Modern additive manufacturing processes enable fabricating architected cellular materials of complex shape,which can be used for different purposes.Among them,lattice structures are increasingly used in applications r...Modern additive manufacturing processes enable fabricating architected cellular materials of complex shape,which can be used for different purposes.Among them,lattice structures are increasingly used in applications requiring a compromise among lightness and suited mechanical properties,like improved energy absorption capacity and specific stiffness-to-weight and strength-to-weight ratios.A dedicated modeling strategy to assess the energy absorption capacity of lattice structures under uni-axial compression loading is presented in this work.The numerical model is developed in a non-linear framework accounting for the strain rate effect on the mechanical responses of the lattice structure.Four geometries,i.e.,cubic body centered cell,octet cell,rhombic-dodecahedron and truncated cuboctahedron 2+,are investigated.Specifically,the influence of the relative density of the representative volume element of each geometry,the strain-rate dependency of the bulk material and of the presence of the manufacturing process-induced geometrical imperfections on the energy absorption capacity of the lattice structure is investigated.The main outcome of this study points out the importance of correctly integrating geometrical imperfections into the modeling strategy when shock absorption applications are aimed for.展开更多
In this work,the Slacks-Based Measure(SBM)model within Data Envelopment Analysis was employed to establish a set of indicators for evaluating the energy efficiency of manufacturing workshops.The energy efficiency of 1...In this work,the Slacks-Based Measure(SBM)model within Data Envelopment Analysis was employed to establish a set of indicators for evaluating the energy efficiency of manufacturing workshops.The energy efficiency of 12 Company CW’s manufacturing workshops from 2016 to 2022 was assessed.The findings indicated that aside from a few workshops operating at the production frontier,the rest exhibit significant fluctuations in energy efficiency and generally low energy efficiency.Subsequently,a combined GRA-Tobit analysis model was introduced to identify factors influencing the energy efficiency of Company CW’s manufacturing workshops.Regression analysis revealed that technological investments,employee quality,workshop production scale,investment in clean energy,and the level of pollution control all significantly impact the energy efficiency of Company CW’s manufacturing workshops.By evaluating the energy efficiency of Company CW’s manufacturing workshops and studying their influencing factors,this research aids company managers in understanding the energy efficiency of the manufacturing process.It optimizes the combination of various production elements,thereby offering effective guidance for improving the energy efficiency issues of the company’s manufacturing workshops,which can contribute to enhancing the corporation’s overall energy efficiency.展开更多
This article briefly discusses the theoretical basis and overall goals of energy conservation in the steel manufacturing process system.It is proposed that in the process of implementing system energy conservation,it ...This article briefly discusses the theoretical basis and overall goals of energy conservation in the steel manufacturing process system.It is proposed that in the process of implementing system energy conservation,it is necessary to fully recognize and utilize the characteristics and functional advantages of the steel manufacturing process,pay more attention to energy quality,firmly grasp the overall goal of system optimization,focus on the integrated optimization of gas,steam,and waste heat systems,and propose the idea of constructing a"steel chemi-cal gas electricity heating cooling multi generation system".Based on practice,the main principles,models,and effects of implementing systematic energy conservation in steel enterprises have been proposed.展开更多
Metal additive manufacturing(AM)technologies have made significant progress in the basic theoretical field since their invention in the 1970s.However,performance instability during continuous processing,such as therma...Metal additive manufacturing(AM)technologies have made significant progress in the basic theoretical field since their invention in the 1970s.However,performance instability during continuous processing,such as thermal history,residual stress accumulation,and columnar grain epitaxial growth,consistently hinders their broad application in standardized industrial production.To overcome these challenges,performance-control-oriented hybrid AM(HAM)technologies have been introduced.These technologies,by leveraging external auxiliary processes,aim to regulate microstructural evolution and mechanical properties during metal AM.This paper provides a systematic and detailed review of performance-control-oriented HAM technology,which is categorized into two main groups:energy field-assisted AM(EFed AM,e.g.ultrasonic,electromagnetic,and heat)technologies and interlayer plastic deformation-assisted AM(IPDed AM,e.g.laser shock peening,rolling,ultrasonic peening,and friction stir process)technologies.This review covers the influence of external energy fields on the melting,flow,and solidification behavior of materials,and the regulatory effects of interlayer plastic deformation on grain refinement,nucleation,and recrystallization.Furthermore,the role of performance-control-oriented HAM technologies in managing residual stress conversion,metallurgical defect closure,mechanical property improvement,and anisotropy regulation is thoroughly reviewed and discussed.The review concludes with an analysis of future development trends in EFed AM and IPDed AM technologies.展开更多
In this study,information on energy usage in the United States(U.S.)aerospace manufacturing sector has been analyzed and then represented as energy intensities(kWh/m2)to establish benchmark data and to compare facilit...In this study,information on energy usage in the United States(U.S.)aerospace manufacturing sector has been analyzed and then represented as energy intensities(kWh/m2)to establish benchmark data and to compare facilities of varying sizes.First,public sources were identified and the data from these previously published sources were aggregated to determine the energy usage of aerospace manufacturing facilities within the U.S.From this dataset,a sample of 28 buildings were selected and the energy intensity for each building was estimated from the data.Next,as a part of this study the energy data for three additional aerospace manufacturing facilities in the U.S.were collected firsthand.That data was analyzed and the energy intensity(kWh/m2)for each facility was calculated and then compared with the energy intensities of the 28 buildings from the sample.Three different indicators of energy consumption in aerospace manufacturing facilities were used as comparators to assist facility managers with determining potential energy savings and help in the decision-making process.On average,aerospace manufacturing facilities in the United States spent 4 cents for each dollar of sale on energy.The energy intensity(kWh/m2)and the power intensity(W/m2)for each facility were calculated based on the actual facility energy bills.The power intensity for these facilities ranges from 34 to 134 W/m2.The energy intensity ranged from 232 to 949 kWh/m2.We found that the power intensity could be used to estimate energy consumption when the annual operating hours of the facility are considered.and to estimate the energy-related carbon dioxide emissions.展开更多
From the viewpoint of systems energy conservation, the influences of material flow on its energy consumption in a steel manufacturing process is an important subject. The quantitative analysis of the relationship betw...From the viewpoint of systems energy conservation, the influences of material flow on its energy consumption in a steel manufacturing process is an important subject. The quantitative analysis of the relationship between material flow and the energy intensity is useful to save energy in steel industry. Based on the concept of standard material flow diagram, all possible situations of ferric material flow in steel manufacturing process are analyzed. The expressions of the influence of material flow deviated from standard material flow diagram on energy consumption are put forward.展开更多
Lightweight aluminum(Al)alloys have been widely used in frontier fields like aerospace and automotive industries,which attracts great interest in additive manufacturing(AM)to process high-value Al parts.As a mainstrea...Lightweight aluminum(Al)alloys have been widely used in frontier fields like aerospace and automotive industries,which attracts great interest in additive manufacturing(AM)to process high-value Al parts.As a mainstream AM technique,laser-directed energy deposition(LDED)shows good scalability to meet the requirements for large-format component manufacturing and repair.However,LDED Al alloys are highly challenging due to their inherent poor printability(e.g.low laser absorption,high oxidation sensitivity and cracking tendency).To further promote the development of LDED high-performance Al alloys,this review offers a deep understanding of the challenges and strategies to improve printability in LDED Al alloys.The porosity,cracking,distortion,inclusions,element evaporation and resultant inferior mechanical properties(worse than laser powder bed fusion)are the key challenges in LDED Al alloys.Processing parameter optimizations,in-situ alloy design,reinforcing particle addition and field assistance are the efficient approaches to improving the printability and performance of LDED Al alloys.The underlying correlations between processes,alloy innovation,characteristic microstructures,and achievable performances in LDED Al alloys are discussed.The benchmark mechanical properties and primary strengthening mechanism of LDED Al alloys are summarized.This review aims to provide a critical and in-depth evaluation of current progress in LDED Al alloys.Future opportunities and perspectives in LDED high-performance Al alloys are also outlined.展开更多
China attempts to achieve energy conservation,emission reduction and environmental protection through the implementation of the green credit policy,but its implementation impact is still controversial.An important con...China attempts to achieve energy conservation,emission reduction and environmental protection through the implementation of the green credit policy,but its implementation impact is still controversial.An important content of the green credit policy is to require banking and financial institutions to tighten the credit exposure of industries of‘high pollution and high energy consumption’and industries with overcapacity,so as to use economic leverage to curb their blind expansion and reduce energy consumption by controlling external financing.This paper examined the impact and the lingering effects of the green credit policy on external financing,economic growth and energy consumption in the manufacturing industry,which was most influenced by the green credit policy,from 2003 to 2016 by using the DID method.Furthermore,this paper estimated the dynamic endogenous relationships among external financing,economic growth and energy consumption with two-step system GMM model to investigate the influential path of the green credit policy.The results showed that:the green credit policy had a significant negative impact on the external financing of manufacturing industry,but its negative impact on the economic growth and energy consumption of manufacturing industry was not statistically significant,and the effect of the green credit policy had a dynamic feature of weakening with time.Additionally,in the manufacturing industry,there was a bilateral causal relationship between the energy consumption and economic growth of the control group industry and the processing group industry.There was a bilateral causal relationship between the economic growth and external financing of the control group industries in the manufacturing industry.There was a unilateral causal relationship between the economic growth and external financing of the processing group industries in the manufacturing industry,while the external causality existed between the control group industries and the processing group industries in the manufacturing industry.The causal relationship between the financing and energy consumption was not statistically significant.At present,the transmission path of the green credit policy is that the green credit policy controls external financing,then affects economic growth and ultimately inhibits energy consumption,but the effectiveness of the path is not statistically significant.The conclusion of this paper provides policy reference and scientific basis for the adjustment and improvement of green credit.展开更多
To solve the distributed hybrid flow shop scheduling problem(DHFS)in raw glass manufacturing systems,we investigated an improved hyperplane assisted evolutionary algorithm(IhpaEA).Two objectives are simultaneously con...To solve the distributed hybrid flow shop scheduling problem(DHFS)in raw glass manufacturing systems,we investigated an improved hyperplane assisted evolutionary algorithm(IhpaEA).Two objectives are simultaneously considered,namely,the maximum completion time and the total energy consumptions.Firstly,each solution is encoded by a three-dimensional vector,i.e.,factory assignment,scheduling,and machine assignment.Subsequently,an efficient initialization strategy embeds two heuristics are developed,which can increase the diversity of the population.Then,to improve the global search abilities,a Pareto-based crossover operator is designed to take more advantage of non-dominated solutions.Furthermore,a local search heuristic based on three parts encoding is embedded to enhance the searching performance.To enhance the local search abilities,the cooperation of the search operator is designed to obtain better non-dominated solutions.Finally,the experimental results demonstrate that the proposed algorithm is more efficient than the other three state-of-the-art algorithms.The results show that the Pareto optimal solution set obtained by the improved algorithm is superior to that of the traditional multiobjective algorithm in terms of diversity and convergence of the solution.展开更多
As energy efficiency is one of the key essentials towards sustainability, the development of an energy-resource efficient manufacturing system is among the great challenges facing the current industry. Meanwhile, the ...As energy efficiency is one of the key essentials towards sustainability, the development of an energy-resource efficient manufacturing system is among the great challenges facing the current industry. Meanwhile, the availability of advanced technological innovation has created more complex manufacturing systems that involve a large variety of processes and machines serving different functions. To extend the limited knowledge on energy-efficient scheduling, the research presented in this paper attempts to model the production schedule at an operation process by considering the balance of energy consumption reduction in production, production work flow (productivity) and quality. An innovative systematic approach to manufacturing energy-resource efficiency is proposed with the virtual simulation as a predictive modelling enabler, which provides real-time manufacturing monitoring, virtual displays and decision-makings and consequentially an analytical and multidimensional correlation analysis on interdependent relationships among energy consumption, work flow and quality errors. The regression analysis results demonstrate positive relationships between the work flow and quality errors and the work flow and energy consumption. When production scheduling is controlled through optimization of work flow, quality errors and overall energy consumption, the energy-resource efficiency can be achieved in the production. Together, this proposed multidimensional modelling and analysis approach provides optimal conditions for the production scheduling at the manufacturing system by taking account of production quality, energy consumption and resource efficiency, which can lead to the key competitive advantages and sustainability of the system operations in the industry.展开更多
Manufacturing flexible magnetic-driven actuators with complex structures and magnetic arrangements to achieve diverse functionalities is becoming a popular trend.Among various manufacturing technologies,magnetic-assis...Manufacturing flexible magnetic-driven actuators with complex structures and magnetic arrangements to achieve diverse functionalities is becoming a popular trend.Among various manufacturing technologies,magnetic-assisted digital light processing(DLP)stands out because it enables precise manufacturing of macro-scale structures and micro-scale distributions with the assistance of an external magnetic field.Current research on manufacturing magnetic flexible actuators mostly employs single materials,which limits the magnetic driving performance to some extent.Based on these characterizations,we propose a multi-material magnetic field-assisted DLP technology to produce flexible actuators with an accuracy of 200μm.The flexible actuators are printed using two materials with different mechanical and magnetic properties.Considering the interface connectivity of multi-material printing,the effect of interfaces on mechanical properties is also explored.Experimental results indicate good chemical affinity between the two materials we selected.The overlap or connection length of the interface moderately improves the tensile strength of multi-material structures.In addition,we investigate the influence of the volume fraction of the magnetic part on deformation.Simulation and experimental results indicate that increasing the volume ratio(20%to 50%)of the magnetic structure can enhance the responsiveness of the actuator(more than 50%).Finally,we successfully manufacture two multi-material flexible actuators with specific magnetic arrangements:a multi-legged crawling robot and a flexible gripper capable of crawling and grasping actions.These results confirm that this method will pave the way for further research on the precise fabrication of magnetic flexible actuators with diverse functionalities.展开更多
This paper presents the first-ever investigation of Menger fractal cubes'quasi-static compression and impact behaviour.Menger cubes with different void ratios were 3D printed using polylactic acid(PLA)with dimensi...This paper presents the first-ever investigation of Menger fractal cubes'quasi-static compression and impact behaviour.Menger cubes with different void ratios were 3D printed using polylactic acid(PLA)with dimensions of 40 mm×40 mm×40 mm.Three different orders of Menger cubes with different void ratios were considered,namely M1 with a void ratio of 0.26,M2 with a void ratio of 0.45,and M3with a void ratio of 0.60.Quasi-static Compression tests were conducted using a universal testing machine,while the drop hammer was used to observe the behaviour under impact loading.The fracture mechanism,energy efficiency and force-time histories were studied.With the structured nature of the void formation and predictability of the failure modes,the Menger geometry showed some promise compared to other alternatives,such as foams and honeycombs.With the increasing void ratio,the Menger geometries show force-displacement behaviour similar to hyper-elastic materials such as rubber and polymers.The third-order Menger cubes showed the highest energy absorption efficiency compared to the other two geometries in this study.The findings of the present work reveal the possibility of using additively manufactured Menger geometries as an energy-efficient system capable of reducing the transmitting force in applications such as crash barriers.展开更多
Al Si10Mg porous protective structure often produces different damage forms under compressive loading,and these damage modes affect its protective function.In order to well meet the service requirements,there is an ur...Al Si10Mg porous protective structure often produces different damage forms under compressive loading,and these damage modes affect its protective function.In order to well meet the service requirements,there is an urgent need to comprehensively understand the mechanical behavior and response mechanism of AlSi10Mg porous structures under compressive loading.In this paper,Al Si10Mg porous structures with three kinds of volume fractions are designed and optimized to meet the requirements of high-impact,strong-energy absorption,and lightweight characteristics.The mechanical behaviors of AlSi10Mg porous structures,including the stress-strain relationship,structural bearing state,deformation and damage modes,and energy absorption characteristics,were obtained through experimental studies at different loading rates.The damage pattern of the damage section indicates that AlSi10Mg porous structures have both ductile and brittle mechanical properties.Numerical simulation studies show that the AlSi10Mg porous structure undergoes shear damage due to relative misalignment along the diagonal cross-section,and the damage location is almost at 45°to the load direction,which is the most direct cause of its structural damage,revealing the damage mechanism of AlSi10Mg porous structures under the compressive load.The normalized energy absorption model constructed in the paper well interprets the energy absorption state of Al Si10Mg porous structures and gives the sensitive location of the structures,and the results of this paper provide important references for peers in structural design and optimization.展开更多
During metal machining, the satisfactoriness of cost-quality-time matrix convergence effectively depends on the supreme selection of cutting parameters. This study investigated the energy use minimisation and quality ...During metal machining, the satisfactoriness of cost-quality-time matrix convergence effectively depends on the supreme selection of cutting parameters. This study investigated the energy use minimisation and quality surface generation through optimised cutting parameters application, as sustainability enhancement during dry turning of EN19 material. Cutting parameter optimisation is a serious challenge confronting the machining industry as they strive to achieve low energy use and better component quality generation from their operations. The utility material, EN19, is a medium-carbon low alloy steel which typically gets applied in the manufacturing of multiple profiled cylindrical machine tool, rail locomotives and motor vehicle component parts, inter alia. Taguchi Full Factorial experimental plan was used to organise the empirical experiments. ANOVA and the main effects plot signal-to-noise ratio optimisation analysis were utilised in the study to establish the influence of process parameters on the response parameters—surface roughness and energy use. The aim was to investigate and determine the correlation of the machining strategy parameters with the outcome of low energy use and quality surface texture of the components as the cutting parameters were varied, and optimised for minimum surface roughness and energy use. Results of the extensive experimental study, produced optimum cutting speed, rake angle variation and feed rate which respectively influence the response parameters positively for energy use minimisation and improved surface quality. Validation experiments confirmed model findings.展开更多
Atomic scale manufacturing is a necessity of the future to develop atomic scale devices with high precision.A different perspective of the quantum realm,which includes the tunnelling effect,leakage current at the atom...Atomic scale manufacturing is a necessity of the future to develop atomic scale devices with high precision.A different perspective of the quantum realm,which includes the tunnelling effect,leakage current at the atomic-scale,Coulomb blockade and Kondo effect,is inevitable for the fabrication and hence,the mass production of these devices.For these atomic-scale device development,molecular level devices must be fabricated.Proper theoretical studies could be an aid towards the experimental realities.Electronic transport studies are the basis to realise and interpret the problems happening at this minute scale.Keeping these in mind,we present a periodic energy decomposition analysis(pEDA)of two potential candidates for moletronics:phthalocyanines and porphyrins,by placing them over gold substrate cleaved at the(111)plane to study the adsorption and interaction at the interface and then,to study their application as a channel between two electrodes,thereby,providing a link between pEDA and electronic transport studies.pEDA provides information regarding the bond strength and the contribution of electrostatic energy,Pauli’s energy,orbital energy and the orbital interactions.Combining this analysis with electronic transport studies can provide novel directions for atomic/close-toatomic-scale manufacturing(ACSM).Literature survey shows that this is the first work which establishes a link between pEDA and electronic transport studies and a detailed pEDA study on the above stated molecules.The results show that among the molecules studied,porphyrins are more adsorbable over gold substrate and conducting across a molecular junction than phthalocyanines,even though both molecules show a similarity in adsorption and conduction when a terminal thiol linker is attached.A further observation establishes the importance of attractive terms,which includes interaction,orbital and electrostatic energies,in correlating the pEDA study with the transport properties.By progressing this research,further developments could be possible in atomic-scale manufacturing in the future.展开更多
The microstructure and mechanical properties of Inconel 625 alloy fabricated by wire arc additive manufacturing process were evaluated under as-prepared and heat-treated conditions.A dendritic Ni-based solid solution ...The microstructure and mechanical properties of Inconel 625 alloy fabricated by wire arc additive manufacturing process were evaluated under as-prepared and heat-treated conditions.A dendritic Ni-based solid solution phase along with(Nb,Ti)C carbide,Laves,and δ-Ni3Nb secondary phases were developed in the microstructure of the as-prepared alloy.Solution heat treatment led to the dissolution of Laves and Ni3Nb phases.In addition,dendrites were replaced with large columnar grains.Aging heat treatment resulted in the formation of grain boundary M23C6 carbide and nanometric γ''precipitates.Hardness,yield and tensile strengths,as well as elongation of the as-prepared part,were close to those of the cast alloy and its fracture occurred in a transgranular ductile mode.Solution heat treatment improved hardness and yield strength and declined the elongation,but it did not have a considerable impact on the tensile strength.Furthermore,aging heat treatment caused the tensile properties to deteriorate and changed the fracture to a mixture of transgranular ductile and intergranular brittle mode.展开更多
NiTi shape memory alloy(SMA)with nominal composition of Ni 50.8 at%and Ti 49.2 at%was additively manufactured(AM)by selective laser melting(SLM)and laser directed energy deposition(DED)for a comparison study,with emph...NiTi shape memory alloy(SMA)with nominal composition of Ni 50.8 at%and Ti 49.2 at%was additively manufactured(AM)by selective laser melting(SLM)and laser directed energy deposition(DED)for a comparison study,with emphasis on its phase composition,microstructure,mechanical property and deformation mechanism.The results show that the yield strength and ductility obtained by SLM are 100 MPa and 8%,respectively,which are remarkably different from DED result with 700 MPa and 2%.The load path of SLM sample presents shape memory effect,corresponding to martensite phase detected by XRD;while the load path of DED presents pseudo-elasticity with austenite phase.In SLM sample,fine grain and hole provide a uniform deformation during tensile test,resulting in a better elongation.Furthermore,the nonequilibrium solidification was studied by a temperature field simulation to understand the difference of the two 3D printing methods.Both temperature gradient G and growth rate R determine the microstructure and phase in the SLM sample and DED sample,which leads to similar grain morphologies because of similar G/R.While higher G×R of SLM leads to a finer grain size in SLM sample,providing enough driving force for martensite transition and subsequently changing texture compared to DED sample.展开更多
This study presents a state of the art of several studies dealing with the environmental impact assessment of fuel cell (FC) vehicles and the comparison with their conventional fossil-fuelled counterparts, by means of...This study presents a state of the art of several studies dealing with the environmental impact assessment of fuel cell (FC) vehicles and the comparison with their conventional fossil-fuelled counterparts, by means of the Life Cycle As-sessment (LCA) methodology. Results declare that, depending on the systems characteristics, there are numerous envi-ronmental advantages, but also some disadvantages can be expected. In addition, the significance of the manufac-turing process of the FC, more specifically the Polymer Electrolyte Membrane Fuel Cell (PEMFC) type, in terms of environmental impact is presented. Finally, CIEMAT’s role in HYCHAIN European project, consisting of supporting early adopters for hydrogen FCs in the transport sector, is展开更多
Ni51Ti49 at.%bulk was additively manufactured by laser-directed energy deposition(DED)to reveal the microstructure evolution,phase distribution,and mechanical properties.It is found that the localized remelting,reheat...Ni51Ti49 at.%bulk was additively manufactured by laser-directed energy deposition(DED)to reveal the microstructure evolution,phase distribution,and mechanical properties.It is found that the localized remelting,reheating,and heat accumulation during DED leads to the spatial heterogeneous distribution of columnar crystal and equiaxed crystal,a gradient distribution of Ni4Ti3 precipitates along the building direction,and preferential formation of Ni4Ti3 precipitates in the columnar zone.The austenite transformation finish temperature(Af)varies from-12.65℃(Z=33 mm)to 60.35℃(Z=10 mm),corresponding to tensile yield strength(σ0.2)changed from 120±30 MPa to 570±20 MPa,and functional properties changed from shape memory effect to superelasticity at room temperature.The sample in the Z=20.4 mm height has the best plasticity of 9.6%and the best recoverable strain of 4.2%.This work provided insights and guidelines for the spatial characterization of DEDed NiTi.展开更多
A fundamental problem in the direct manufacturing of flexible devices is the low melting temperature of flexible substrates,which hinders the development of flexible electronics.Proposed here is an electron-cyclotron-...A fundamental problem in the direct manufacturing of flexible devices is the low melting temperature of flexible substrates,which hinders the development of flexible electronics.Proposed here is an electron-cyclotron-resonance sputtering system that can batch-fabricate devices directly on flexible substrates under a low temperature by virtue of the polariton energy transfer between the plasma and the material.Flexible graphene nanosheet-embedded carbon(F-GNEC)films are manufactured directly on polyimide,polyethylene terephthalate,and polydimethylsiloxane,and how the substrate bias(electron energy),microwave power(plasma flux and energy),and magnetic field(electron flux)affect the nanostructure of the F-GNEC films is investigated,indicating that electron energy and flux contribute to the formation of standing graphene nanosheets in the film.The films have good uniformity of distribution in a large size(17 mm×17 mm),and tensile and angle sensors with a high gauge factor(0.92)and fast response(50 ms)for a machine hand are obtained by virtue of the unique nanostructure of the F-GNEC film.This work sheds light on the quantum manufacturing of carbon sensors and its applications for intelligent machine hands and virtual-reality technology.展开更多
文摘Modern additive manufacturing processes enable fabricating architected cellular materials of complex shape,which can be used for different purposes.Among them,lattice structures are increasingly used in applications requiring a compromise among lightness and suited mechanical properties,like improved energy absorption capacity and specific stiffness-to-weight and strength-to-weight ratios.A dedicated modeling strategy to assess the energy absorption capacity of lattice structures under uni-axial compression loading is presented in this work.The numerical model is developed in a non-linear framework accounting for the strain rate effect on the mechanical responses of the lattice structure.Four geometries,i.e.,cubic body centered cell,octet cell,rhombic-dodecahedron and truncated cuboctahedron 2+,are investigated.Specifically,the influence of the relative density of the representative volume element of each geometry,the strain-rate dependency of the bulk material and of the presence of the manufacturing process-induced geometrical imperfections on the energy absorption capacity of the lattice structure is investigated.The main outcome of this study points out the importance of correctly integrating geometrical imperfections into the modeling strategy when shock absorption applications are aimed for.
文摘In this work,the Slacks-Based Measure(SBM)model within Data Envelopment Analysis was employed to establish a set of indicators for evaluating the energy efficiency of manufacturing workshops.The energy efficiency of 12 Company CW’s manufacturing workshops from 2016 to 2022 was assessed.The findings indicated that aside from a few workshops operating at the production frontier,the rest exhibit significant fluctuations in energy efficiency and generally low energy efficiency.Subsequently,a combined GRA-Tobit analysis model was introduced to identify factors influencing the energy efficiency of Company CW’s manufacturing workshops.Regression analysis revealed that technological investments,employee quality,workshop production scale,investment in clean energy,and the level of pollution control all significantly impact the energy efficiency of Company CW’s manufacturing workshops.By evaluating the energy efficiency of Company CW’s manufacturing workshops and studying their influencing factors,this research aids company managers in understanding the energy efficiency of the manufacturing process.It optimizes the combination of various production elements,thereby offering effective guidance for improving the energy efficiency issues of the company’s manufacturing workshops,which can contribute to enhancing the corporation’s overall energy efficiency.
文摘This article briefly discusses the theoretical basis and overall goals of energy conservation in the steel manufacturing process system.It is proposed that in the process of implementing system energy conservation,it is necessary to fully recognize and utilize the characteristics and functional advantages of the steel manufacturing process,pay more attention to energy quality,firmly grasp the overall goal of system optimization,focus on the integrated optimization of gas,steam,and waste heat systems,and propose the idea of constructing a"steel chemi-cal gas electricity heating cooling multi generation system".Based on practice,the main principles,models,and effects of implementing systematic energy conservation in steel enterprises have been proposed.
基金The financial support was provided by National Natural Science Foundation of China(Grant Numbers:52335008,52175409 and 52305469)Jiangsu Provincial Science and Technology Projects in China(Grant Numbers:BE2023026and BE2022069)+1 种基金Natural Science Foundation of Jiangsu Province(No.BK20220530)the Graduate Research Innovation Program of Jiangsu Province in China(Grant Number:KYCX23_3723)。
文摘Metal additive manufacturing(AM)technologies have made significant progress in the basic theoretical field since their invention in the 1970s.However,performance instability during continuous processing,such as thermal history,residual stress accumulation,and columnar grain epitaxial growth,consistently hinders their broad application in standardized industrial production.To overcome these challenges,performance-control-oriented hybrid AM(HAM)technologies have been introduced.These technologies,by leveraging external auxiliary processes,aim to regulate microstructural evolution and mechanical properties during metal AM.This paper provides a systematic and detailed review of performance-control-oriented HAM technology,which is categorized into two main groups:energy field-assisted AM(EFed AM,e.g.ultrasonic,electromagnetic,and heat)technologies and interlayer plastic deformation-assisted AM(IPDed AM,e.g.laser shock peening,rolling,ultrasonic peening,and friction stir process)technologies.This review covers the influence of external energy fields on the melting,flow,and solidification behavior of materials,and the regulatory effects of interlayer plastic deformation on grain refinement,nucleation,and recrystallization.Furthermore,the role of performance-control-oriented HAM technologies in managing residual stress conversion,metallurgical defect closure,mechanical property improvement,and anisotropy regulation is thoroughly reviewed and discussed.The review concludes with an analysis of future development trends in EFed AM and IPDed AM technologies.
文摘In this study,information on energy usage in the United States(U.S.)aerospace manufacturing sector has been analyzed and then represented as energy intensities(kWh/m2)to establish benchmark data and to compare facilities of varying sizes.First,public sources were identified and the data from these previously published sources were aggregated to determine the energy usage of aerospace manufacturing facilities within the U.S.From this dataset,a sample of 28 buildings were selected and the energy intensity for each building was estimated from the data.Next,as a part of this study the energy data for three additional aerospace manufacturing facilities in the U.S.were collected firsthand.That data was analyzed and the energy intensity(kWh/m2)for each facility was calculated and then compared with the energy intensities of the 28 buildings from the sample.Three different indicators of energy consumption in aerospace manufacturing facilities were used as comparators to assist facility managers with determining potential energy savings and help in the decision-making process.On average,aerospace manufacturing facilities in the United States spent 4 cents for each dollar of sale on energy.The energy intensity(kWh/m2)and the power intensity(W/m2)for each facility were calculated based on the actual facility energy bills.The power intensity for these facilities ranges from 34 to 134 W/m2.The energy intensity ranged from 232 to 949 kWh/m2.We found that the power intensity could be used to estimate energy consumption when the annual operating hours of the facility are considered.and to estimate the energy-related carbon dioxide emissions.
基金Item Sponsored by National Basic Research Programof China (200002600)
文摘From the viewpoint of systems energy conservation, the influences of material flow on its energy consumption in a steel manufacturing process is an important subject. The quantitative analysis of the relationship between material flow and the energy intensity is useful to save energy in steel industry. Based on the concept of standard material flow diagram, all possible situations of ferric material flow in steel manufacturing process are analyzed. The expressions of the influence of material flow deviated from standard material flow diagram on energy consumption are put forward.
基金supported by the 2022 MTC Young Individual Research Grants(Grant No.M22K3c0097)the Singapore Research,Innovation and Enterprise(RIE)2025 PlanSingapore Aerospace Programme Cycle 16(Grant No.M2215a0073)。
文摘Lightweight aluminum(Al)alloys have been widely used in frontier fields like aerospace and automotive industries,which attracts great interest in additive manufacturing(AM)to process high-value Al parts.As a mainstream AM technique,laser-directed energy deposition(LDED)shows good scalability to meet the requirements for large-format component manufacturing and repair.However,LDED Al alloys are highly challenging due to their inherent poor printability(e.g.low laser absorption,high oxidation sensitivity and cracking tendency).To further promote the development of LDED high-performance Al alloys,this review offers a deep understanding of the challenges and strategies to improve printability in LDED Al alloys.The porosity,cracking,distortion,inclusions,element evaporation and resultant inferior mechanical properties(worse than laser powder bed fusion)are the key challenges in LDED Al alloys.Processing parameter optimizations,in-situ alloy design,reinforcing particle addition and field assistance are the efficient approaches to improving the printability and performance of LDED Al alloys.The underlying correlations between processes,alloy innovation,characteristic microstructures,and achievable performances in LDED Al alloys are discussed.The benchmark mechanical properties and primary strengthening mechanism of LDED Al alloys are summarized.This review aims to provide a critical and in-depth evaluation of current progress in LDED Al alloys.Future opportunities and perspectives in LDED high-performance Al alloys are also outlined.
文摘China attempts to achieve energy conservation,emission reduction and environmental protection through the implementation of the green credit policy,but its implementation impact is still controversial.An important content of the green credit policy is to require banking and financial institutions to tighten the credit exposure of industries of‘high pollution and high energy consumption’and industries with overcapacity,so as to use economic leverage to curb their blind expansion and reduce energy consumption by controlling external financing.This paper examined the impact and the lingering effects of the green credit policy on external financing,economic growth and energy consumption in the manufacturing industry,which was most influenced by the green credit policy,from 2003 to 2016 by using the DID method.Furthermore,this paper estimated the dynamic endogenous relationships among external financing,economic growth and energy consumption with two-step system GMM model to investigate the influential path of the green credit policy.The results showed that:the green credit policy had a significant negative impact on the external financing of manufacturing industry,but its negative impact on the economic growth and energy consumption of manufacturing industry was not statistically significant,and the effect of the green credit policy had a dynamic feature of weakening with time.Additionally,in the manufacturing industry,there was a bilateral causal relationship between the energy consumption and economic growth of the control group industry and the processing group industry.There was a bilateral causal relationship between the economic growth and external financing of the control group industries in the manufacturing industry.There was a unilateral causal relationship between the economic growth and external financing of the processing group industries in the manufacturing industry,while the external causality existed between the control group industries and the processing group industries in the manufacturing industry.The causal relationship between the financing and energy consumption was not statistically significant.At present,the transmission path of the green credit policy is that the green credit policy controls external financing,then affects economic growth and ultimately inhibits energy consumption,but the effectiveness of the path is not statistically significant.The conclusion of this paper provides policy reference and scientific basis for the adjustment and improvement of green credit.
文摘To solve the distributed hybrid flow shop scheduling problem(DHFS)in raw glass manufacturing systems,we investigated an improved hyperplane assisted evolutionary algorithm(IhpaEA).Two objectives are simultaneously considered,namely,the maximum completion time and the total energy consumptions.Firstly,each solution is encoded by a three-dimensional vector,i.e.,factory assignment,scheduling,and machine assignment.Subsequently,an efficient initialization strategy embeds two heuristics are developed,which can increase the diversity of the population.Then,to improve the global search abilities,a Pareto-based crossover operator is designed to take more advantage of non-dominated solutions.Furthermore,a local search heuristic based on three parts encoding is embedded to enhance the searching performance.To enhance the local search abilities,the cooperation of the search operator is designed to obtain better non-dominated solutions.Finally,the experimental results demonstrate that the proposed algorithm is more efficient than the other three state-of-the-art algorithms.The results show that the Pareto optimal solution set obtained by the improved algorithm is superior to that of the traditional multiobjective algorithm in terms of diversity and convergence of the solution.
基金Supported by the EU 7th Framework ICT Programme under Euro Energest Project(Contract No.288102)
文摘As energy efficiency is one of the key essentials towards sustainability, the development of an energy-resource efficient manufacturing system is among the great challenges facing the current industry. Meanwhile, the availability of advanced technological innovation has created more complex manufacturing systems that involve a large variety of processes and machines serving different functions. To extend the limited knowledge on energy-efficient scheduling, the research presented in this paper attempts to model the production schedule at an operation process by considering the balance of energy consumption reduction in production, production work flow (productivity) and quality. An innovative systematic approach to manufacturing energy-resource efficiency is proposed with the virtual simulation as a predictive modelling enabler, which provides real-time manufacturing monitoring, virtual displays and decision-makings and consequentially an analytical and multidimensional correlation analysis on interdependent relationships among energy consumption, work flow and quality errors. The regression analysis results demonstrate positive relationships between the work flow and quality errors and the work flow and energy consumption. When production scheduling is controlled through optimization of work flow, quality errors and overall energy consumption, the energy-resource efficiency can be achieved in the production. Together, this proposed multidimensional modelling and analysis approach provides optimal conditions for the production scheduling at the manufacturing system by taking account of production quality, energy consumption and resource efficiency, which can lead to the key competitive advantages and sustainability of the system operations in the industry.
基金support from the National Natural Science Foundation of China(Grant No.52205424)the Natural Science Foundation of Zhejiang Province for Distinguished Young Scholars of China(Grant No.LR22E050002)+1 种基金the“Pioneer”and“Leading Goose”R&D Program of Zhejiang Province of China(Grant No.2023C01170)the Zhejiang Provincial Natural Science Foundation of China(Grant No.LY23A020001).
文摘Manufacturing flexible magnetic-driven actuators with complex structures and magnetic arrangements to achieve diverse functionalities is becoming a popular trend.Among various manufacturing technologies,magnetic-assisted digital light processing(DLP)stands out because it enables precise manufacturing of macro-scale structures and micro-scale distributions with the assistance of an external magnetic field.Current research on manufacturing magnetic flexible actuators mostly employs single materials,which limits the magnetic driving performance to some extent.Based on these characterizations,we propose a multi-material magnetic field-assisted DLP technology to produce flexible actuators with an accuracy of 200μm.The flexible actuators are printed using two materials with different mechanical and magnetic properties.Considering the interface connectivity of multi-material printing,the effect of interfaces on mechanical properties is also explored.Experimental results indicate good chemical affinity between the two materials we selected.The overlap or connection length of the interface moderately improves the tensile strength of multi-material structures.In addition,we investigate the influence of the volume fraction of the magnetic part on deformation.Simulation and experimental results indicate that increasing the volume ratio(20%to 50%)of the magnetic structure can enhance the responsiveness of the actuator(more than 50%).Finally,we successfully manufacture two multi-material flexible actuators with specific magnetic arrangements:a multi-legged crawling robot and a flexible gripper capable of crawling and grasping actions.These results confirm that this method will pave the way for further research on the precise fabrication of magnetic flexible actuators with diverse functionalities.
文摘This paper presents the first-ever investigation of Menger fractal cubes'quasi-static compression and impact behaviour.Menger cubes with different void ratios were 3D printed using polylactic acid(PLA)with dimensions of 40 mm×40 mm×40 mm.Three different orders of Menger cubes with different void ratios were considered,namely M1 with a void ratio of 0.26,M2 with a void ratio of 0.45,and M3with a void ratio of 0.60.Quasi-static Compression tests were conducted using a universal testing machine,while the drop hammer was used to observe the behaviour under impact loading.The fracture mechanism,energy efficiency and force-time histories were studied.With the structured nature of the void formation and predictability of the failure modes,the Menger geometry showed some promise compared to other alternatives,such as foams and honeycombs.With the increasing void ratio,the Menger geometries show force-displacement behaviour similar to hyper-elastic materials such as rubber and polymers.The third-order Menger cubes showed the highest energy absorption efficiency compared to the other two geometries in this study.The findings of the present work reveal the possibility of using additively manufactured Menger geometries as an energy-efficient system capable of reducing the transmitting force in applications such as crash barriers.
基金financially supported by the National Natural Science Foundation of China(Nos.12272356,12072326,and 12172337)the State Key Laboratory of Dynamic Measurement Technology,North University of China(No.2022-SYSJJ-03)。
文摘Al Si10Mg porous protective structure often produces different damage forms under compressive loading,and these damage modes affect its protective function.In order to well meet the service requirements,there is an urgent need to comprehensively understand the mechanical behavior and response mechanism of AlSi10Mg porous structures under compressive loading.In this paper,Al Si10Mg porous structures with three kinds of volume fractions are designed and optimized to meet the requirements of high-impact,strong-energy absorption,and lightweight characteristics.The mechanical behaviors of AlSi10Mg porous structures,including the stress-strain relationship,structural bearing state,deformation and damage modes,and energy absorption characteristics,were obtained through experimental studies at different loading rates.The damage pattern of the damage section indicates that AlSi10Mg porous structures have both ductile and brittle mechanical properties.Numerical simulation studies show that the AlSi10Mg porous structure undergoes shear damage due to relative misalignment along the diagonal cross-section,and the damage location is almost at 45°to the load direction,which is the most direct cause of its structural damage,revealing the damage mechanism of AlSi10Mg porous structures under the compressive load.The normalized energy absorption model constructed in the paper well interprets the energy absorption state of Al Si10Mg porous structures and gives the sensitive location of the structures,and the results of this paper provide important references for peers in structural design and optimization.
文摘During metal machining, the satisfactoriness of cost-quality-time matrix convergence effectively depends on the supreme selection of cutting parameters. This study investigated the energy use minimisation and quality surface generation through optimised cutting parameters application, as sustainability enhancement during dry turning of EN19 material. Cutting parameter optimisation is a serious challenge confronting the machining industry as they strive to achieve low energy use and better component quality generation from their operations. The utility material, EN19, is a medium-carbon low alloy steel which typically gets applied in the manufacturing of multiple profiled cylindrical machine tool, rail locomotives and motor vehicle component parts, inter alia. Taguchi Full Factorial experimental plan was used to organise the empirical experiments. ANOVA and the main effects plot signal-to-noise ratio optimisation analysis were utilised in the study to establish the influence of process parameters on the response parameters—surface roughness and energy use. The aim was to investigate and determine the correlation of the machining strategy parameters with the outcome of low energy use and quality surface texture of the components as the cutting parameters were varied, and optimised for minimum surface roughness and energy use. Results of the extensive experimental study, produced optimum cutting speed, rake angle variation and feed rate which respectively influence the response parameters positively for energy use minimisation and improved surface quality. Validation experiments confirmed model findings.
基金This work was supported by the Science Foundation Ireland(Grant No. 15/RP/B3208)and ‘111’ project by the StateAdministration of Foreign Experts Affairs and the Ministry ofEducation of China (Grant No. B07014).
文摘Atomic scale manufacturing is a necessity of the future to develop atomic scale devices with high precision.A different perspective of the quantum realm,which includes the tunnelling effect,leakage current at the atomic-scale,Coulomb blockade and Kondo effect,is inevitable for the fabrication and hence,the mass production of these devices.For these atomic-scale device development,molecular level devices must be fabricated.Proper theoretical studies could be an aid towards the experimental realities.Electronic transport studies are the basis to realise and interpret the problems happening at this minute scale.Keeping these in mind,we present a periodic energy decomposition analysis(pEDA)of two potential candidates for moletronics:phthalocyanines and porphyrins,by placing them over gold substrate cleaved at the(111)plane to study the adsorption and interaction at the interface and then,to study their application as a channel between two electrodes,thereby,providing a link between pEDA and electronic transport studies.pEDA provides information regarding the bond strength and the contribution of electrostatic energy,Pauli’s energy,orbital energy and the orbital interactions.Combining this analysis with electronic transport studies can provide novel directions for atomic/close-toatomic-scale manufacturing(ACSM).Literature survey shows that this is the first work which establishes a link between pEDA and electronic transport studies and a detailed pEDA study on the above stated molecules.The results show that among the molecules studied,porphyrins are more adsorbable over gold substrate and conducting across a molecular junction than phthalocyanines,even though both molecules show a similarity in adsorption and conduction when a terminal thiol linker is attached.A further observation establishes the importance of attractive terms,which includes interaction,orbital and electrostatic energies,in correlating the pEDA study with the transport properties.By progressing this research,further developments could be possible in atomic-scale manufacturing in the future.
文摘The microstructure and mechanical properties of Inconel 625 alloy fabricated by wire arc additive manufacturing process were evaluated under as-prepared and heat-treated conditions.A dendritic Ni-based solid solution phase along with(Nb,Ti)C carbide,Laves,and δ-Ni3Nb secondary phases were developed in the microstructure of the as-prepared alloy.Solution heat treatment led to the dissolution of Laves and Ni3Nb phases.In addition,dendrites were replaced with large columnar grains.Aging heat treatment resulted in the formation of grain boundary M23C6 carbide and nanometric γ''precipitates.Hardness,yield and tensile strengths,as well as elongation of the as-prepared part,were close to those of the cast alloy and its fracture occurred in a transgranular ductile mode.Solution heat treatment improved hardness and yield strength and declined the elongation,but it did not have a considerable impact on the tensile strength.Furthermore,aging heat treatment caused the tensile properties to deteriorate and changed the fracture to a mixture of transgranular ductile and intergranular brittle mode.
基金Project(2020JJ2046)supported by the Science Fund for Hunan Distinguished Young Scholars,ChinaProject(S2020GXKJGG0416)supported by the Special Project for Hunan Innovative Province Construction,China+1 种基金Project(2018RS3007)supported by the Huxiang Young Talents,ChinaProject(GuikeAB19050002)supported by the Science Project of Guangxi,China。
文摘NiTi shape memory alloy(SMA)with nominal composition of Ni 50.8 at%and Ti 49.2 at%was additively manufactured(AM)by selective laser melting(SLM)and laser directed energy deposition(DED)for a comparison study,with emphasis on its phase composition,microstructure,mechanical property and deformation mechanism.The results show that the yield strength and ductility obtained by SLM are 100 MPa and 8%,respectively,which are remarkably different from DED result with 700 MPa and 2%.The load path of SLM sample presents shape memory effect,corresponding to martensite phase detected by XRD;while the load path of DED presents pseudo-elasticity with austenite phase.In SLM sample,fine grain and hole provide a uniform deformation during tensile test,resulting in a better elongation.Furthermore,the nonequilibrium solidification was studied by a temperature field simulation to understand the difference of the two 3D printing methods.Both temperature gradient G and growth rate R determine the microstructure and phase in the SLM sample and DED sample,which leads to similar grain morphologies because of similar G/R.While higher G×R of SLM leads to a finer grain size in SLM sample,providing enough driving force for martensite transition and subsequently changing texture compared to DED sample.
文摘This study presents a state of the art of several studies dealing with the environmental impact assessment of fuel cell (FC) vehicles and the comparison with their conventional fossil-fuelled counterparts, by means of the Life Cycle As-sessment (LCA) methodology. Results declare that, depending on the systems characteristics, there are numerous envi-ronmental advantages, but also some disadvantages can be expected. In addition, the significance of the manufac-turing process of the FC, more specifically the Polymer Electrolyte Membrane Fuel Cell (PEMFC) type, in terms of environmental impact is presented. Finally, CIEMAT’s role in HYCHAIN European project, consisting of supporting early adopters for hydrogen FCs in the transport sector, is
基金the financial support of the Hunan Innovation Platform and Talent Plan(2022RC3033)Natural Science Foundation of Shandong Province(ZR2020ZD04)Ganzhou Science and Technology Planning Project(Grant No.Ganshikefa[2019]60)。
文摘Ni51Ti49 at.%bulk was additively manufactured by laser-directed energy deposition(DED)to reveal the microstructure evolution,phase distribution,and mechanical properties.It is found that the localized remelting,reheating,and heat accumulation during DED leads to the spatial heterogeneous distribution of columnar crystal and equiaxed crystal,a gradient distribution of Ni4Ti3 precipitates along the building direction,and preferential formation of Ni4Ti3 precipitates in the columnar zone.The austenite transformation finish temperature(Af)varies from-12.65℃(Z=33 mm)to 60.35℃(Z=10 mm),corresponding to tensile yield strength(σ0.2)changed from 120±30 MPa to 570±20 MPa,and functional properties changed from shape memory effect to superelasticity at room temperature.The sample in the Z=20.4 mm height has the best plasticity of 9.6%and the best recoverable strain of 4.2%.This work provided insights and guidelines for the spatial characterization of DEDed NiTi.
基金support of the National Natural Science Foundation of China(Grant Nos.52275565,NSFC-JSPS:52011540005,and 62104155)the Natural Science Foundation of Guangdong Province(Grant No.2022A1515011667)the Guangdong Kangyi Special Fund(Grant No.2020KZDZX1173).
文摘A fundamental problem in the direct manufacturing of flexible devices is the low melting temperature of flexible substrates,which hinders the development of flexible electronics.Proposed here is an electron-cyclotron-resonance sputtering system that can batch-fabricate devices directly on flexible substrates under a low temperature by virtue of the polariton energy transfer between the plasma and the material.Flexible graphene nanosheet-embedded carbon(F-GNEC)films are manufactured directly on polyimide,polyethylene terephthalate,and polydimethylsiloxane,and how the substrate bias(electron energy),microwave power(plasma flux and energy),and magnetic field(electron flux)affect the nanostructure of the F-GNEC films is investigated,indicating that electron energy and flux contribute to the formation of standing graphene nanosheets in the film.The films have good uniformity of distribution in a large size(17 mm×17 mm),and tensile and angle sensors with a high gauge factor(0.92)and fast response(50 ms)for a machine hand are obtained by virtue of the unique nanostructure of the F-GNEC film.This work sheds light on the quantum manufacturing of carbon sensors and its applications for intelligent machine hands and virtual-reality technology.