期刊文献+
共找到836篇文章
< 1 2 42 >
每页显示 20 50 100
Influence of manufacturing process-induced geometrical defects on the energy absorption capacity of polymer lattice structures
1
作者 Alexandre Riot Enrico Panettieri +1 位作者 Antonio Cosculluela Marco Montemurro 《Defence Technology(防务技术)》 SCIE EI CAS CSCD 2024年第5期47-59,共13页
Modern additive manufacturing processes enable fabricating architected cellular materials of complex shape,which can be used for different purposes.Among them,lattice structures are increasingly used in applications r... Modern additive manufacturing processes enable fabricating architected cellular materials of complex shape,which can be used for different purposes.Among them,lattice structures are increasingly used in applications requiring a compromise among lightness and suited mechanical properties,like improved energy absorption capacity and specific stiffness-to-weight and strength-to-weight ratios.A dedicated modeling strategy to assess the energy absorption capacity of lattice structures under uni-axial compression loading is presented in this work.The numerical model is developed in a non-linear framework accounting for the strain rate effect on the mechanical responses of the lattice structure.Four geometries,i.e.,cubic body centered cell,octet cell,rhombic-dodecahedron and truncated cuboctahedron 2+,are investigated.Specifically,the influence of the relative density of the representative volume element of each geometry,the strain-rate dependency of the bulk material and of the presence of the manufacturing process-induced geometrical imperfections on the energy absorption capacity of the lattice structure is investigated.The main outcome of this study points out the importance of correctly integrating geometrical imperfections into the modeling strategy when shock absorption applications are aimed for. 展开更多
关键词 Lattice structures Architected cellular materials Dynamic simulation energy absorption Geometrical imperfection Additive manufacturing
下载PDF
Evaluation of Energy Efficiency and Analysis of Influencing Factors of Company CW’s Manufacturing Workshops
2
作者 Pengju Zhang 《Journal of Electronic Research and Application》 2024年第2期18-26,共9页
In this work,the Slacks-Based Measure(SBM)model within Data Envelopment Analysis was employed to establish a set of indicators for evaluating the energy efficiency of manufacturing workshops.The energy efficiency of 1... In this work,the Slacks-Based Measure(SBM)model within Data Envelopment Analysis was employed to establish a set of indicators for evaluating the energy efficiency of manufacturing workshops.The energy efficiency of 12 Company CW’s manufacturing workshops from 2016 to 2022 was assessed.The findings indicated that aside from a few workshops operating at the production frontier,the rest exhibit significant fluctuations in energy efficiency and generally low energy efficiency.Subsequently,a combined GRA-Tobit analysis model was introduced to identify factors influencing the energy efficiency of Company CW’s manufacturing workshops.Regression analysis revealed that technological investments,employee quality,workshop production scale,investment in clean energy,and the level of pollution control all significantly impact the energy efficiency of Company CW’s manufacturing workshops.By evaluating the energy efficiency of Company CW’s manufacturing workshops and studying their influencing factors,this research aids company managers in understanding the energy efficiency of the manufacturing process.It optimizes the combination of various production elements,thereby offering effective guidance for improving the energy efficiency issues of the company’s manufacturing workshops,which can contribute to enhancing the corporation’s overall energy efficiency. 展开更多
关键词 manufacturing workshop energy efficiency energy efficiency evaluation Data Envelopment Analysis(DEA) GRA-Tobit model
下载PDF
Exploration and Application Practice of Energy Conservation Theory and Method in Steel Manufacturing Process System
3
作者 Jiaxiang Hao Yuanyuan Wu 《Frontiers of Metallurgical Industry》 2024年第2期37-42,共6页
This article briefly discusses the theoretical basis and overall goals of energy conservation in the steel manufacturing process system.It is proposed that in the process of implementing system energy conservation,it ... This article briefly discusses the theoretical basis and overall goals of energy conservation in the steel manufacturing process system.It is proposed that in the process of implementing system energy conservation,it is necessary to fully recognize and utilize the characteristics and functional advantages of the steel manufacturing process,pay more attention to energy quality,firmly grasp the overall goal of system optimization,focus on the integrated optimization of gas,steam,and waste heat systems,and propose the idea of constructing a"steel chemi-cal gas electricity heating cooling multi generation system".Based on practice,the main principles,models,and effects of implementing systematic energy conservation in steel enterprises have been proposed. 展开更多
关键词 steel manufacturing process system energy-saving system optimization energy conservation and emis-sion reduction waste heat and energy generation POLYGENERATION
下载PDF
Performance-control-orientated hybrid metal additive manufacturing technologies:state of the art,challenges,and future trends
4
作者 Jiming Lv Yuchen Liang +6 位作者 Xiang Xu Gang Xu Hongmei Zhang Haifei Lu Kaiyu Luo Jie Cai Jinzhong Lu 《International Journal of Extreme Manufacturing》 SCIE EI CAS CSCD 2024年第3期274-328,共55页
Metal additive manufacturing(AM)technologies have made significant progress in the basic theoretical field since their invention in the 1970s.However,performance instability during continuous processing,such as therma... Metal additive manufacturing(AM)technologies have made significant progress in the basic theoretical field since their invention in the 1970s.However,performance instability during continuous processing,such as thermal history,residual stress accumulation,and columnar grain epitaxial growth,consistently hinders their broad application in standardized industrial production.To overcome these challenges,performance-control-oriented hybrid AM(HAM)technologies have been introduced.These technologies,by leveraging external auxiliary processes,aim to regulate microstructural evolution and mechanical properties during metal AM.This paper provides a systematic and detailed review of performance-control-oriented HAM technology,which is categorized into two main groups:energy field-assisted AM(EFed AM,e.g.ultrasonic,electromagnetic,and heat)technologies and interlayer plastic deformation-assisted AM(IPDed AM,e.g.laser shock peening,rolling,ultrasonic peening,and friction stir process)technologies.This review covers the influence of external energy fields on the melting,flow,and solidification behavior of materials,and the regulatory effects of interlayer plastic deformation on grain refinement,nucleation,and recrystallization.Furthermore,the role of performance-control-oriented HAM technologies in managing residual stress conversion,metallurgical defect closure,mechanical property improvement,and anisotropy regulation is thoroughly reviewed and discussed.The review concludes with an analysis of future development trends in EFed AM and IPDed AM technologies. 展开更多
关键词 hybrid additive manufacturing in-situ/interlayer plastic deformation auxiliary energy fields microstructure customization mechanical properties enhancement
下载PDF
Energy Consumption Analysis and Characterization of Aerospace Manufacturing Facilities in the United States–A Step towards Sustainable Development
5
作者 Khaled Bawaneh Bradley Deken Amin Esmaeili 《Energy Engineering》 EI 2023年第1期23-34,共12页
In this study,information on energy usage in the United States(U.S.)aerospace manufacturing sector has been analyzed and then represented as energy intensities(kWh/m2)to establish benchmark data and to compare facilit... In this study,information on energy usage in the United States(U.S.)aerospace manufacturing sector has been analyzed and then represented as energy intensities(kWh/m2)to establish benchmark data and to compare facilities of varying sizes.First,public sources were identified and the data from these previously published sources were aggregated to determine the energy usage of aerospace manufacturing facilities within the U.S.From this dataset,a sample of 28 buildings were selected and the energy intensity for each building was estimated from the data.Next,as a part of this study the energy data for three additional aerospace manufacturing facilities in the U.S.were collected firsthand.That data was analyzed and the energy intensity(kWh/m2)for each facility was calculated and then compared with the energy intensities of the 28 buildings from the sample.Three different indicators of energy consumption in aerospace manufacturing facilities were used as comparators to assist facility managers with determining potential energy savings and help in the decision-making process.On average,aerospace manufacturing facilities in the United States spent 4 cents for each dollar of sale on energy.The energy intensity(kWh/m2)and the power intensity(W/m2)for each facility were calculated based on the actual facility energy bills.The power intensity for these facilities ranges from 34 to 134 W/m2.The energy intensity ranged from 232 to 949 kWh/m2.We found that the power intensity could be used to estimate energy consumption when the annual operating hours of the facility are considered.and to estimate the energy-related carbon dioxide emissions. 展开更多
关键词 Aerospace facilities energy consumption life cycle information in aerospace manufacturing buildings sustainable manufacturing buildings
下载PDF
Calculating Method for Influence of Material Flow on Energy Consumption in Steel Manufacturing Process 被引量:8
6
作者 YU Qing-bo LU Zhong-wu CAI Jiu-ju 《Journal of Iron and Steel Research International》 SCIE EI CAS CSCD 2007年第2期46-51,共6页
From the viewpoint of systems energy conservation, the influences of material flow on its energy consumption in a steel manufacturing process is an important subject. The quantitative analysis of the relationship betw... From the viewpoint of systems energy conservation, the influences of material flow on its energy consumption in a steel manufacturing process is an important subject. The quantitative analysis of the relationship between material flow and the energy intensity is useful to save energy in steel industry. Based on the concept of standard material flow diagram, all possible situations of ferric material flow in steel manufacturing process are analyzed. The expressions of the influence of material flow deviated from standard material flow diagram on energy consumption are put forward. 展开更多
关键词 steel manufacturing process material flow energy consumption calculating method
下载PDF
Review on laser directed energy deposited aluminum alloys 被引量:2
7
作者 Tian-Shu Liu Peng Chen +7 位作者 Feng Qiu Hong-Yu Yang Nicholas Tan Yew Jin Youxiang Chew Di Wang Ruidi Li Qi-Chuan Jiang Chaolin Tan 《International Journal of Extreme Manufacturing》 SCIE EI CAS CSCD 2024年第2期84-131,共48页
Lightweight aluminum(Al)alloys have been widely used in frontier fields like aerospace and automotive industries,which attracts great interest in additive manufacturing(AM)to process high-value Al parts.As a mainstrea... Lightweight aluminum(Al)alloys have been widely used in frontier fields like aerospace and automotive industries,which attracts great interest in additive manufacturing(AM)to process high-value Al parts.As a mainstream AM technique,laser-directed energy deposition(LDED)shows good scalability to meet the requirements for large-format component manufacturing and repair.However,LDED Al alloys are highly challenging due to their inherent poor printability(e.g.low laser absorption,high oxidation sensitivity and cracking tendency).To further promote the development of LDED high-performance Al alloys,this review offers a deep understanding of the challenges and strategies to improve printability in LDED Al alloys.The porosity,cracking,distortion,inclusions,element evaporation and resultant inferior mechanical properties(worse than laser powder bed fusion)are the key challenges in LDED Al alloys.Processing parameter optimizations,in-situ alloy design,reinforcing particle addition and field assistance are the efficient approaches to improving the printability and performance of LDED Al alloys.The underlying correlations between processes,alloy innovation,characteristic microstructures,and achievable performances in LDED Al alloys are discussed.The benchmark mechanical properties and primary strengthening mechanism of LDED Al alloys are summarized.This review aims to provide a critical and in-depth evaluation of current progress in LDED Al alloys.Future opportunities and perspectives in LDED high-performance Al alloys are also outlined. 展开更多
关键词 additive manufacturing laser directed energy deposition(LDED) aluminum alloys PRINTABILITY aluminum matrix composite auxiliary fields mechanical properties
下载PDF
Impact of the green credit policy on external financing,economic growth and energy consumption of the manufacturing industry 被引量:4
8
作者 Sheng Wu Liangpeng Wu Xianglian Zhao 《Chinese Journal of Population,Resources and Environment》 2022年第1期59-68,共10页
China attempts to achieve energy conservation,emission reduction and environmental protection through the implementation of the green credit policy,but its implementation impact is still controversial.An important con... China attempts to achieve energy conservation,emission reduction and environmental protection through the implementation of the green credit policy,but its implementation impact is still controversial.An important content of the green credit policy is to require banking and financial institutions to tighten the credit exposure of industries of‘high pollution and high energy consumption’and industries with overcapacity,so as to use economic leverage to curb their blind expansion and reduce energy consumption by controlling external financing.This paper examined the impact and the lingering effects of the green credit policy on external financing,economic growth and energy consumption in the manufacturing industry,which was most influenced by the green credit policy,from 2003 to 2016 by using the DID method.Furthermore,this paper estimated the dynamic endogenous relationships among external financing,economic growth and energy consumption with two-step system GMM model to investigate the influential path of the green credit policy.The results showed that:the green credit policy had a significant negative impact on the external financing of manufacturing industry,but its negative impact on the economic growth and energy consumption of manufacturing industry was not statistically significant,and the effect of the green credit policy had a dynamic feature of weakening with time.Additionally,in the manufacturing industry,there was a bilateral causal relationship between the energy consumption and economic growth of the control group industry and the processing group industry.There was a bilateral causal relationship between the economic growth and external financing of the control group industries in the manufacturing industry.There was a unilateral causal relationship between the economic growth and external financing of the processing group industries in the manufacturing industry,while the external causality existed between the control group industries and the processing group industries in the manufacturing industry.The causal relationship between the financing and energy consumption was not statistically significant.At present,the transmission path of the green credit policy is that the green credit policy controls external financing,then affects economic growth and ultimately inhibits energy consumption,but the effectiveness of the path is not statistically significant.The conclusion of this paper provides policy reference and scientific basis for the adjustment and improvement of green credit. 展开更多
关键词 Green credit energy consumption DIFFERENCE-IN-DIFFERENCES manufacturing industry
下载PDF
An Improved Hyperplane Assisted Multiobjective Optimization for Distributed Hybrid Flow Shop Scheduling Problem in Glass Manufacturing Systems
9
作者 Yadian Geng Junqing Li 《Computer Modeling in Engineering & Sciences》 SCIE EI 2023年第1期241-266,共26页
To solve the distributed hybrid flow shop scheduling problem(DHFS)in raw glass manufacturing systems,we investigated an improved hyperplane assisted evolutionary algorithm(IhpaEA).Two objectives are simultaneously con... To solve the distributed hybrid flow shop scheduling problem(DHFS)in raw glass manufacturing systems,we investigated an improved hyperplane assisted evolutionary algorithm(IhpaEA).Two objectives are simultaneously considered,namely,the maximum completion time and the total energy consumptions.Firstly,each solution is encoded by a three-dimensional vector,i.e.,factory assignment,scheduling,and machine assignment.Subsequently,an efficient initialization strategy embeds two heuristics are developed,which can increase the diversity of the population.Then,to improve the global search abilities,a Pareto-based crossover operator is designed to take more advantage of non-dominated solutions.Furthermore,a local search heuristic based on three parts encoding is embedded to enhance the searching performance.To enhance the local search abilities,the cooperation of the search operator is designed to obtain better non-dominated solutions.Finally,the experimental results demonstrate that the proposed algorithm is more efficient than the other three state-of-the-art algorithms.The results show that the Pareto optimal solution set obtained by the improved algorithm is superior to that of the traditional multiobjective algorithm in terms of diversity and convergence of the solution. 展开更多
关键词 Distributed hybrid flow shop energy consumption hyperplane-assisted multi-objective algorithm glass manufacturing system
下载PDF
Simulation Based Energy-resource Efficient Manufacturing Integrated with In-process Virtual Management 被引量:2
10
作者 KATCHASUWANMANEE Kanet CHENG Kai BATEMAN Richard 《Chinese Journal of Mechanical Engineering》 SCIE EI CAS CSCD 2016年第6期1083-1089,共7页
As energy efficiency is one of the key essentials towards sustainability, the development of an energy-resource efficient manufacturing system is among the great challenges facing the current industry. Meanwhile, the ... As energy efficiency is one of the key essentials towards sustainability, the development of an energy-resource efficient manufacturing system is among the great challenges facing the current industry. Meanwhile, the availability of advanced technological innovation has created more complex manufacturing systems that involve a large variety of processes and machines serving different functions. To extend the limited knowledge on energy-efficient scheduling, the research presented in this paper attempts to model the production schedule at an operation process by considering the balance of energy consumption reduction in production, production work flow (productivity) and quality. An innovative systematic approach to manufacturing energy-resource efficiency is proposed with the virtual simulation as a predictive modelling enabler, which provides real-time manufacturing monitoring, virtual displays and decision-makings and consequentially an analytical and multidimensional correlation analysis on interdependent relationships among energy consumption, work flow and quality errors. The regression analysis results demonstrate positive relationships between the work flow and quality errors and the work flow and energy consumption. When production scheduling is controlled through optimization of work flow, quality errors and overall energy consumption, the energy-resource efficiency can be achieved in the production. Together, this proposed multidimensional modelling and analysis approach provides optimal conditions for the production scheduling at the manufacturing system by taking account of production quality, energy consumption and resource efficiency, which can lead to the key competitive advantages and sustainability of the system operations in the industry. 展开更多
关键词 energy-resource efficient manufacturing virtual manufacturing manufacturing simulation in-process virtual management
下载PDF
Multi-Material magnetic field-assisted additive manufacturing system for flexible actuators with programmable magnetic arrangements
11
作者 Yujie HUANG Haonan SUN +3 位作者 Chengqian ZHANG Ruoxiang GAO Hongyao SHEN Peng ZHAO 《Frontiers of Mechanical Engineering》 SCIE CSCD 2024年第2期109-120,共12页
Manufacturing flexible magnetic-driven actuators with complex structures and magnetic arrangements to achieve diverse functionalities is becoming a popular trend.Among various manufacturing technologies,magnetic-assis... Manufacturing flexible magnetic-driven actuators with complex structures and magnetic arrangements to achieve diverse functionalities is becoming a popular trend.Among various manufacturing technologies,magnetic-assisted digital light processing(DLP)stands out because it enables precise manufacturing of macro-scale structures and micro-scale distributions with the assistance of an external magnetic field.Current research on manufacturing magnetic flexible actuators mostly employs single materials,which limits the magnetic driving performance to some extent.Based on these characterizations,we propose a multi-material magnetic field-assisted DLP technology to produce flexible actuators with an accuracy of 200μm.The flexible actuators are printed using two materials with different mechanical and magnetic properties.Considering the interface connectivity of multi-material printing,the effect of interfaces on mechanical properties is also explored.Experimental results indicate good chemical affinity between the two materials we selected.The overlap or connection length of the interface moderately improves the tensile strength of multi-material structures.In addition,we investigate the influence of the volume fraction of the magnetic part on deformation.Simulation and experimental results indicate that increasing the volume ratio(20%to 50%)of the magnetic structure can enhance the responsiveness of the actuator(more than 50%).Finally,we successfully manufacture two multi-material flexible actuators with specific magnetic arrangements:a multi-legged crawling robot and a flexible gripper capable of crawling and grasping actions.These results confirm that this method will pave the way for further research on the precise fabrication of magnetic flexible actuators with diverse functionalities. 展开更多
关键词 multi-material magnetic field-assisted manufacturing digital light processing flexible actuators magnetic arrangement
原文传递
Quasi-static and dynamic compressive behaviour of additively manufactured Menger fractal cube structures
12
作者 Damith Mohotti Dakshitha Weerasinghe +3 位作者 Madhusha Bogahawaththa Hongxu Wang Kasun Wijesooriya Paul JHazell 《Defence Technology(防务技术)》 SCIE EI CAS CSCD 2024年第7期39-49,共11页
This paper presents the first-ever investigation of Menger fractal cubes'quasi-static compression and impact behaviour.Menger cubes with different void ratios were 3D printed using polylactic acid(PLA)with dimensi... This paper presents the first-ever investigation of Menger fractal cubes'quasi-static compression and impact behaviour.Menger cubes with different void ratios were 3D printed using polylactic acid(PLA)with dimensions of 40 mm×40 mm×40 mm.Three different orders of Menger cubes with different void ratios were considered,namely M1 with a void ratio of 0.26,M2 with a void ratio of 0.45,and M3with a void ratio of 0.60.Quasi-static Compression tests were conducted using a universal testing machine,while the drop hammer was used to observe the behaviour under impact loading.The fracture mechanism,energy efficiency and force-time histories were studied.With the structured nature of the void formation and predictability of the failure modes,the Menger geometry showed some promise compared to other alternatives,such as foams and honeycombs.With the increasing void ratio,the Menger geometries show force-displacement behaviour similar to hyper-elastic materials such as rubber and polymers.The third-order Menger cubes showed the highest energy absorption efficiency compared to the other two geometries in this study.The findings of the present work reveal the possibility of using additively manufactured Menger geometries as an energy-efficient system capable of reducing the transmitting force in applications such as crash barriers. 展开更多
关键词 Additive manufacturing Fractal geometries Menger cube energy absorption QUASI-STATIC
下载PDF
Mechanical behavior and response mechanism of porous metal structures manufactured by laser powder bed fusion under compressive loading
13
作者 Xuanming Cai Yang Hou +6 位作者 Wei Zhang Zhiqiang Fan Yubo Gao Junyuan Wang Heyang Sun Zhujun Zhang Wenshu Yang 《International Journal of Minerals,Metallurgy and Materials》 SCIE EI CAS CSCD 2024年第4期737-749,共13页
Al Si10Mg porous protective structure often produces different damage forms under compressive loading,and these damage modes affect its protective function.In order to well meet the service requirements,there is an ur... Al Si10Mg porous protective structure often produces different damage forms under compressive loading,and these damage modes affect its protective function.In order to well meet the service requirements,there is an urgent need to comprehensively understand the mechanical behavior and response mechanism of AlSi10Mg porous structures under compressive loading.In this paper,Al Si10Mg porous structures with three kinds of volume fractions are designed and optimized to meet the requirements of high-impact,strong-energy absorption,and lightweight characteristics.The mechanical behaviors of AlSi10Mg porous structures,including the stress-strain relationship,structural bearing state,deformation and damage modes,and energy absorption characteristics,were obtained through experimental studies at different loading rates.The damage pattern of the damage section indicates that AlSi10Mg porous structures have both ductile and brittle mechanical properties.Numerical simulation studies show that the AlSi10Mg porous structure undergoes shear damage due to relative misalignment along the diagonal cross-section,and the damage location is almost at 45°to the load direction,which is the most direct cause of its structural damage,revealing the damage mechanism of AlSi10Mg porous structures under the compressive load.The normalized energy absorption model constructed in the paper well interprets the energy absorption state of Al Si10Mg porous structures and gives the sensitive location of the structures,and the results of this paper provide important references for peers in structural design and optimization. 展开更多
关键词 AlSi10Mg additive manufacture energy absorption characteristics damage by deformation mechanical behavior
下载PDF
Taguchi Full Factorial Design of Experiments Optimisation of Cutting Parameters for Energy Efficiency and Surface Roughness during the Dry Turning of EN19 Material
14
作者 Nicholas Tayisepi Albert Nkulumo Mnkandla +4 位作者 Godfrey Tigere Oscar Gwatidzo Winnie Mutenhabundo Emmanuel Ndala Lovelace Makakatanwa Wagoneka 《World Journal of Engineering and Technology》 2024年第2期438-454,共17页
During metal machining, the satisfactoriness of cost-quality-time matrix convergence effectively depends on the supreme selection of cutting parameters. This study investigated the energy use minimisation and quality ... During metal machining, the satisfactoriness of cost-quality-time matrix convergence effectively depends on the supreme selection of cutting parameters. This study investigated the energy use minimisation and quality surface generation through optimised cutting parameters application, as sustainability enhancement during dry turning of EN19 material. Cutting parameter optimisation is a serious challenge confronting the machining industry as they strive to achieve low energy use and better component quality generation from their operations. The utility material, EN19, is a medium-carbon low alloy steel which typically gets applied in the manufacturing of multiple profiled cylindrical machine tool, rail locomotives and motor vehicle component parts, inter alia. Taguchi Full Factorial experimental plan was used to organise the empirical experiments. ANOVA and the main effects plot signal-to-noise ratio optimisation analysis were utilised in the study to establish the influence of process parameters on the response parameters—surface roughness and energy use. The aim was to investigate and determine the correlation of the machining strategy parameters with the outcome of low energy use and quality surface texture of the components as the cutting parameters were varied, and optimised for minimum surface roughness and energy use. Results of the extensive experimental study, produced optimum cutting speed, rake angle variation and feed rate which respectively influence the response parameters positively for energy use minimisation and improved surface quality. Validation experiments confirmed model findings. 展开更多
关键词 MACHINING energy Use ANOVA Sustainable manufacturing Machining Strategy
下载PDF
Periodic energy decomposition analysis for electronic transport studies as a tool for atomic scale device manufacturing
15
作者 Paven Thomas Mathew Fengzhou Fang 《International Journal of Extreme Manufacturing》 2020年第1期164-172,共9页
Atomic scale manufacturing is a necessity of the future to develop atomic scale devices with high precision.A different perspective of the quantum realm,which includes the tunnelling effect,leakage current at the atom... Atomic scale manufacturing is a necessity of the future to develop atomic scale devices with high precision.A different perspective of the quantum realm,which includes the tunnelling effect,leakage current at the atomic-scale,Coulomb blockade and Kondo effect,is inevitable for the fabrication and hence,the mass production of these devices.For these atomic-scale device development,molecular level devices must be fabricated.Proper theoretical studies could be an aid towards the experimental realities.Electronic transport studies are the basis to realise and interpret the problems happening at this minute scale.Keeping these in mind,we present a periodic energy decomposition analysis(pEDA)of two potential candidates for moletronics:phthalocyanines and porphyrins,by placing them over gold substrate cleaved at the(111)plane to study the adsorption and interaction at the interface and then,to study their application as a channel between two electrodes,thereby,providing a link between pEDA and electronic transport studies.pEDA provides information regarding the bond strength and the contribution of electrostatic energy,Pauli’s energy,orbital energy and the orbital interactions.Combining this analysis with electronic transport studies can provide novel directions for atomic/close-toatomic-scale manufacturing(ACSM).Literature survey shows that this is the first work which establishes a link between pEDA and electronic transport studies and a detailed pEDA study on the above stated molecules.The results show that among the molecules studied,porphyrins are more adsorbable over gold substrate and conducting across a molecular junction than phthalocyanines,even though both molecules show a similarity in adsorption and conduction when a terminal thiol linker is attached.A further observation establishes the importance of attractive terms,which includes interaction,orbital and electrostatic energies,in correlating the pEDA study with the transport properties.By progressing this research,further developments could be possible in atomic-scale manufacturing in the future. 展开更多
关键词 PHTHALOCYANINE PORPHYRIN potential energy decomposition analysis potential energy surface scan moletronics ACSM manufacturing III
下载PDF
Effects of heat treatment on microstructure and mechanical properties of Inconel 625 alloy fabricated by wire arc additive manufacturing process 被引量:16
16
作者 Abolfazl SAFARZADE Mahmood SHARIFITABAR Mahdi SHAFIEE AFARANI 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2020年第11期3016-3030,共15页
The microstructure and mechanical properties of Inconel 625 alloy fabricated by wire arc additive manufacturing process were evaluated under as-prepared and heat-treated conditions.A dendritic Ni-based solid solution ... The microstructure and mechanical properties of Inconel 625 alloy fabricated by wire arc additive manufacturing process were evaluated under as-prepared and heat-treated conditions.A dendritic Ni-based solid solution phase along with(Nb,Ti)C carbide,Laves,and δ-Ni3Nb secondary phases were developed in the microstructure of the as-prepared alloy.Solution heat treatment led to the dissolution of Laves and Ni3Nb phases.In addition,dendrites were replaced with large columnar grains.Aging heat treatment resulted in the formation of grain boundary M23C6 carbide and nanometric γ''precipitates.Hardness,yield and tensile strengths,as well as elongation of the as-prepared part,were close to those of the cast alloy and its fracture occurred in a transgranular ductile mode.Solution heat treatment improved hardness and yield strength and declined the elongation,but it did not have a considerable impact on the tensile strength.Furthermore,aging heat treatment caused the tensile properties to deteriorate and changed the fracture to a mixture of transgranular ductile and intergranular brittle mode. 展开更多
关键词 nickel alloys additive manufacturing direct energy deposition heat treatment microstructure
下载PDF
Microstructure and mechanical property of additively manufactured NiTi alloys:A comparison between selective laser melting and directed energy deposition 被引量:11
17
作者 ZHENG Dan LI Rui-di +4 位作者 YUAN Tie-chui XIONG Yi SONG Bo WANG Jia-xing SU Ya-dong 《Journal of Central South University》 SCIE EI CAS CSCD 2021年第4期1028-1042,共15页
NiTi shape memory alloy(SMA)with nominal composition of Ni 50.8 at%and Ti 49.2 at%was additively manufactured(AM)by selective laser melting(SLM)and laser directed energy deposition(DED)for a comparison study,with emph... NiTi shape memory alloy(SMA)with nominal composition of Ni 50.8 at%and Ti 49.2 at%was additively manufactured(AM)by selective laser melting(SLM)and laser directed energy deposition(DED)for a comparison study,with emphasis on its phase composition,microstructure,mechanical property and deformation mechanism.The results show that the yield strength and ductility obtained by SLM are 100 MPa and 8%,respectively,which are remarkably different from DED result with 700 MPa and 2%.The load path of SLM sample presents shape memory effect,corresponding to martensite phase detected by XRD;while the load path of DED presents pseudo-elasticity with austenite phase.In SLM sample,fine grain and hole provide a uniform deformation during tensile test,resulting in a better elongation.Furthermore,the nonequilibrium solidification was studied by a temperature field simulation to understand the difference of the two 3D printing methods.Both temperature gradient G and growth rate R determine the microstructure and phase in the SLM sample and DED sample,which leads to similar grain morphologies because of similar G/R.While higher G×R of SLM leads to a finer grain size in SLM sample,providing enough driving force for martensite transition and subsequently changing texture compared to DED sample. 展开更多
关键词 Ni50.8Ti49.2 shape memory alloy additive manufacturing selective laser melting laser directed energy deposition mechanical properties
下载PDF
Polymer Electrolyte Membrane Fuel Cells (PEMFC) in Automotive Applications: Environmental Relevance of the Manufacturing Stage 被引量:6
18
作者 Daniel Garraín Yolanda Lechón Cristina de la Rúa 《Smart Grid and Renewable Energy》 2011年第2期68-74,共7页
This study presents a state of the art of several studies dealing with the environmental impact assessment of fuel cell (FC) vehicles and the comparison with their conventional fossil-fuelled counterparts, by means of... This study presents a state of the art of several studies dealing with the environmental impact assessment of fuel cell (FC) vehicles and the comparison with their conventional fossil-fuelled counterparts, by means of the Life Cycle As-sessment (LCA) methodology. Results declare that, depending on the systems characteristics, there are numerous envi-ronmental advantages, but also some disadvantages can be expected. In addition, the significance of the manufac-turing process of the FC, more specifically the Polymer Electrolyte Membrane Fuel Cell (PEMFC) type, in terms of environmental impact is presented. Finally, CIEMAT’s role in HYCHAIN European project, consisting of supporting early adopters for hydrogen FCs in the transport sector, is 展开更多
关键词 FUEL CELL (FC) Polymer Electrolyte Membrane FUEL CELL (PEMFC) Life Cycle Assessment (LCA) Green-house Gases (GHG) emissions Global Warming IMPACT CATEGORY energy Resources IMPACT CATEGORY Acidification IMPACT CATEGORY Vehicle manufacturing Phase
下载PDF
Formation mechanism of inherent spatial heterogeneity of microstructure and mechanical properties of NiTi SMA prepared by laser directed energy deposition 被引量:4
19
作者 MengJie Luo Ruidi Li +4 位作者 Dan Zheng JingTao Kang HuiTing Wu ShengHua Deng PengDa Niu 《International Journal of Extreme Manufacturing》 SCIE EI CAS CSCD 2023年第3期548-567,共20页
Ni51Ti49 at.%bulk was additively manufactured by laser-directed energy deposition(DED)to reveal the microstructure evolution,phase distribution,and mechanical properties.It is found that the localized remelting,reheat... Ni51Ti49 at.%bulk was additively manufactured by laser-directed energy deposition(DED)to reveal the microstructure evolution,phase distribution,and mechanical properties.It is found that the localized remelting,reheating,and heat accumulation during DED leads to the spatial heterogeneous distribution of columnar crystal and equiaxed crystal,a gradient distribution of Ni4Ti3 precipitates along the building direction,and preferential formation of Ni4Ti3 precipitates in the columnar zone.The austenite transformation finish temperature(Af)varies from-12.65℃(Z=33 mm)to 60.35℃(Z=10 mm),corresponding to tensile yield strength(σ0.2)changed from 120±30 MPa to 570±20 MPa,and functional properties changed from shape memory effect to superelasticity at room temperature.The sample in the Z=20.4 mm height has the best plasticity of 9.6%and the best recoverable strain of 4.2%.This work provided insights and guidelines for the spatial characterization of DEDed NiTi. 展开更多
关键词 shape memory alloy gradient functional materials laser directed energy deposition spatial heterogeneity additive manufacturing mechanical properties
下载PDF
Direct fabrication of flexible tensile sensors enabled by polariton energy transfer based on graphene nanosheet films 被引量:2
20
作者 Xi Zhang Junchi Ma +7 位作者 Wenhao Huang Jichen Zhang Chaoyang Lyu Yu Zhang Bo Wen Xin Wang Jing Ye Dongfeng Diao 《Nanotechnology and Precision Engineering》 CAS CSCD 2023年第1期1-11,共11页
A fundamental problem in the direct manufacturing of flexible devices is the low melting temperature of flexible substrates,which hinders the development of flexible electronics.Proposed here is an electron-cyclotron-... A fundamental problem in the direct manufacturing of flexible devices is the low melting temperature of flexible substrates,which hinders the development of flexible electronics.Proposed here is an electron-cyclotron-resonance sputtering system that can batch-fabricate devices directly on flexible substrates under a low temperature by virtue of the polariton energy transfer between the plasma and the material.Flexible graphene nanosheet-embedded carbon(F-GNEC)films are manufactured directly on polyimide,polyethylene terephthalate,and polydimethylsiloxane,and how the substrate bias(electron energy),microwave power(plasma flux and energy),and magnetic field(electron flux)affect the nanostructure of the F-GNEC films is investigated,indicating that electron energy and flux contribute to the formation of standing graphene nanosheets in the film.The films have good uniformity of distribution in a large size(17 mm×17 mm),and tensile and angle sensors with a high gauge factor(0.92)and fast response(50 ms)for a machine hand are obtained by virtue of the unique nanostructure of the F-GNEC film.This work sheds light on the quantum manufacturing of carbon sensors and its applications for intelligent machine hands and virtual-reality technology. 展开更多
关键词 Direct flexible fabrication Graphene nanosheets film Polariton energy transfer Flexible sensor Quantum manufacturing
下载PDF
上一页 1 2 42 下一页 到第
使用帮助 返回顶部