Triplet-triplet energy transfer in fluorene dimer with electronic structure calculations. The two is investigated by combining rate theories key parameters for the control of energy transfer, electronic coupling and r...Triplet-triplet energy transfer in fluorene dimer with electronic structure calculations. The two is investigated by combining rate theories key parameters for the control of energy transfer, electronic coupling and reorganization energy, are calculated based on the diabatic states constructed by the constrained density functional theory. The fluctuation of the electronic coupling is further revealed by molecular dynamics simulation. Succeedingly, the diagonal and off-diagonal fluctuations of the Hamiltonian are mapped from the correlation functions of those parameters, and the rate is then estimated both from the perturbation theory and wavepacket diffusion method. The results manifest that both the static and dynamic fluctuations enhance the rate significantly, but the rate from the dynamic fluctuation is smaller than that from the static fluctuation.展开更多
The normal and anomalous Green's functions of antiferromagnetie state in three-band Hubbard model are studied by using functional integrals and temperature Green's function method. The equations of energy spectrum a...The normal and anomalous Green's functions of antiferromagnetie state in three-band Hubbard model are studied by using functional integrals and temperature Green's function method. The equations of energy spectrum are derived. In addition, excitation energy of Fermi fields are calculated under long wave approximation.展开更多
Isospin effects on particle emission of fissioning isobaric sources and isotopic sources , and its dependence on the excitation energy are studied via Smoluchowski equations. It is shown that with increasing the isos...Isospin effects on particle emission of fissioning isobaric sources and isotopic sources , and its dependence on the excitation energy are studied via Smoluchowski equations. It is shown that with increasing the isospin of fissioning systems, charged-particle emission is not sensitive to the strength of nuclear dissipation. In addition, we have found that increasing the excitation energy not only increases the influence of nuclear dissipation on particle emission but also greatly enhances the sensitivity of the emission of pre-scission neutrons or charged particles to the isospin of the system. Therefore, in order to extract dissipation strength more accurately by taking light particle multiplicities it is important to choose both a highly excited compound nucleus and a proper kind of particles for systems with different isospins.展开更多
The important role of high-energy intramolecular vibrational modes for excitation energy transfer in the detuned photosynthetic systems is studied. Based on a basic dimer model which consists of two two-level systems ...The important role of high-energy intramolecular vibrational modes for excitation energy transfer in the detuned photosynthetic systems is studied. Based on a basic dimer model which consists of two two-level systems (pigments) coupled to high-energy vibrational modes, we find that the high-energy intramolecular vibrational modes can enhance the energy transfer with new coherent transfer channels being opened when the phonon energy matches the detuning between the two pigments. As a result, the energy can be effectively transferred into the acceptor. The effective Hamiltonian is obtained to reveal the strong coherent energy exchange among the donor, the acceptor, and the high-energy intramolecular. A semi-classical explanation of the phonon-assisted mechanism is also shown.展开更多
The phonon-assisted process of energy transfer aiming at exploring the newly emerging frontier between biology and physics is an issue of central interest.This article shows the important role of the intramolecular vi...The phonon-assisted process of energy transfer aiming at exploring the newly emerging frontier between biology and physics is an issue of central interest.This article shows the important role of the intramolecular vibrational modes for excitation energy transfer in the photosynthetic systems.Based on a dimer system consisting of a donor and an acceptor modeled by two two-level systems,in which one of them is coupled to a high-energy vibrational mode,we derive an effective Hamiltonian describing the vibration-assisted coherent energy transfer process in the polaron frame.The effective Hamiltonian reveals in the case that the vibrational mode dynamically matches the energy detuning between the donor and the acceptor,the original detuned energy transfer becomes resonant energy transfer.In addition,the population dynamics and coherence dynamics of the dimer system with and without vibration-assistance are investigated numerically.It is found that,the energy transfer efficiency and the transfer time depend heavily on the interaction strength of the donor and the high-energy vibrational mode,as well as the vibrational frequency.The numerical results also indicate that the initial state and dissipation rate of the vibrational mode have little influence on the dynamics of the dimer system.Results obtained in this article are not only helpful to understand the natural photosynthesis,but also offer an optimal design principle for artificial photosynthesis.展开更多
The interrelations between thylakoid polypeptide components and Mg 2+ induced Chl a fluorescence and thylakoid surface charge changes were investigated in Zostera marina chloroplasts treated with Ca 2+ and...The interrelations between thylakoid polypeptide components and Mg 2+ induced Chl a fluorescence and thylakoid surface charge changes were investigated in Zostera marina chloroplasts treated with Ca 2+ and trypsin. It was observed that:1. The increase of Mg 2+ induced PSⅡ fluorescence intensity was closely related to the decrease of Mg 2+ induced surface charge density of the thylakoid membrane in the normal chloroplast; 2. Removal of the 32~34 kD polypeptides of the thylakoid surface by Ca 2+ extraction of the chloroplast did not affect the Mg 2+ induced phenomena; 3. If the Ca 2+ treated chloroplast was further digested by trypsin to remove the 26 kD polypeptide of the membrane surface, the Mg 2+ induced phenomena disappeared completely. These results clearly indicated that the 26 kD polypeptide of thylakoid surface is the specific acting site of the cation that induced these two correlated phenomena in the chloroplast from Zostera marina. The mechanism on the regulating effect of the cation on excitation energy distribution between PSⅡ and PSⅠ was discussed.展开更多
A vibration-based energy harvester is essentially a resonator working in a limited frequency range.To increase the working frequency range is a challenging problem.This paper reveals a novel possibility for enhancing ...A vibration-based energy harvester is essentially a resonator working in a limited frequency range.To increase the working frequency range is a challenging problem.This paper reveals a novel possibility for enhancing energy harvesting via internal resonance.An internal resonance energy harvester is proposed.The excitation is successively assumed as the Gaussian white noise,the colored noise defined by a second-order filter,the narrow-band noise,and exponentially correlated noise.The corresponding averaged root-meansquare output voltages are computed.Numerical results demonstrate that the internal resonance increases the operating bandwidth and the output voltage.展开更多
Polymers of 1- and 2-vinylnaphthalene containing more than about 50 mol% sulfonic acid groups dissolve in water to form 'hypercoiled' conformations which have many of the properties of micelles. Hydrophobic m...Polymers of 1- and 2-vinylnaphthalene containing more than about 50 mol% sulfonic acid groups dissolve in water to form 'hypercoiled' conformations which have many of the properties of micelles. Hydrophobic molecules such as anthracene and perylene are selectively absorbed in these pseudo micellar structures, and their fluorescence emission is sensitized by energy transfer from the surrounding naphthalene chromophores. When irradiated with UV light in the presence of oxygen, the emission of perylene rapidly decreases. It is proposed that this is due to reaction of singlet oxygen with the perylene trapped in the hypercoiled polymer. (Author abstract) 3 Refs.展开更多
The packing structures of thiophene dimers and their effects on excitation energies of thiophene dimers were studied by employing MP2/6-31 + G^* and TDDFT calculations. Twelve Optimized dimers with different orienta...The packing structures of thiophene dimers and their effects on excitation energies of thiophene dimers were studied by employing MP2/6-31 + G^* and TDDFT calculations. Twelve Optimized dimers with different orientations were obtained by means of MP2/6-31 + G ^* optimizations. Among them, five T-shaped and three π-stacked thiophene dimers are local minima in energy. The result shows that the preferable conformation of thiophene dimers is the T- shaped packing, which is in agreement with the results in references. All the excitation energies of both T-shaped dimers(5. 34-5. 48 eV) and π-stacked dimers(5. 15-5. 18 eV) are lower than that of the isolated thiophene(5.68 eV), indicating that inter-ring interactions decrease the excitation energies.展开更多
Influence of high light stress on the photosynthesis of flag leaves of indica subspecies (cv. “Shanyou 63', sensitive to photoinhibition) and japonica subspecies (cv. “Wuyujing', resistant to photoin...Influence of high light stress on the photosynthesis of flag leaves of indica subspecies (cv. “Shanyou 63', sensitive to photoinhibition) and japonica subspecies (cv. “Wuyujing', resistant to photoinhibition) of rice ( Oryza sativa L.) was comparatively investigated. In both cultivars of rice, the excitation energy distribution between two photosystems was altered and the excitation energy transfer from light harvesting chlorophyll protein complexes to PSⅡ was inhibited by high light stress. These decreases were more pronounced in indica rice cultivar as compared to japonica one. The analysis of mild SDS_PAGE showed that in indica rice, high light stress almost disaggregated the trimer of light harvesting chlorophyll protein complexes of PSⅡ (LHC Ⅱ 1). The stress reduced the contents of internal antennae chlorophyll protein complexes of PSⅡ (CPa), light harvesting chlorophyll protein of PSⅠ (CPⅠa) and Chl a protein complex of PSⅠ reaction center (CPⅠ) as well as dimer of LHCⅡ (LHCⅡ 2) in indica rice. In japonica subspecies, however, high light stress depressed the contents of LHCⅡ 1, CPa and CPⅠa, but slightly impacted on CPⅠ content. Moreover, the increase in the contents of monomer of LHCⅡ by high light stress was found in both subspecies. In consistent with above results, analysis of polypeptide indicated that the amounts of 27 kD and 25 kD polypeptide of LHCⅡ in particular, as well as that of 21 kD polypeptide of CPⅠa were reduced by high light stress in both subspecies. It was found that, comparing with japonica rice, the stress pronouncedly diminished 43 kD and 47 kD proteins of CPa and 23 kD extrisic protein in indica rice.展开更多
Thylakoid membrane preparations of super high-yield hybrid rice (Oryza sativa L.), Liangyoupeijiu (P9) and Shanyou 63 (SH 63) were used for investigating its spectral and time properties by using picosecond time-resol...Thylakoid membrane preparations of super high-yield hybrid rice (Oryza sativa L.), Liangyoupeijiu (P9) and Shanyou 63 (SH 63) were used for investigating its spectral and time properties by using picosecond time-resolved fluorescence spectrum measuring system. The thylakoid membrane preparations of P9 and SH 63 were excited by an Ar+ laser with a pulse width of 120 ps, repetition rate of 4 MHz and wavelength of 514 nm. The time constants of the excited energy transfer in these two varieties at flowering stage and grain filling stage were calculated from the experimental data. Based on the comparative studies of the time and spectral properties of the excited fluorescence in these ultrafast dynamic experiments the following was found: at both the flowering stage and grain filling stage, the speed of the excitation energy transfer, in photosystem was faster than that in photosystem II in P9 variety; and the speed of the excitation energy transfer at grain filling stage was faster than those at flowering stage for both rice varieties; the experiments also implied that the components and assembly of pigments in SH 63, but not in P9, changed during the process from flowering stage to grain filling stage for in these two rice varieties.展开更多
The authors have studied the spectroscopic characteristics and the fluorescence lifetime for the chloroplasts from spinach (Spinacia oleracea L.) and water hyacinth (Eichhornia crassipes (Mart) Solms.) plant leaves by...The authors have studied the spectroscopic characteristics and the fluorescence lifetime for the chloroplasts from spinach (Spinacia oleracea L.) and water hyacinth (Eichhornia crassipes (Mart) Solms.) plant leaves by absorption spectra, low temperature steady_state fluorescence spectroscopy and single photon counting measurement under the same conditions. The absorption spectra at room temperature for the spinach and water hyacinth chloroplasts are similar, which show that different plants can efficiently absorb light of same wavelength. The low temperature steady_state fluorescence spectroscopy for the water hyacinth chloroplast reveals a poor balance of photon quantum between two photosystems. The fluorescence decays in PSⅡ measured at the natural Q A state for the chloroplasts have been fitted by a three_exponential kinetic model. The slow lifetime fluorescence component is assigned to a collection of associated light harvesting Chl a/b proteins, the fast lifetime component to the reaction center of PSⅡ and the middle lifetime component to the delay fluorescence of recombination of P + 680 and Pheo -. The excited energy conversion efficiency (η) in PSⅡ RC is 87% and 91% respectively for the water hyacinth and spinach chloroplasts calculated on the 20 ps model. This interesting result is not consistent with what is assumed that the efficiency is 100% in PSⅡ RC. The results in this paper also present a support for the 20 ps electron transfer time constant in PSⅡ RC. On the viewpoint of excitation energy conversion efficiency, the growing rate for the water hyacinth plan is smaller than that for the spinach plant. But, authors' results show those plants can perform highly efficient transfer of photo_excitation energy from the light_harvesting pigment system to the reaction center (approximately 100%).展开更多
We survey quite extensively the present research status of ion-stopping in dense plasmas of potential importance for initial confinement fusion(ICF)drivenby intense and heavy ion beams,and alsofor warm dense matter(WD...We survey quite extensively the present research status of ion-stopping in dense plasmas of potential importance for initial confinement fusion(ICF)drivenby intense and heavy ion beams,and alsofor warm dense matter(WDM).First,we putemphasis on every possible mechanism involved in the shaping of the ion projectile effective charge,while losing energy in a target plasma with classical ions and partially degenerate electrons.Then,we switch to ion stopping by target bound electrons,taking detailed account of mean excitation energies.Free electron stopping has already been given a lot of attention in former works[C.Deutsch et al.,Recent Res.Devel.Plasma 1(2000)1-23;Open Plasma Phys.J.3(2010)88-115].Then,we extend the usual standard stopping model(SSM)framework to nonlinear stopping including a treatment of the Z 3 Barkas effect and a confronting comparison of Bloch and Bohr Coulomb logarithms.Finally,we document low velocity ion slowing down(LVISD)in single ion plasmas as well as in binary ionic mixtures(BIM),in connection with specific ICF fuels.展开更多
Doping enables manipulation of both the electrical and optical properties of halide perovskites.Herein,we incorporated Te^(4+) into Cs_(2)ZrCl_(6) single crystal,simultaneously preserving the vacancy-ordered structure...Doping enables manipulation of both the electrical and optical properties of halide perovskites.Herein,we incorporated Te^(4+) into Cs_(2)ZrCl_(6) single crystal,simultaneously preserving the vacancy-ordered structure,to obtain an efficient yellow-emitting perovskite with a near-unity photoluminescence quantum yield(PLQY≈97.6%).Te^(4+) doping modifies the hue and emission color of pristine Cs_(2)ZrCl_(6),generates new absorption channels,and successfully extends the excitation energy from<280 nm to 360-450 nm range.Detailed spectral characterizations,including ultrafast femtosecond transient absorption measurements,reveal that the bright yellow light is derived from triplet self-trapped excitons.Moreover,further tuning doping concentration enables Te-doped Cs_(2)ZrCl_(6) single crystals to exhibit efficient warm white light emission.This work provides a new perspective for the development and design of stable lead-free perovskites with highly efficient luminescence.展开更多
The nonrelativistic energies for lithium isoelectronic sequence 1s~2ng and1s~2nh (n = 5,6,7, and 8) states from Z = 3 to 8 are calculated by using a full core pluscorrelation (FCPC) method with multiconGguration inter...The nonrelativistic energies for lithium isoelectronic sequence 1s~2ng and1s~2nh (n = 5,6,7, and 8) states from Z = 3 to 8 are calculated by using a full core pluscorrelation (FCPC) method with multiconGguration interaction wave functions. Relativistic andmass-polarization effects on the energy are evaluated as the first-order perturbation theory. Ourpredicted excitation energies are compared with previous experimental results in the literature.展开更多
In this paper, we have declined the formalism of the method of the Modified Atomic Orbital Theory (MAOT) applied to the calculations of energies of doubly excited states 2<em>snp</em>, 3<em>snp</e...In this paper, we have declined the formalism of the method of the Modified Atomic Orbital Theory (MAOT) applied to the calculations of energies of doubly excited states 2<em>snp</em>, 3<em>snp</em>, and 4<em>snp</em> Helium-like systems. Then we also applied the variational procedure of the Modified Atomic Orbital Theory to the computations of total energies, excitation energies of doubly-excited states 2<em>snp</em>, 3<em>snp</em>, 4<em>snp</em> types of Helium-like systems. The results obtained in this work are in good agreement with the experimental and theoretical values available.展开更多
In this work, we report a theoretical exploration of the responses of organic azobenzene dendrimers. The polarizabilities, the first and second hyperpolarizabilities of the azobenzene monomers (GO), and the first, s...In this work, we report a theoretical exploration of the responses of organic azobenzene dendrimers. The polarizabilities, the first and second hyperpolarizabilities of the azobenzene monomers (GO), and the first, second and third generation (G1, G2 and G3, respectively) are investigated by semi-empirical methods. The calculated results show that the nonlinear optical (NLO) properties of these organic dendrimers are mainly determined by the azobenzene chromospheres. Additionally, the values oft and y increase almost in proportion to the number of chromophores. On the other hand, two types of transition metal hybrid azobenzene dendrimers (core-hybrid and branch-end hybrid according to the sites combined with transition metals) are simulated and discussed in detail in the framework of time-dependent density functional theory (TDDFT). The calculated results reveal that the NLO responses of these metal dendrimers distinctly varied as a result of altering the charge transfer transition scale and the excitation energies.展开更多
A dynamical Langevin model is employed to calculate the excess of the evaporation residue cross sections of the ^194Pb nucleus over that predicted by the standard statistical model as a function of nuclear dissipation...A dynamical Langevin model is employed to calculate the excess of the evaporation residue cross sections of the ^194Pb nucleus over that predicted by the standard statistical model as a function of nuclear dissipation strength. It is shown that large excitation energy can increase the effects of nuclear dissipation on the excess of the evaporation residues and the sensitivity of this excess to the dissipation strength,and that more higher excitation energies have little contribution to further raising this sensitivity. These results suggest that on the experimental side,producing those compound systems with moderate excitation energy is sucient for a good determination of the pre-saddle nuclear dissipation strength by measuring the evaporation residue cross section,and that forming an extremely highly excited system does not considerably improve the sensitivity of evaporation residues to the dissipation strength.展开更多
High spin states in the odd-odd nucleus 124Cs have been investigated through the fusion-evaporation reaction 116Sn(11B, 3n)l24 Cs with a beam energy of 45 MeV. A new rotational band is established and assigned as th...High spin states in the odd-odd nucleus 124Cs have been investigated through the fusion-evaporation reaction 116Sn(11B, 3n)l24 Cs with a beam energy of 45 MeV. A new rotational band is established and assigned as the high-k configuration of πg9/2140419/2+ ⊙vh 11/2[523]7/2-. Some structures linking to this band have also been observed. According to the results of the excitation energy systematics, the lowest level of this band is assigned as 9-, and the 8- isomer bandhead has not been observed. Another isomer with a half life of 6.3 s has also been observed with its new decay paths established, Its excitation energy is raised by 79 keV, but its Iπ is not changed.展开更多
The characteristics of electrons play a dominant role in determining the ionization and acceleration processes of plasmas.Compared with electrostatic diagnostics,the optical method is independent of the radio frequenc...The characteristics of electrons play a dominant role in determining the ionization and acceleration processes of plasmas.Compared with electrostatic diagnostics,the optical method is independent of the radio frequency(RF)noise,magnetic field,and electric field.In this paper,an optical emission spectroscope was used to determine the plasma emission spectra,electron excitation energy population distributions(EEEPDs),growth rates of low-energy and highenergy electrons,and their intensity jumps with input powers.The 56 emission lines with the highest signal-to-noise ratio and their corresponding electron excitation energy were used for the translation of the spectrum into EEEPD.One discrete EEEPD has two clear different regions,namely the low-energy electron excitation region(neutral lines with threshold energy of13–15 eV)and the high-energy electron excitation region(ionic lines with threshold energy?19 e V).The EEEPD variations with different diameters of discharge tubes(20 mm,40 mm,and 60 mm)and different input RF powers(200–1800 W)were investigated.By normalized intensity comparison of the ionic and neutral lines,the growth rate of the ionic population was higher than the neutral one,especially when the tube diameter was less than 40 mm and the input power was higher than 1000 W.Moreover,we found that the intensities of low-energy electrons and high-energy electrons jump at different input powers from inductively coupled(H)mode to helicon(W)mode;therefore,the determination of W mode needs to be carefully considered.展开更多
基金This work was supported by the National Natural Science Foundation of China (No.20833004 and No.21073146) and the Research Fund for the Doctoral Program of Higher Education of China (No.200803840009).
文摘Triplet-triplet energy transfer in fluorene dimer with electronic structure calculations. The two is investigated by combining rate theories key parameters for the control of energy transfer, electronic coupling and reorganization energy, are calculated based on the diabatic states constructed by the constrained density functional theory. The fluctuation of the electronic coupling is further revealed by molecular dynamics simulation. Succeedingly, the diagonal and off-diagonal fluctuations of the Hamiltonian are mapped from the correlation functions of those parameters, and the rate is then estimated both from the perturbation theory and wavepacket diffusion method. The results manifest that both the static and dynamic fluctuations enhance the rate significantly, but the rate from the dynamic fluctuation is smaller than that from the static fluctuation.
基金supported by the Natural Science Foundation of Sichuan Normal University
文摘The normal and anomalous Green's functions of antiferromagnetie state in three-band Hubbard model are studied by using functional integrals and temperature Green's function method. The equations of energy spectrum are derived. In addition, excitation energy of Fermi fields are calculated under long wave approximation.
基金the Teaching & Researching Foundation for Outstanding Teachers of Southeast University
文摘Isospin effects on particle emission of fissioning isobaric sources and isotopic sources , and its dependence on the excitation energy are studied via Smoluchowski equations. It is shown that with increasing the isospin of fissioning systems, charged-particle emission is not sensitive to the strength of nuclear dissipation. In addition, we have found that increasing the excitation energy not only increases the influence of nuclear dissipation on particle emission but also greatly enhances the sensitivity of the emission of pre-scission neutrons or charged particles to the isospin of the system. Therefore, in order to extract dissipation strength more accurately by taking light particle multiplicities it is important to choose both a highly excited compound nucleus and a proper kind of particles for systems with different isospins.
基金Project supported by the National Natural Science Foundation of China(Grant No.11174233)
文摘The important role of high-energy intramolecular vibrational modes for excitation energy transfer in the detuned photosynthetic systems is studied. Based on a basic dimer model which consists of two two-level systems (pigments) coupled to high-energy vibrational modes, we find that the high-energy intramolecular vibrational modes can enhance the energy transfer with new coherent transfer channels being opened when the phonon energy matches the detuning between the two pigments. As a result, the energy can be effectively transferred into the acceptor. The effective Hamiltonian is obtained to reveal the strong coherent energy exchange among the donor, the acceptor, and the high-energy intramolecular. A semi-classical explanation of the phonon-assisted mechanism is also shown.
基金Project supported by the National Natural Science Foundation of China(Grant No.11174233)
文摘The phonon-assisted process of energy transfer aiming at exploring the newly emerging frontier between biology and physics is an issue of central interest.This article shows the important role of the intramolecular vibrational modes for excitation energy transfer in the photosynthetic systems.Based on a dimer system consisting of a donor and an acceptor modeled by two two-level systems,in which one of them is coupled to a high-energy vibrational mode,we derive an effective Hamiltonian describing the vibration-assisted coherent energy transfer process in the polaron frame.The effective Hamiltonian reveals in the case that the vibrational mode dynamically matches the energy detuning between the donor and the acceptor,the original detuned energy transfer becomes resonant energy transfer.In addition,the population dynamics and coherence dynamics of the dimer system with and without vibration-assistance are investigated numerically.It is found that,the energy transfer efficiency and the transfer time depend heavily on the interaction strength of the donor and the high-energy vibrational mode,as well as the vibrational frequency.The numerical results also indicate that the initial state and dissipation rate of the vibrational mode have little influence on the dynamics of the dimer system.Results obtained in this article are not only helpful to understand the natural photosynthesis,but also offer an optimal design principle for artificial photosynthesis.
基金the NationalNaturalScience Foundation ofChina and partly supported
文摘The interrelations between thylakoid polypeptide components and Mg 2+ induced Chl a fluorescence and thylakoid surface charge changes were investigated in Zostera marina chloroplasts treated with Ca 2+ and trypsin. It was observed that:1. The increase of Mg 2+ induced PSⅡ fluorescence intensity was closely related to the decrease of Mg 2+ induced surface charge density of the thylakoid membrane in the normal chloroplast; 2. Removal of the 32~34 kD polypeptides of the thylakoid surface by Ca 2+ extraction of the chloroplast did not affect the Mg 2+ induced phenomena; 3. If the Ca 2+ treated chloroplast was further digested by trypsin to remove the 26 kD polypeptide of the membrane surface, the Mg 2+ induced phenomena disappeared completely. These results clearly indicated that the 26 kD polypeptide of thylakoid surface is the specific acting site of the cation that induced these two correlated phenomena in the chloroplast from Zostera marina. The mechanism on the regulating effect of the cation on excitation energy distribution between PSⅡ and PSⅠ was discussed.
基金supported by the State Key Program of National Natural Science of China(Grant No.11232009)Shanghai Leading Academic Discipline Project(Grant No.S30106)
文摘A vibration-based energy harvester is essentially a resonator working in a limited frequency range.To increase the working frequency range is a challenging problem.This paper reveals a novel possibility for enhancing energy harvesting via internal resonance.An internal resonance energy harvester is proposed.The excitation is successively assumed as the Gaussian white noise,the colored noise defined by a second-order filter,the narrow-band noise,and exponentially correlated noise.The corresponding averaged root-meansquare output voltages are computed.Numerical results demonstrate that the internal resonance increases the operating bandwidth and the output voltage.
基金The financial support of this work by the Natural Sciences and Engineering Research Council of Canada is greatfully acknowledged.
文摘Polymers of 1- and 2-vinylnaphthalene containing more than about 50 mol% sulfonic acid groups dissolve in water to form 'hypercoiled' conformations which have many of the properties of micelles. Hydrophobic molecules such as anthracene and perylene are selectively absorbed in these pseudo micellar structures, and their fluorescence emission is sensitized by energy transfer from the surrounding naphthalene chromophores. When irradiated with UV light in the presence of oxygen, the emission of perylene rapidly decreases. It is proposed that this is due to reaction of singlet oxygen with the perylene trapped in the hypercoiled polymer. (Author abstract) 3 Refs.
基金Supported by the National Natural Science Foundation of China(No. 20371014) and the National Science Foundation of theEducation Department of Heilongjiang Province(No. 10511032)
文摘The packing structures of thiophene dimers and their effects on excitation energies of thiophene dimers were studied by employing MP2/6-31 + G^* and TDDFT calculations. Twelve Optimized dimers with different orientations were obtained by means of MP2/6-31 + G ^* optimizations. Among them, five T-shaped and three π-stacked thiophene dimers are local minima in energy. The result shows that the preferable conformation of thiophene dimers is the T- shaped packing, which is in agreement with the results in references. All the excitation energies of both T-shaped dimers(5. 34-5. 48 eV) and π-stacked dimers(5. 15-5. 18 eV) are lower than that of the isolated thiophene(5.68 eV), indicating that inter-ring interactions decrease the excitation energies.
文摘Influence of high light stress on the photosynthesis of flag leaves of indica subspecies (cv. “Shanyou 63', sensitive to photoinhibition) and japonica subspecies (cv. “Wuyujing', resistant to photoinhibition) of rice ( Oryza sativa L.) was comparatively investigated. In both cultivars of rice, the excitation energy distribution between two photosystems was altered and the excitation energy transfer from light harvesting chlorophyll protein complexes to PSⅡ was inhibited by high light stress. These decreases were more pronounced in indica rice cultivar as compared to japonica one. The analysis of mild SDS_PAGE showed that in indica rice, high light stress almost disaggregated the trimer of light harvesting chlorophyll protein complexes of PSⅡ (LHC Ⅱ 1). The stress reduced the contents of internal antennae chlorophyll protein complexes of PSⅡ (CPa), light harvesting chlorophyll protein of PSⅠ (CPⅠa) and Chl a protein complex of PSⅠ reaction center (CPⅠ) as well as dimer of LHCⅡ (LHCⅡ 2) in indica rice. In japonica subspecies, however, high light stress depressed the contents of LHCⅡ 1, CPa and CPⅠa, but slightly impacted on CPⅠ content. Moreover, the increase in the contents of monomer of LHCⅡ by high light stress was found in both subspecies. In consistent with above results, analysis of polypeptide indicated that the amounts of 27 kD and 25 kD polypeptide of LHCⅡ in particular, as well as that of 21 kD polypeptide of CPⅠa were reduced by high light stress in both subspecies. It was found that, comparing with japonica rice, the stress pronouncedly diminished 43 kD and 47 kD proteins of CPa and 23 kD extrisic protein in indica rice.
文摘Thylakoid membrane preparations of super high-yield hybrid rice (Oryza sativa L.), Liangyoupeijiu (P9) and Shanyou 63 (SH 63) were used for investigating its spectral and time properties by using picosecond time-resolved fluorescence spectrum measuring system. The thylakoid membrane preparations of P9 and SH 63 were excited by an Ar+ laser with a pulse width of 120 ps, repetition rate of 4 MHz and wavelength of 514 nm. The time constants of the excited energy transfer in these two varieties at flowering stage and grain filling stage were calculated from the experimental data. Based on the comparative studies of the time and spectral properties of the excited fluorescence in these ultrafast dynamic experiments the following was found: at both the flowering stage and grain filling stage, the speed of the excitation energy transfer, in photosystem was faster than that in photosystem II in P9 variety; and the speed of the excitation energy transfer at grain filling stage was faster than those at flowering stage for both rice varieties; the experiments also implied that the components and assembly of pigments in SH 63, but not in P9, changed during the process from flowering stage to grain filling stage for in these two rice varieties.
文摘The authors have studied the spectroscopic characteristics and the fluorescence lifetime for the chloroplasts from spinach (Spinacia oleracea L.) and water hyacinth (Eichhornia crassipes (Mart) Solms.) plant leaves by absorption spectra, low temperature steady_state fluorescence spectroscopy and single photon counting measurement under the same conditions. The absorption spectra at room temperature for the spinach and water hyacinth chloroplasts are similar, which show that different plants can efficiently absorb light of same wavelength. The low temperature steady_state fluorescence spectroscopy for the water hyacinth chloroplast reveals a poor balance of photon quantum between two photosystems. The fluorescence decays in PSⅡ measured at the natural Q A state for the chloroplasts have been fitted by a three_exponential kinetic model. The slow lifetime fluorescence component is assigned to a collection of associated light harvesting Chl a/b proteins, the fast lifetime component to the reaction center of PSⅡ and the middle lifetime component to the delay fluorescence of recombination of P + 680 and Pheo -. The excited energy conversion efficiency (η) in PSⅡ RC is 87% and 91% respectively for the water hyacinth and spinach chloroplasts calculated on the 20 ps model. This interesting result is not consistent with what is assumed that the efficiency is 100% in PSⅡ RC. The results in this paper also present a support for the 20 ps electron transfer time constant in PSⅡ RC. On the viewpoint of excitation energy conversion efficiency, the growing rate for the water hyacinth plan is smaller than that for the spinach plant. But, authors' results show those plants can perform highly efficient transfer of photo_excitation energy from the light_harvesting pigment system to the reaction center (approximately 100%).
文摘We survey quite extensively the present research status of ion-stopping in dense plasmas of potential importance for initial confinement fusion(ICF)drivenby intense and heavy ion beams,and alsofor warm dense matter(WDM).First,we putemphasis on every possible mechanism involved in the shaping of the ion projectile effective charge,while losing energy in a target plasma with classical ions and partially degenerate electrons.Then,we switch to ion stopping by target bound electrons,taking detailed account of mean excitation energies.Free electron stopping has already been given a lot of attention in former works[C.Deutsch et al.,Recent Res.Devel.Plasma 1(2000)1-23;Open Plasma Phys.J.3(2010)88-115].Then,we extend the usual standard stopping model(SSM)framework to nonlinear stopping including a treatment of the Z 3 Barkas effect and a confronting comparison of Bloch and Bohr Coulomb logarithms.Finally,we document low velocity ion slowing down(LVISD)in single ion plasmas as well as in binary ionic mixtures(BIM),in connection with specific ICF fuels.
基金supported by the National Natural Science Foundation of China (21833009, 22088102)the National Key Research and Development Program of China (2017YFA0204800)+5 种基金the Scientific Instrument Developing Project of the Chinese Academy of Sciences (YJKYYQ20190003)the Innovation Foundation of Dalian Institute of Chemical Physics (DICP I202127)the Liao Ning Revitalization Talents Program (XLYC1802126, XLYC1907053)the Dalian City Foundation for Science and Technology Innovation (2019J12GX031)the CAS Youth Innovation Promotion Association (2018220)China Postdoctoral Science Foundation (2020 M670800)。
文摘Doping enables manipulation of both the electrical and optical properties of halide perovskites.Herein,we incorporated Te^(4+) into Cs_(2)ZrCl_(6) single crystal,simultaneously preserving the vacancy-ordered structure,to obtain an efficient yellow-emitting perovskite with a near-unity photoluminescence quantum yield(PLQY≈97.6%).Te^(4+) doping modifies the hue and emission color of pristine Cs_(2)ZrCl_(6),generates new absorption channels,and successfully extends the excitation energy from<280 nm to 360-450 nm range.Detailed spectral characterizations,including ultrafast femtosecond transient absorption measurements,reveal that the bright yellow light is derived from triplet self-trapped excitons.Moreover,further tuning doping concentration enables Te-doped Cs_(2)ZrCl_(6) single crystals to exhibit efficient warm white light emission.This work provides a new perspective for the development and design of stable lead-free perovskites with highly efficient luminescence.
基金The project supported by National Natural Science Foundation of China under Grant Nos. 10404017 and 10474029
文摘The nonrelativistic energies for lithium isoelectronic sequence 1s~2ng and1s~2nh (n = 5,6,7, and 8) states from Z = 3 to 8 are calculated by using a full core pluscorrelation (FCPC) method with multiconGguration interaction wave functions. Relativistic andmass-polarization effects on the energy are evaluated as the first-order perturbation theory. Ourpredicted excitation energies are compared with previous experimental results in the literature.
文摘In this paper, we have declined the formalism of the method of the Modified Atomic Orbital Theory (MAOT) applied to the calculations of energies of doubly excited states 2<em>snp</em>, 3<em>snp</em>, and 4<em>snp</em> Helium-like systems. Then we also applied the variational procedure of the Modified Atomic Orbital Theory to the computations of total energies, excitation energies of doubly-excited states 2<em>snp</em>, 3<em>snp</em>, 4<em>snp</em> types of Helium-like systems. The results obtained in this work are in good agreement with the experimental and theoretical values available.
基金This work was supported by the National Natural Science Foundation of China (No. 20573114 and 90203017)the MOST Projects of 2004CB720605 and 2006DFA43020
文摘In this work, we report a theoretical exploration of the responses of organic azobenzene dendrimers. The polarizabilities, the first and second hyperpolarizabilities of the azobenzene monomers (GO), and the first, second and third generation (G1, G2 and G3, respectively) are investigated by semi-empirical methods. The calculated results show that the nonlinear optical (NLO) properties of these organic dendrimers are mainly determined by the azobenzene chromospheres. Additionally, the values oft and y increase almost in proportion to the number of chromophores. On the other hand, two types of transition metal hybrid azobenzene dendrimers (core-hybrid and branch-end hybrid according to the sites combined with transition metals) are simulated and discussed in detail in the framework of time-dependent density functional theory (TDDFT). The calculated results reveal that the NLO responses of these metal dendrimers distinctly varied as a result of altering the charge transfer transition scale and the excitation energies.
基金Supported by National Natural Science Foundation of China (10405007)
文摘A dynamical Langevin model is employed to calculate the excess of the evaporation residue cross sections of the ^194Pb nucleus over that predicted by the standard statistical model as a function of nuclear dissipation strength. It is shown that large excitation energy can increase the effects of nuclear dissipation on the excess of the evaporation residues and the sensitivity of this excess to the dissipation strength,and that more higher excitation energies have little contribution to further raising this sensitivity. These results suggest that on the experimental side,producing those compound systems with moderate excitation energy is sucient for a good determination of the pre-saddle nuclear dissipation strength by measuring the evaporation residue cross section,and that forming an extremely highly excited system does not considerably improve the sensitivity of evaporation residues to the dissipation strength.
基金supported by National Natural Science Foundation of China(Nos.10105003,11075064,11075214 and 10927507)the Specialized Research Fund for the Doctoral Programme of Higher Education of China(No.20050183008)the National Basic Research Programme of China(No.2007CB815005)
文摘High spin states in the odd-odd nucleus 124Cs have been investigated through the fusion-evaporation reaction 116Sn(11B, 3n)l24 Cs with a beam energy of 45 MeV. A new rotational band is established and assigned as the high-k configuration of πg9/2140419/2+ ⊙vh 11/2[523]7/2-. Some structures linking to this band have also been observed. According to the results of the excitation energy systematics, the lowest level of this band is assigned as 9-, and the 8- isomer bandhead has not been observed. Another isomer with a half life of 6.3 s has also been observed with its new decay paths established, Its excitation energy is raised by 79 keV, but its Iπ is not changed.
基金supported by National Natural Science Foundation of China(Nos.11805011 and 11872093)supported by the Shanghai Engineering Research Center of Space Engine(No.17DZ2280800)
文摘The characteristics of electrons play a dominant role in determining the ionization and acceleration processes of plasmas.Compared with electrostatic diagnostics,the optical method is independent of the radio frequency(RF)noise,magnetic field,and electric field.In this paper,an optical emission spectroscope was used to determine the plasma emission spectra,electron excitation energy population distributions(EEEPDs),growth rates of low-energy and highenergy electrons,and their intensity jumps with input powers.The 56 emission lines with the highest signal-to-noise ratio and their corresponding electron excitation energy were used for the translation of the spectrum into EEEPD.One discrete EEEPD has two clear different regions,namely the low-energy electron excitation region(neutral lines with threshold energy of13–15 eV)and the high-energy electron excitation region(ionic lines with threshold energy?19 e V).The EEEPD variations with different diameters of discharge tubes(20 mm,40 mm,and 60 mm)and different input RF powers(200–1800 W)were investigated.By normalized intensity comparison of the ionic and neutral lines,the growth rate of the ionic population was higher than the neutral one,especially when the tube diameter was less than 40 mm and the input power was higher than 1000 W.Moreover,we found that the intensities of low-energy electrons and high-energy electrons jump at different input powers from inductively coupled(H)mode to helicon(W)mode;therefore,the determination of W mode needs to be carefully considered.