China. Currently, there are nearly 6,500 structures with isolation and about 3,000 structures with passive energy dissipation or hybrid control in China. The mitigation techniques are applied to structures like residential buildings, large or complex structures, bridges, underwater tunnels, historical or cultural relic sites, and industrial facilities, and are used for retrofitting of existed structures. This paper introduces design rules and some new and innovative devices for seismic isolation, energy dissipation and hybrid control for civil and industrial structures. This paper also discusses the development trends for seismic resistance, seismic isolation, passive and active control techniques for the future in China and in the world.展开更多
Fundamental experiments were carried out in a wave flume on internal solitary wave (ISW) of depression-type propagating over a submerged ridge. The seabed ridge included either triangular or semicircular shape - reg...Fundamental experiments were carried out in a wave flume on internal solitary wave (ISW) of depression-type propagating over a submerged ridge. The seabed ridge included either triangular or semicircular shape - regarded as topographic obstacles. Influenced by the submarine ridge, the transmitted waves were found to always consist of a leading pulse (a solitary wave) followed by a dispersive wave train. The wave profile propagating over a triangular ridge was similar to that caused by a semicircular obstacle. Apparently, the smooth face of a semicircular ridge produced time lag of wave propagation. From experimental results available, the reduction in wave energy induced by a semicircular ridge was larger than that by a triangular one. The events of wave distortion, strong breaking, internal bolus, and stratification mixing happened in case that the crest of an ISW was great enough to interact with the topographic obstacle. The reduction in wave energy was induced by strong breaking, and it depended on the ridge height rather than the geometric shape of the ridge.展开更多
This paper proposes a new approximation to energy dissipation in time domain simulation of sloshing waves by use of a linear potential theory. The boundary value problem is solved by the NURBS (non-uniform rational B...This paper proposes a new approximation to energy dissipation in time domain simulation of sloshing waves by use of a linear potential theory. The boundary value problem is solved by the NURBS (non-uniform rational B-spline) higher-order panel method, in which a time-domain Green function is employed. The energy dissipation is modeled by changing the boundary condition on solid boundaries. Model experiments are carried out in a partially filled rectangular tank with forced horizontal motion. Sloshing-induced internal pressures and horizontal force obtained numerically and experimentally are compared with each other. It is observed that the present energy dissipation approximation can help produce a fair agreement between experimental forces and those of numerical simulations.展开更多
A certain pattern of channel is the product of its self-adjustment under given boundary, discharge and sediment conditions. Based upon the principle of process-response model, an experimental study with 18 runs is car...A certain pattern of channel is the product of its self-adjustment under given boundary, discharge and sediment conditions. Based upon the principle of process-response model, an experimental study with 18 runs is carried out in LESRC. This paper is focused on the variation of the energy dissipation versus the channel morphology during and after the bedmaking process of braided channel. The results show that there exists a good empirical relationship between the energy dissipation rate and channel morphology. According to this relationship and the theory of minimum rate of energy dissipation, the authors explain the metamorphosis of the model channel with the development of the braided river.展开更多
The mechanical behaviors and energy dissipation characteristics of heat-treated granite were investigated under repeated impact loading.The granite samples were firstly heat-treated at the temperature of 20℃,200℃,40...The mechanical behaviors and energy dissipation characteristics of heat-treated granite were investigated under repeated impact loading.The granite samples were firstly heat-treated at the temperature of 20℃,200℃,400℃,and 600℃,respectively.The thermal damage characteristics of these samples were then observed and measured before impact tests.Dynamic impact compression tests finally were carried out using a modified split-Hopkinson pressure bar under three impact velocities of 12 m/s,15 m/s,and 18 m/s.These test results show that the mineral composition and the main oxides of the granite do not change with these treatment temperatures.The number of microcracks and microvoids decreases in the sample after 200℃ treatment.The mechanical properties of a sample after 600℃ treatment were rapidly deteriorated under the same impact velocity.The average of peak stress is much smaller than those after 20℃,200℃ and 400℃ treatments.The heat-treated samples have an energy threshold each.When the dissipated energy of a sample under a single impact is less than this threshold,the repeated impacts hardly lead to further damage accumulation even if its total breakage energy dissipation(BED)density is large.Under the same number of repeated impacts,the cumulative BED density of a sample after 600℃ treatment is the largest and its damage evolves most quickly.The total BED density of the sample after 200℃ treatment is the highest,which implies that this sample has better resistance to repeated impact,thus having less crack initiation and growth.展开更多
Based on the compression mechanism for analyzing the cavity expansion problem in soil under high stresses,generalized non-linear failure criterion and large strain and energy conservation in plastic region during the ...Based on the compression mechanism for analyzing the cavity expansion problem in soil under high stresses,generalized non-linear failure criterion and large strain and energy conservation in plastic region during the cavity expanding were adopted.The energy conservation equation was established and the limited pressure of cavity expansion under high stresses was given based on the energy dissipation analysis method,in which the energy generated from cavity expansion is absorbed by the volume change and shear strain caused in soil.The factors of large strain and dilatation were considered by the proposed method.The analysis shows that the limited pressure is determined by failure criterion,stress state,large deformation characteristic,dilatation and strength of soil.It is shown from the comparison that the results with the proposed method approximate to those of the in-situ method.The cavity expansion pressure first decreases and then increases nonlinearly with both of shear modulus and dilatation increasing.展开更多
On the basis of quantization of charge, the loop equations of quantum circuits are investigated by using the Helsenberg motion equation for a mesoscopic dissipation transmission line. On the supposition that the syste...On the basis of quantization of charge, the loop equations of quantum circuits are investigated by using the Helsenberg motion equation for a mesoscopic dissipation transmission line. On the supposition that the system has a symmetry under translation in charge space, the quantum current and the quantum energy spectrum in the mesoscopic transmission llne are given by solving their eigenvalue equations. Results show that the quantum current and the quantum energy spectrum are not only related to the parameters of the transmission llne, but also dependent on the quantized character of the charge obviously.展开更多
A new type of drainage channel with an energy dissipation structure has been proposed based on previous engineering experiences and practical requirements for hazard mitigation in earthquakeaffected areas.Experimental...A new type of drainage channel with an energy dissipation structure has been proposed based on previous engineering experiences and practical requirements for hazard mitigation in earthquakeaffected areas.Experimental studies were performed to determine the characteristics of viscous debris flow in a drainage channel of this type with a slope of 15%.The velocity and depth of the viscous debris flow were measured,processed,and subsequently used to characterize the viscous debris flow in the drainage channel.Observations of this experiment showed that the surface of the viscous debris flow in a smooth drainage channel was smoother than that of a similar debris flow passing through the energy dissipation section in a channel of the new type studied here.However,the flow patterns in the two types of channels were similar at other points.These experimental results show that the depth of the viscous debris flow downstream of the energy dissipation structure increased gradually with the length of the energy dissipation structure.In addition,in the smooth channel,the viscous debris-flow velocity downstream of the energy dissipation structure decreased gradually with the length of the energy dissipation structure.Furthermore,theviscous debris-flow depth and velocity were slightly affected by variations in the width of the energy dissipation structure when the channel slope was 15%.Finally,the energy dissipation ratio increased gradually as the length and width of the energy dissipation structure increased;the maximum energy dissipation ratio observed was 62.9%(where B = 0.6m and L/w = 6.0).展开更多
基金supported by the National Natural Science Foundation of China(Grant No.52074352)the National Natural Science Foundation of Hunan Province of China(Grant No.2023JJ30680)the Fundamental Research Funds for the Central Universities of Central South University(Grant No.2024ZZTS0423).
文摘Many rock engineering projects show that the growth of tensile cracks is often an important cause of engineering disasters,and the mechanical behavior of rocks is essentially the transmission,storage,dissipation and release of energy.To investigate the tensile behavior of rock from the perspective of energy,uniaxial tension tests(UTTs)and uniaxial compression tests(UCTs)were carried out on three typical rocks(granite,sandstone and marble).Different unloading points were set before the peak stress to separate elastic energy and dissipated energy.The input energy density ut,elastic energy density ue,and dissipated energy density ud at each unloading point were calculated by integrating stress-strain curves.The results show that there is a strong linear relationship between the three energy parameters and the square of the unloading stress in UCT,but this linear relationship is weaker in UTT.The ue and ud increase linearly with the increase in ut in UCT and UTT.Based on the phenomenon that ue and ud increase linearly with ut,the applicability of W_(et)^(p) index in UTT was proved and the relative energy storage capacity and absolute energy distribution characteristics of three rocks in UCT and UTT were evaluated.The tensile behavior of marble and sandstone in UTT can be divided into two stages vaguely according to the energy distribution,but granite is not the case.In addition,based on dissipated energy,the damage evolution of three types of rocks in UCT and UTT was discussed.This study provides some new insights for understanding the tensile behavior of rock.
基金Project(2022NSFSC0279)supported by the General Project of Sichuan Natural Science Foundation,ChinaProject(Z17113)supported by the Key Scientific Research Fund of Xihua University,ChinaProject(SR21A04)supported by the Research Center for Social Development and Social Risk Control of Sichuan Province,Key Research Base of Philosophy and Social Sciences,Sichuan University,China。
文摘Dilatancy is a fundamental volumetric growth behavior observed during loading and serves as a key index to comprehending the intricate nonlinear behavior and constitutive equation structure of rock.This study focuses on Jinping marble obtained from the Jinping Underground Laboratory in China at a depth of 2400 m.Various uniaxial and triaxial tests at different strain rates,along with constant confining pressure tests and reduced confining pressure tests under different confining pressures were conducted to analyze the mechanical response and dilatancy characteristics of the marble under four stress paths.Subsequently,a new empirical dilatancy coefficient is proposed based on the energy dissipation method.The results show that brittle failure characteristics of marble under uniaxial compression are more obvious with the strain rate increasing,and plastic failure characteristics of marble under triaxial compression are gradually strengthened.Furthermore,compared to the constant confining pressure,the volume expansion is relatively lower under unloading condition.The energy dissipation is closely linked to the process of dilatancy,with a rapid increase of dissipated energy coinciding with the beginning of dilatancy.A new empirical dilatancy coefficient is defined according to the change trend of energy dissipation rate curve,of which change trend is consistent with the actual dilatancy response in marble under different stress paths.The existing empirical and theoretical dilatancy models are analyzed,which shows that the empirical dilatancy coefficient based on the energy background is more universal.
基金supported by the National Natural Science Foundation of China(Grant No.41925030)the Nyingchi National Sustainable Development Experimental Zone Project(2023-SYQ-007)+1 种基金the Chinese Academy of Sciences Light of West China Programthe Science and Technology Research Program of Institute of Mountain Hazards and Environment,Chinese Academy of Sciences(Grant No.IMHE-ZDRW-02).
文摘The geomorphic minimum energy dissipation principle is important in the development of gully evolutionary theory.The impact of debris flows on channels during movement also adheres to this theory.A minimum energy dissipation model for debris flows has been obtained from previous studies,which is derived from the flow rules of runoff along a channel under rainfall or ice-snow meltwater conditions.However,the lack of consideration for erosion characteristics has hindered a comprehensive understanding of the movement characteristics of debris flow.In this paper,the phenomenon of volume increase resulting from the entrainment along debris flow movement is considered in order to derive a model for the mean velocity,reflecting the minimum energy dissipation principle.The entire expression of the mean velocity model is determined through 38 typical glacial and rainstorm debris flow cases.To evaluate the reliability of the proposed model,we employed 164 monitoring data from 1995 to 2000 in the Jiangjia gully,Yunnan,China.The results show that the velocity calculated by the proposed model are highly correlated with those obtained from the monitoring data.Additionally,a comparison is made between the mean velocities calculated by the proposed model and those obtained from previous studies,highlighting the exceptional applicability of the proposed model.This study will contribute to reveal the movement laws of debris flow along the channel.
基金Project(2016YFC0600706) supported by the State Key Research Development Program of ChinaProjects(41630642,51774325) supported by the National Natural Science Foundation of China+1 种基金Project(2017JJ3389) supported by the Natural Science Foundation of Hunan Province,ChinaProjects(2017CX006,2018zzts212) supported by the Innovation-Driven Program of Central South University,China
文摘High temperature treatment causes thermal damage to rocks in deep mining.To study the thermal effect on the energy dissipation of rocks during the dynamic cyclic loading,cyclic impact loading experiments of heat-treated rocks were carried out using the splitting Hopkinson pressure bar(SHPB)experimental system.The correlations among the energy dissipation,energy dissipation rate,impact times,accumulated absorbed energy per volume,failure mode and temperature were analyzed.The results show that the reflected energy under the first impact increases and finally exceeds the absorbed energy when the temperature increases;however,the total reflected energy decreases above 200℃.The absorbed energy under the first impact and the total absorbed energy all decrease as the temperature increases,the rates of which decrease accordingly.And the same phenomenon appears for the transmitted energy and the rate of the transmitted energy.On the contrary,the rate of the reflected energy increases with the rising temperature.When the temperature increases,the fewer impact times are needed to destroy the sample.In addition,the failure modes are different when the rock is treated at different temperatures;that is,when the temperature is high,even though the absorbed energy is low,the sample breaks into powder after several impacts.
基金supported by Youth Science Foundation of the National Natural Science Foundation of China(No.51104156)the Fundamental Research Funds for the Central Universities of China(No.2013QNB02)the 12th Five Year National Science and Technology Support Key Project of China(Nos. 2012BAK04B07-2 and 2012BAK09B01-04)
文摘The physical and mechanical change processes of coal and rock are closely related to energy transformation,and the destruction and failure of coal and rock is an instability phenomena driven by energy change.However,the energy change of large-scale coal rock in the mine site is hardly calculated accurately,making it difficult to monitor coal-rock systematic failure and collapse from the perspective of energy.By the energy dissipation EMR monitoring system,we studied the damage and failure of coal and rock with bursting liability from the energy dissipation point using the geophysical method-EMR,and explored the energy dissipation characteristics during uniaxial compression and their main influencing factors.The results show that under displacement-control loading mode,there are 2 types of energy dissipation trends for both coal and rock with bursting liability.The type Ⅰ trend is a steady increase one during the whole process,therein,the energy dissipation of rock samples is accelerated at the peak load.The type Ⅱ trend energy is a W-shaped fluctuating one containing 6 stages.Under load-control loading mode,there is one energy dissipation trend of shock downward-steady rise.Besides that,rock samples also present a trend of 4 stages.The energy dissipation characteristics of coal and rockduring loading failure process can be used as effective criteria to assess whether they are in a stable or destructive stage.The factors influencing energy dissipation in the loading failure process of coal and rock mainly include strength,homogeneity,and energy input efficiency.
基金Projects(51804163,52004130)supported by the National Natural Science Foundation of ChinaProject(2018 M 642678)supported by the China Postdoctoral Science Foundation。
文摘This study investigated the effect of repeated blasting on the stability of surrounding rock during the construction of a tunnel or city underground engineering.The split Hopkinson pressure bar(SHPB)was used to carry out cyclic impact tests on granite samples,each having a circular hole,under different axial pressures,and the cumulative specific energy was proposed to characterize the damage characteristics of the rock during the cyclic impact.The mechanical properties and the energy absorbed by the granite samples under cyclic impact loads were analyzed.The results showed that under different axial pressures,the reflected waveform from the samples was characterized by“double-peak”phenomenon,which gradually changed to“single-peak”wi th the increase in damage value.The dynamic peak stress of the sample first increased and then decreased with an increase in impact times.The damage value criterion established based on the energy dissipation could well characterize the relationship between the damage and the number of impacts,which showed a slow increase,steady increase,and high-speed increase,and the damage value depended mainly on the last impact.Under the action of different axial pressures,all the failure modes of the samples were axial splitting failures.As the strain rate increased,with an increase in the dimension of the block,the sizes of the rock fragments decreased,and the fragmentation became more severe.
文摘Metal rubber (MR) is a kind of homogeneous poroelastic damping material made of metal wire. In this paper, by ana- lyzing the forces on the MR isolator and the MR element, the hysteresis loops of the force and deformation are studied and verified by experiments. The results show that the force and displacement hysteresis loop of the MR isolator is described by the force and deformation hysteresis loops of the MR elements. In addition, the relationship between the energy dissipation coefficient of the MR element and that of the MR isolator is derived. The energy dissipation coefficient is programmed and calculated by MATLAB using experimental data, and the results are compared with the theoretical value. It is the basis for the design and applied research of the MR isolator in a future study.
基金Beijing Natural Science Foundation of China under Grant No.8122004the National Natural Science Foundation of China under Grant No.51178010the National Science and Technology Support Program of China under Grant No.2012BAJ13B02
文摘In this paper, a steel-concrete multi-energy dissipation composite shear wall, comprised of steel-reinforced concrete (SRC) columns, steel plate (SP) deep beams, a concrete wall and energy dissipation strips, is proposed. In order to study the multi-energy dissipation behavior and restorability after an earthquake, two stages of low cyclic loading tests were carded out on ten test specimens. In the first stage, test on five specimens with different number of SP deep beams was carried out, and the test lasted until the displacement drift reached 2%. In the second stage, thin SPs were welded to both sides of the five specimens tested in the first stage, and the same test was carried out on the repaired specimens (designated as new specimens). The load-bearing capacity, stiffness, ductility, hysteretic behavior and failure characteristics were analyzed for both stages and the results are discussed herein. Extrapolating from these results, strength calculation models and formulas are proposed herein and simulations using ABAQUS carried out, they show good agreement with the test results. The study demonstrates that SRC columns, SP deep beams, concrete wall and energy dissipation strips cooperate well and play an important role in energy dissipation. In addition, this study shows that the shear wall has good recoverability after an earthquake, and that the welding of thin SP's to repair a deformed wall is a practicable technique.
基金Project(50408020) supported by the National Natural Science Foundation of Chinaproject(05-0686) supported by the Program of New Century Excellent Talents in Universityproject(200550) supported by the Foundation for the Author of National Excellent Doctoral Dissertation of China
文摘To determine the ultimate bearing capacity of foundations on sloping ground surface in practice, energy dissipation method was used to formulate the beating capacity as programming problem, and full-scale model experiments were investigated to analyze the performance of the soil slopes loaded by a strip footing in laboratory. The soil failure is governed by a linear Mohr-Coulomb yield criterion, and soil deformation follows an associated flow rule. Based on the energy dissipation method of plastic mechanics, a multi-wedge translational failure mechanism was employed to obtain the three bearing capacity factors related to cohesion, equivalent surcharge load and the unit gravity for various slope inclination angles. Numerical results were compared with those of the published solutions using finite element method and those of model experiments. The bearing capacity factors were presented in the form of design charts for practical use in engineering. The results show that limit analysis solutions approximate to those of model tests, and that the energy dissipation method is effective to estimate bearing capacity of soil slope.
基金Supported by NSFC (10976026)supported by the Fundamental Research Funds for the Central Universities (11QZR18)the Research Funds for high-level talents of Huaqiao University (12BS232)
文摘In this article, we mainly study the local equation of energy for weak solutions of 3D MHD equations. We define a dissipation term D(u, B) that steins from an eventual lack of smoothness in the solution, and then obtain a local equation of energy for weak solutions of 3D MHD equations. Finally, we consider the 2D case at the end of this article.
基金provided by the National Natural Science Foundation of China (No. 51574231)the Youth Fund of Anhui University of Technology (No. QZ201718)
文摘Dynamic disasters in Chinese coal mines pose a significant threat to coal productivity. Thus, a thorough understanding of the deformation and failure processes of coal is necessary. In this study, the energy dissipation rate is proposed as a novel indicator of coal deformation and failure under static and dynamic compressive loads. The relationship between stress-strain, uniaxial compressive strength, displacement rate, loading rate, fractal dimension, and energy dissipation rate was investigated through experiments conducted using the MTS C60 tests(static loads) and split Hopkinson pressure bar system(dynamic loads). The results show that the energy dissipation rate peaks are associated with stress drop during coal deformation, and also positively related to the uniaxial compressive strength. A higher displacement rate of quasi-static loads leads to an initial increase and then a decrease in energy dissipation rate, whereas a higher loading rate of dynamic loads results in larger energy dissipation rate. Theoretical analysis indicates that a sudden increase in energy dissipation rate suggests partial fracture occurring within coal under both quasi-static and dynamic loads. Hence, the energy dissipation rate is an essential indicator of partial fracture and final failure within coal, as well as a prospective precursor for catastrophic failure in coal mine.
文摘The generalized thermo-elasticity theory, i.e., Green and Naghdi (G-N) Ⅲ theory, with energy dissipation (TEWED) is employed in the study of time-harmonic plane wave propagation in an unbounded, perfectly electrically conducting elastic medium subject to primary uniform magnetic field. A more general dispersion equation with com- plex coefficients is obtained for coupled magneto-thermo-elastic wave solved in complex domain by using the Leguerre's method. It reveals that the coupled magneto-thermoelastic wave corresponds to modified dilatational and thermal wave propagation with finite speeds modified by finite thermal wave speeds, thermo-elastic coupling, thermal diffusivity, and the external magnetic field. Numerical results for a copper-like material are presented.
文摘China is a country where 100% of the territory is located in a seismic zone. Most of the strong earthquakes are over prediction. Most fatalities are caused by structural collapse. Earthquakes not only cause severe damage to structures, but can also damage non-structural elements on and inside of facilities. This can halt city life, and disrupt hospitals, airports, bridges, power plants, and other infrastructure. Designers need to use new techniques to protect structures and facilities inside. Isolation, energy dissipation and, control systems are more and more widely used in recent years in China. Currently, there are nearly 6,500 structures with isolation and about 3,000 structures with passive energy dissipation or hybrid control in China. The mitigation techniques are applied to structures like residential buildings, large or complex structures, bridges, underwater tunnels, historical or cultural relic sites, and industrial facilities, and are used for retrofitting of existed structures. This paper introduces design rules and some new and innovative devices for seismic isolation, energy dissipation and hybrid control for civil and industrial structures. This paper also discusses the development trends for seismic resistance, seismic isolation, passive and active control techniques for the future in China and in the world.
基金The work was supported by the National Science Council under Grant Nos . NSC 95-2221-E-366-001 and NSC 95-2218-E-132-001 .
文摘Fundamental experiments were carried out in a wave flume on internal solitary wave (ISW) of depression-type propagating over a submerged ridge. The seabed ridge included either triangular or semicircular shape - regarded as topographic obstacles. Influenced by the submarine ridge, the transmitted waves were found to always consist of a leading pulse (a solitary wave) followed by a dispersive wave train. The wave profile propagating over a triangular ridge was similar to that caused by a semicircular obstacle. Apparently, the smooth face of a semicircular ridge produced time lag of wave propagation. From experimental results available, the reduction in wave energy induced by a semicircular ridge was larger than that by a triangular one. The events of wave distortion, strong breaking, internal bolus, and stratification mixing happened in case that the crest of an ISW was great enough to interact with the topographic obstacle. The reduction in wave energy was induced by strong breaking, and it depended on the ridge height rather than the geometric shape of the ridge.
基金supported by the National Natural Science Foundation of China (Grant No. 50779008)the Program for New Century Excellent Talents in University (Grant No. NCET-07-0230)the "111" Project of China (Grant No. B07019)
文摘This paper proposes a new approximation to energy dissipation in time domain simulation of sloshing waves by use of a linear potential theory. The boundary value problem is solved by the NURBS (non-uniform rational B-spline) higher-order panel method, in which a time-domain Green function is employed. The energy dissipation is modeled by changing the boundary condition on solid boundaries. Model experiments are carried out in a partially filled rectangular tank with forced horizontal motion. Sloshing-induced internal pressures and horizontal force obtained numerically and experimentally are compared with each other. It is observed that the present energy dissipation approximation can help produce a fair agreement between experimental forces and those of numerical simulations.
基金Joint project by National Natural Science Foundation of China and Ministry of Water Resources of China No. 59890200 the incenti
文摘A certain pattern of channel is the product of its self-adjustment under given boundary, discharge and sediment conditions. Based upon the principle of process-response model, an experimental study with 18 runs is carried out in LESRC. This paper is focused on the variation of the energy dissipation versus the channel morphology during and after the bedmaking process of braided channel. The results show that there exists a good empirical relationship between the energy dissipation rate and channel morphology. According to this relationship and the theory of minimum rate of energy dissipation, the authors explain the metamorphosis of the model channel with the development of the braided river.
基金This study was financially supported by the National Natural Science Foundation of China(51579062,51379147),which is gratefully appreciated.
文摘The mechanical behaviors and energy dissipation characteristics of heat-treated granite were investigated under repeated impact loading.The granite samples were firstly heat-treated at the temperature of 20℃,200℃,400℃,and 600℃,respectively.The thermal damage characteristics of these samples were then observed and measured before impact tests.Dynamic impact compression tests finally were carried out using a modified split-Hopkinson pressure bar under three impact velocities of 12 m/s,15 m/s,and 18 m/s.These test results show that the mineral composition and the main oxides of the granite do not change with these treatment temperatures.The number of microcracks and microvoids decreases in the sample after 200℃ treatment.The mechanical properties of a sample after 600℃ treatment were rapidly deteriorated under the same impact velocity.The average of peak stress is much smaller than those after 20℃,200℃ and 400℃ treatments.The heat-treated samples have an energy threshold each.When the dissipated energy of a sample under a single impact is less than this threshold,the repeated impacts hardly lead to further damage accumulation even if its total breakage energy dissipation(BED)density is large.Under the same number of repeated impacts,the cumulative BED density of a sample after 600℃ treatment is the largest and its damage evolves most quickly.The total BED density of the sample after 200℃ treatment is the highest,which implies that this sample has better resistance to repeated impact,thus having less crack initiation and growth.
基金Projects(2010RS4016,10JJ60708) supported by Hunan Provincial Science Foundation,ChinaProjects(201018,201108,201121) supported by Hunan Provincial Transportation Science and Technology Progress and Innovation Plan of China
文摘Based on the compression mechanism for analyzing the cavity expansion problem in soil under high stresses,generalized non-linear failure criterion and large strain and energy conservation in plastic region during the cavity expanding were adopted.The energy conservation equation was established and the limited pressure of cavity expansion under high stresses was given based on the energy dissipation analysis method,in which the energy generated from cavity expansion is absorbed by the volume change and shear strain caused in soil.The factors of large strain and dilatation were considered by the proposed method.The analysis shows that the limited pressure is determined by failure criterion,stress state,large deformation characteristic,dilatation and strength of soil.It is shown from the comparison that the results with the proposed method approximate to those of the in-situ method.The cavity expansion pressure first decreases and then increases nonlinearly with both of shear modulus and dilatation increasing.
基金Project supported by the Science Foundation of Jiangsu Provincial Education 0ffice, China (Grant No 05KJD140035).
文摘On the basis of quantization of charge, the loop equations of quantum circuits are investigated by using the Helsenberg motion equation for a mesoscopic dissipation transmission line. On the supposition that the system has a symmetry under translation in charge space, the quantum current and the quantum energy spectrum in the mesoscopic transmission llne are given by solving their eigenvalue equations. Results show that the quantum current and the quantum energy spectrum are not only related to the parameters of the transmission llne, but also dependent on the quantized character of the charge obviously.
基金supported by the Key Deployment Project of Chinese Academy of Sciences (Grant No.KZZD-EW-05-01)the National Natural Science Foundation of China (Grant No.41302283)the West Light Foundation of Chinese Academy of Sciences
文摘A new type of drainage channel with an energy dissipation structure has been proposed based on previous engineering experiences and practical requirements for hazard mitigation in earthquakeaffected areas.Experimental studies were performed to determine the characteristics of viscous debris flow in a drainage channel of this type with a slope of 15%.The velocity and depth of the viscous debris flow were measured,processed,and subsequently used to characterize the viscous debris flow in the drainage channel.Observations of this experiment showed that the surface of the viscous debris flow in a smooth drainage channel was smoother than that of a similar debris flow passing through the energy dissipation section in a channel of the new type studied here.However,the flow patterns in the two types of channels were similar at other points.These experimental results show that the depth of the viscous debris flow downstream of the energy dissipation structure increased gradually with the length of the energy dissipation structure.In addition,in the smooth channel,the viscous debris-flow velocity downstream of the energy dissipation structure decreased gradually with the length of the energy dissipation structure.Furthermore,theviscous debris-flow depth and velocity were slightly affected by variations in the width of the energy dissipation structure when the channel slope was 15%.Finally,the energy dissipation ratio increased gradually as the length and width of the energy dissipation structure increased;the maximum energy dissipation ratio observed was 62.9%(where B = 0.6m and L/w = 6.0).