In this paper, we propose an energy-efficient power control scheme for device-to-device(D2D) communications underlaying cellular networks, where multiple D2D pairs reuse the same resource blocks allocated to one cellu...In this paper, we propose an energy-efficient power control scheme for device-to-device(D2D) communications underlaying cellular networks, where multiple D2D pairs reuse the same resource blocks allocated to one cellular user. Taking the maximum allowed transmit power and the minimum data rate requirement into consideration, we formulate the energy efficiency maximization problem as a non-concave fractional programming(FP) problem and then develop a two-loop iterative algorithm to solve it. In the outer loop, we adopt Dinkelbach method to equivalently transform the FP problem into a series of parametric subtractive-form problems, and in the inner loop we solve the parametric subtractive problems based on successive convex approximation and geometric programming method to obtain the solutions satisfying the KarushKuhn-Tucker conditions. Simulation results demonstrate the validity and efficiency of the proposed scheme, and illustrate the impact of different parameters on system performance.展开更多
In order to eliminate the energy waste caused by the traditional static hardware multithreaded processor used in real-time embedded system working in the low workload situation, the energy efficiency of the hardware m...In order to eliminate the energy waste caused by the traditional static hardware multithreaded processor used in real-time embedded system working in the low workload situation, the energy efficiency of the hardware multithread is discussed and a novel dynamic multithreaded architecture is proposed. The proposed architecture saves the energy wasted by removing idle threads without manipulation on the original architecture, fulfills a seamless switching mechanism which protects active threads and avoids pipeline stall during power mode switching. The report of an implemented dynamic multithreaded processor with 45 nm process from synthesis tool indicates that the area of dynamic multithreaded architecture is only 2.27% higher than the static one in achieving dynamic power dissipation, and consumes 1.3% more power in the same peak performance.展开更多
Discharge plasmas in air can be accompanied by ultraviolet(UV) radiation and electron impact,which can produce large numbers of reactive species such as hydroxyl radical(OH·),oxygen radical(O·),ozone...Discharge plasmas in air can be accompanied by ultraviolet(UV) radiation and electron impact,which can produce large numbers of reactive species such as hydroxyl radical(OH·),oxygen radical(O·),ozone(O3),and nitrogen oxides(NOx),etc.The composition and dosage of reactive species usually play an important role in the case of volatile organic compounds(VOCs) treatment with the discharge plasmas.In this paper,we propose a volume discharge setup used to purify formaldehyde in air,which is configured by a plate-to-plate dielectric barrier discharge(DBD) channel and excited by an AC high voltage source.The results show that the relative spectral-intensity from DBD cell without formaldehyde is stronger than the case with formaldehyde.The energy efficiency ratios(EERs) of both oxides yield and formaldehyde removal can be regulated by the gas flow velocity in DBD channel,and the most desirable processing effect is the gas flow velocity within the range from2.50 to 3.33 m s^-1.Moreover,the EERs of both the generated dosages of oxides(O3 and NO2) and the amount of removed formaldehyde can also be regulated by both of the applied voltage and power density loaded on the DBD cell.Additionally,the EERs of both oxides generation and formaldehyde removal present as a function of normal distribution with increasing the applied power density,and the peak of the function is appeared in the range from 273.5 to 400.0 W l-1.This work clearly demonstrates the regulation characteristic of both the formaldehyde removal and oxides yield by using volume DBD,and it is helpful in the applications of VOCs removal by using discharge plasma.展开更多
Automated production systems typically comprise numerous electrical servo drives,many of which conduct positioning motions,e.g.for handling or manipulation tasks.The power electronics of modern multi-axis systems ofte...Automated production systems typically comprise numerous electrical servo drives,many of which conduct positioning motions,e.g.for handling or manipulation tasks.The power electronics of modern multi-axis systems often comprise coupled DC-links,enabling for internal exchange of recuperative brake energy.However,the motion sequences of manipulators are often commanded at maximum dynamics for minimum time motion,neglecting possible optimization potential,e.g.available idle time,leading to inefficient energy management.A robust trajectory optimization approach based on the particle swarm algorithm and well-established path planning methods is presented for the adaption of multi-axis positioning tasks with only two parameters per axis and positioning motion during system run-time.Experimental results prove that,depending on the positioning task and chosen optimization constraints,energy demands are distinctly reduced.The approach is applicable to diverse multi-axis configurations and enables for considerable energy savings without additional hardware invest.展开更多
基金supported by National Natural Science Foundation of China (No.61501028)Beijing Institute of Technology Research Fund Program for Young Scholars
文摘In this paper, we propose an energy-efficient power control scheme for device-to-device(D2D) communications underlaying cellular networks, where multiple D2D pairs reuse the same resource blocks allocated to one cellular user. Taking the maximum allowed transmit power and the minimum data rate requirement into consideration, we formulate the energy efficiency maximization problem as a non-concave fractional programming(FP) problem and then develop a two-loop iterative algorithm to solve it. In the outer loop, we adopt Dinkelbach method to equivalently transform the FP problem into a series of parametric subtractive-form problems, and in the inner loop we solve the parametric subtractive problems based on successive convex approximation and geometric programming method to obtain the solutions satisfying the KarushKuhn-Tucker conditions. Simulation results demonstrate the validity and efficiency of the proposed scheme, and illustrate the impact of different parameters on system performance.
基金supported partially by the National High Technical Research and Development Program of China (863 Program) under Grants No. 2011AA040101, No. 2008AA01Z134the National Natural Science Foundation of China under Grants No. 61003251, No. 61172049, No. 61173150+2 种基金the Doctoral Fund of Ministry of Education of China under Grant No. 20100006110015Beijing Municipal Natural Science Foundation under Grant No. Z111100054011078the 2012 Ladder Plan Project of Beijing Key Laboratory of Knowledge Engineering for Materials Science under Grant No. Z121101002812005
文摘In order to eliminate the energy waste caused by the traditional static hardware multithreaded processor used in real-time embedded system working in the low workload situation, the energy efficiency of the hardware multithread is discussed and a novel dynamic multithreaded architecture is proposed. The proposed architecture saves the energy wasted by removing idle threads without manipulation on the original architecture, fulfills a seamless switching mechanism which protects active threads and avoids pipeline stall during power mode switching. The report of an implemented dynamic multithreaded processor with 45 nm process from synthesis tool indicates that the area of dynamic multithreaded architecture is only 2.27% higher than the static one in achieving dynamic power dissipation, and consumes 1.3% more power in the same peak performance.
基金partially supported by the Fundamental Research Funds for the Central Universities(2017B15214)the Research Fund of Innovation and Entrepreneurship Education Reform for Chinese Universities(16CCJG01Z004)+2 种基金the Changzhou Science and Technology Program(CJ20160027)National Natural Science Foundation of China(11274092,61705058)the Natural Science Foundation of the Jiangsu Province(BK20170302)
文摘Discharge plasmas in air can be accompanied by ultraviolet(UV) radiation and electron impact,which can produce large numbers of reactive species such as hydroxyl radical(OH·),oxygen radical(O·),ozone(O3),and nitrogen oxides(NOx),etc.The composition and dosage of reactive species usually play an important role in the case of volatile organic compounds(VOCs) treatment with the discharge plasmas.In this paper,we propose a volume discharge setup used to purify formaldehyde in air,which is configured by a plate-to-plate dielectric barrier discharge(DBD) channel and excited by an AC high voltage source.The results show that the relative spectral-intensity from DBD cell without formaldehyde is stronger than the case with formaldehyde.The energy efficiency ratios(EERs) of both oxides yield and formaldehyde removal can be regulated by the gas flow velocity in DBD channel,and the most desirable processing effect is the gas flow velocity within the range from2.50 to 3.33 m s^-1.Moreover,the EERs of both the generated dosages of oxides(O3 and NO2) and the amount of removed formaldehyde can also be regulated by both of the applied voltage and power density loaded on the DBD cell.Additionally,the EERs of both oxides generation and formaldehyde removal present as a function of normal distribution with increasing the applied power density,and the peak of the function is appeared in the range from 273.5 to 400.0 W l-1.This work clearly demonstrates the regulation characteristic of both the formaldehyde removal and oxides yield by using volume DBD,and it is helpful in the applications of VOCs removal by using discharge plasma.
基金Supported by the German Research Foundation(DFG)[grant number OR196/4-2].
文摘Automated production systems typically comprise numerous electrical servo drives,many of which conduct positioning motions,e.g.for handling or manipulation tasks.The power electronics of modern multi-axis systems often comprise coupled DC-links,enabling for internal exchange of recuperative brake energy.However,the motion sequences of manipulators are often commanded at maximum dynamics for minimum time motion,neglecting possible optimization potential,e.g.available idle time,leading to inefficient energy management.A robust trajectory optimization approach based on the particle swarm algorithm and well-established path planning methods is presented for the adaption of multi-axis positioning tasks with only two parameters per axis and positioning motion during system run-time.Experimental results prove that,depending on the positioning task and chosen optimization constraints,energy demands are distinctly reduced.The approach is applicable to diverse multi-axis configurations and enables for considerable energy savings without additional hardware invest.