Accurate initial soil conditions play a crucial role in simulating soil hydrothermal and surface energy fluxes in land surface process modeling.This study emphasized the influence of the initial soil temperature(ST)an...Accurate initial soil conditions play a crucial role in simulating soil hydrothermal and surface energy fluxes in land surface process modeling.This study emphasized the influence of the initial soil temperature(ST)and soil moisture(SM)conditions on a land surface energy and water simulation in the permafrost region in the Tibetan Plateau(TP)using the Community Land Model version 5.0(CLM5.0).The results indicate that the default initial schemes for ST and SM in CLM5.0 were simplistic,and inaccurately represented the soil characteristics of permafrost in the TP which led to underestimating ST during the freezing period while overestimating ST and underestimating SLW during the thawing period at the XDT site.Applying the long-term spin-up method to obtain initial soil conditions has only led to limited improvement in simulating soil hydrothermal and surface energy fluxes.The modified initial soil schemes proposed in this study comprehensively incorporate the characteristics of permafrost,which coexists with soil liquid water(SLW),and soil ice(SI)when the ST is below freezing temperature,effectively enhancing the accuracy of the simulated soil hydrothermal and surface energy fluxes.Consequently,the modified initial soil schemes greatly improved upon the results achieved through the long-term spin-up method.Three modified initial soil schemes experiments resulted in a 64%,88%,and 77%reduction in the average mean bias error(MBE)of ST,and a 13%,21%,and 19%reduction in the average root-mean-square error(RMSE)of SLW compared to the default simulation results.Also,the average MBE of net radiation was reduced by 7%,22%,and 21%.展开更多
Understanding changes in land surface processes over the past several decades requires knowledge of trends and interannual variability in surface energy fluxes in response to climate change. In our study, the Communit...Understanding changes in land surface processes over the past several decades requires knowledge of trends and interannual variability in surface energy fluxes in response to climate change. In our study, the Community Land Model version 3.5 (CLM3.5), driven by the latest updated hybrid reanalysis-observational surface climate data from Princeton University, is used to obtain global distributions of surface energy fluxes during 1948 to 2000. Based on the climate data and simulation results, long-term trends and interannual variability (IAV) of both climatic variables and surface energy fluxes for this span of 50+ years are derived and analyzed. Regions with strong long-term trends and large IAV for both climatic variables and surface energy fluxes are identified. These analyses reveal seasonal variations in the spatial patterns of climate and surface fluxes; however, spatial patterns in trends and IAV for surface energy fluxes over the past ~50 years do not fully correspond to those for climatic variables, indicating complex responses of land surfaces to changes in the climatic forcings.展开更多
High time resolution measurements of the electrostatic fluctuations and the turbulent particle and energy fluxes have been performed with a Langmuir probe array in the edge plasma in HT-7 tokamak. Bursty behaviour was...High time resolution measurements of the electrostatic fluctuations and the turbulent particle and energy fluxes have been performed with a Langmuir probe array in the edge plasma in HT-7 tokamak. Bursty behaviour was observed in the time resolved turbulent fluxes with positive skewness and large kurtosis. The contribution of the large sporadic bursts to the transport losses were estimated. The analysis shows that the turbulent fluxes have different behaviour in different frequency domains and the probability distribution functions (PDFs) of the particle and energy fluxes present two distinct scaling ranges. All these are essentially consistent with the predictions of the self-organized criticality (SOC) model, though further studies are needed.展开更多
TOPEX/POSEIDON altimeter data from October 1992 to June 2002 are used to calculate the global barotropic M2 tidal currents using long-term tidal harmonic analysis. The tides calculated agree well with ADCP data obtain...TOPEX/POSEIDON altimeter data from October 1992 to June 2002 are used to calculate the global barotropic M2 tidal currents using long-term tidal harmonic analysis. The tides calculated agree well with ADCP data obtained from the South China Sea (SCS). The maximum tide velocities along the semi-major axis and semi-minor axis can be computed from the tidal ellipse. The global distribution of M2 internal tide vertical energy flux from the sea bottom is calculated based on a linear internal wave generation model. The global vertical energy flux of M2 internal tide is 0.96 TW, with 0.36 TW in the Pacific, 0.31 TW in the Atlantic and 0.29 TW in the Indian Ocean, obtained in this study. The total horizontal energy flux of M2 internal tide radiating into the open ocean from the lateral boundaries is 0.13 TW, with 0.06 TW in the Pacific, 0.04TW in the Atlantic, and 0.03 TW in the Indian Ocean. The result shows that the principal lunar semi-diurnal tide Me provides enough energy to maintain the large-scale thermohaline circulation of the ocean.展开更多
The spatial distribution of the energy flux, bottom boundary layer (BBL) energy dissipation, surface elevation amplitude and current magnitude of the major semidiurnal tidal constituents in the Bering Sea are examin...The spatial distribution of the energy flux, bottom boundary layer (BBL) energy dissipation, surface elevation amplitude and current magnitude of the major semidiurnal tidal constituents in the Bering Sea are examined in detail. These distributions are obtained from the results of a three-dimensional numerical simulation model (POM). Compared with observation data from seven stations, the root mean square errors of tidal height are 2.6 cm and 1.2 cm for M2 and N2 respectively, and those of phase-lag are 21.8~ and 15.8~ respectively. The majority of the tidal energy flux off the deep basin is along the shelf edge, although some of this flux crosses the shelf edge, especially in the southeast of the shelf break. The total M2 energy dissipation in the Bering Sea is 30.43 GW, which is about 10 times of that of N2 and $2. The semidiurnal tidal energy enters mainly to the Bering Sea by Samalga Pass, Amukta Pass and Seguam Pass, accounting more than 60% of the total energy entering the Being Sea from the Pacific.展开更多
Based on 3 years (2003-05) of the eddy covariance (EC) observations on degraded grassland and cropland surfaces in a semi-arid area of Tongyu (44°25′N, 122°52′E, 184 m a.s.1.), Northeast China, seaso...Based on 3 years (2003-05) of the eddy covariance (EC) observations on degraded grassland and cropland surfaces in a semi-arid area of Tongyu (44°25′N, 122°52′E, 184 m a.s.1.), Northeast China, seasonal and annual variations of water, energy and CO2 fluxes have been investigated. The soil moisture in the thin soil layer (at 0.05, 0.10 and 0.20 m) clearly indicates the pronounced annual wet-dry cycle; the annual cycle is divided into the wet (growing season) and dry seasons (non-growing season). During the growing season (from May to September), the sensible and latent heat fluxes showed a linear dependence on the global solar radiation. However, in the non-growing season, the latent heat flux was always less than 50 W m^-2, while the available energy was dissipated as sensible, rather than latent heat flux. During the growing season in 2003-05, the daily average sensible and latent heat fluxes were larger on the cropland surface than on the degraded grassland surface. The cropland ecosystem absorbed more CO2 than the degraded grassland ecosystem in the growing season in 2003-05. The total evapotranspiration on the cropland was more than the total precipitation, while the total evapotranspiration on the degraded grassland was almost the same as the total annual precipitation in the growing season. The soil moisture had a good correlation with the rainfall in the growing season. Precipitation in the growing season is an important factor on the water and carbon budget in the semi-arid area.展开更多
The land-atmosphere energy and turbulence exchange is key to understanding land surface processes on the Tibetan Plateau(TP). Using observed data for Aug. 4 to Dec. 3, 2012 from the Bujiao observation point(BJ) of the...The land-atmosphere energy and turbulence exchange is key to understanding land surface processes on the Tibetan Plateau(TP). Using observed data for Aug. 4 to Dec. 3, 2012 from the Bujiao observation point(BJ) of the Nagqu Plateau Climate and Environment Station(NPCE-BJ), different characteristics of the energy flux during the Asian summer monsoon(ASM) season and post-monsoon period were analyzed. This study outlines the impact of the ASM on energy fluxes in the central TP. It also demonstrates that the surface energy closure rate during the ASM season is higher than that of the post-monsoon period. Footprint modeling shows the distribution of data quality assessments(QA) and quality controls(QC) surrounding the observation point. The measured turbulent flux data at the NPCE-BJ site were highly representative of the target land-use type. The target surface contributed more to the fluxes under unstable conditions than under stable conditions. The main wind directions(180° and 210°) with the highest data density showed flux contributions reaching 100%, even under stable conditions. The lowest flux contributions were found in sectors with low data density, e.g., 90.4% in the 360° sector under stable conditions during the ASM season. Lastly, a surface energy water balance(SEWAB) model was used to gap-fill any absent or corrected turbulence data. The potential simulation error was also explored in this study. The Nash-Sutcliffe model efficiency coefficients(NSEs) of the observed fluxes with the SEWAB model runs were 0.78 for sensible heat flux and 0.63 for latent heat flux during the ASM season, but unrealistic values of-0.9 for latent heat flux during the post-monsoon period.展开更多
The Badain Jaran Desert is the second-largest area of shifting sands in China. Our first measurements of the energy components and water vapor fluxes on a megadune using eddy covariance technology were taken from Apri...The Badain Jaran Desert is the second-largest area of shifting sands in China. Our first measurements of the energy components and water vapor fluxes on a megadune using eddy covariance technology were taken from April 2012 to April 2013. The results indicate that the Iongwave and shortwave radiative fluxes exhibited large fluctuations and seasonal dynamics. The total radiative energy loss by Iongwave and shortwave radiation was greater on the megadune than from other underlying surfaces. The radiation partitioning was different in different seasons. The land-atmosphere interaction was primarily represented by the sensible heat flux. The average sensi- ble heat flux (40.1 W/m2) was much larger than the average latent heat flux (14.5 W/m2). Soil heat flux played an important role in the energy balance. The mean actual evaporation was 0.41 mm/d, and the cumulative actual evaporation was approximately 150 mm/a. The water vapor would transport downwardly and appear as dew con- densation water. The amount of precipitation determined the actual evaporation. The actual evaporation was sup- posed to be equal to the precipitation on the megadune and the precipitation was difficult to recharge the ground- water. Our study can provide a foundation for further research on land-atmosphere interactions in this area.展开更多
The turbulent flow over a channel bed roughened by three layers of closely packed spheres with a Reynolds number of Re= 15 000 is investigated using the large eddy simulation(LES) and the double-averaging(DA) meth...The turbulent flow over a channel bed roughened by three layers of closely packed spheres with a Reynolds number of Re= 15 000 is investigated using the large eddy simulation(LES) and the double-averaging(DA) method. The DA velocity is compared with the results of the corresponding laboratory experiments to validate the LES results. The existence of the types of vortex structures is demonstrated by the Q-criterion above the permeable bed. The turbulent kinetic energy(TKE) fluxes and budget are quantified and discussed. The results show that the TKE fluxes are directed downward and downstream near the virtual bed level. In the TKE budget, the form-induced diffusion rate is significant in the vicinity of the crest bed level, and the TKE production rate and the dissipation rate attain their peaks at the crest bed level and decrease sharply below it.展开更多
Based on the measurement of monthly litterfall and their gross calor ic values, the seasonal dynamics of energy return through litterfall were determ ined in a pure and a mixed T. odorum (Tsoongiodendron odorum Chun) ...Based on the measurement of monthly litterfall and their gross calor ic values, the seasonal dynamics of energy return through litterfall were determ ined in a pure and a mixed T. odorum (Tsoongiodendron odorum Chun) forests with Ch inese fir (Cunninghamia lanceolata (Lamb.) Hook.) in Sanming, Fujian Provinc e. Annual ene rgy return through litterfall was estimated as 12.648×10 6J·m -2 for the mixed fo rest, being 4 2% higher than that of the pure forest, and a large proportion of the energy return comprised leaf litter. The conversion efficiency of solar rad i ation energy into litterfall was 0 56% for mixed forest and 0 54% for pure for es t, respectively. The monthly energy flux in litterfall of Chinese fir showed a t hree-apex curve, peaked in March, August and December, respectively, which was s imilar to that in various fractions of leaf, twig, flower and fruit litter. The consistency in monthly patterns among different litter fractions of Chinese fir was attributed to their solid connections all the while. The monthly energy flux in litterfall of T. odorum culminated in January, May and August, the same was true for its leaf and twig litter. However, energy flux in flower litter only oc curred during March to May and that in fruit litter appeared in January and Marc h. The monthly dynamics of energy flux through litterfall of the two forests wer e both determined by their respective litterfall pattern of Chinese fir. Seasona l energy flux in litterfall for both mixed and pure forests followed the sequenc e of spring>winter>summer>autumn, but fluctuations in the former were less disti nct than those in the latter.展开更多
The 3-D ECOMSED ocean model was applied to establish a time-dependent boundary model for Jiaozhou Bay (JZB), in which the operator-splitting technique was used and the ‘dry and wet’ method was introduced. The influe...The 3-D ECOMSED ocean model was applied to establish a time-dependent boundary model for Jiaozhou Bay (JZB), in which the operator-splitting technique was used and the ‘dry and wet’ method was introduced. The influence caused by JZB reclamation on the surface level, residual currents, tidal system and tidal energy of M2 tidal system were predicted and analyzed. The results show that JZB reclamation has slight impact on the M2 tidal system, in which the variation of amplitude and phase is less than 1%.The changes of the currents and residual currents in Qian Bay and near the reclamation areas are greater, but in other areas the changes are smaller, in which the currents have a change of around 1%, while the residual currents change ranges from 1.82%–9.61%. After reclamation, the tidal energy fluxes increase by 2.62%–5.24% inside and outside the JZB mouth, but decrease by 20.21%–87.23% near Qian Bay and the reclamation area.展开更多
Exploring the surface energy exchange between atmosphere and water bodies is essential to gain a quantitative understanding of regional climate change, especially for the lakes in the desert. In this study, measuremen...Exploring the surface energy exchange between atmosphere and water bodies is essential to gain a quantitative understanding of regional climate change, especially for the lakes in the desert. In this study, measurements of energy flux and water vapor were performed over a lake in the Badain Jaran Desert, China from March 2012 to March 2013. The studied lake had about a 2-month frozen period (December and January) and a 10-month open-water period (February-November). Latent heat flux (LE) and sensible heat flux (Hs) acquired using the eddy covariance technique were argued by measurements of long'wave and shortwave radiation. Both fluxes of longwave and shortwave radiation showed seasonal dynamics and daily fluctuations during the study period. The reflected solar radiation was much higher in winter than in other seasons. LE exhibited diurnal and seasonal variations. On a daily scale, LE was low in the morning and peaked in the afternoon. From spring (April) to winter (January), the diurnal amplitude of LE decreased slowly. LE was the dominant heat flux throughout the year and consumed most of the energy from the lake. Generally speaking, LE was mostly affected by changes in the ambient wind speed, while Hs was primarily affected by the product of water-air temperature difference and wind speed. The diurnal LE and Hs were negatively correlated in the open-water period. The variations in Hs and LE over the lake were differed from those on the nearby land surface. The mean evaporation rate on the lake was about 4.0 mm/d over the entire year, and the cumulative annual evaporation rate was 1445 mm/a. The cumulative annual evaporation was 10 times larger than the cumulative annual precipitation. Furthermore, the average evaporation rates over the frozen period and open-water period were approximately 0.6 and 5.0 mm/d, respectively. These results can be used to analyze the water balance and quantify the source of lake water in the Badain Jaran Desert.展开更多
On the basis of the QSCAT/NCEP blended wind data and simple ocean data assimilation (SODA), the wind-induced near-inertial energy flux (NIEF) in the mixed layer of the South China Sea (SCS) is estimated by a sla...On the basis of the QSCAT/NCEP blended wind data and simple ocean data assimilation (SODA), the wind-induced near-inertial energy flux (NIEF) in the mixed layer of the South China Sea (SCS) is estimated by a slab model, and the model results are verified by observational data near the Xisha Islands in the SCS. Then, the spatial and temporal variations of the NIEF in the SCS are analyzed. It is found that, the monthly mean NIEF exhibits obvious spatial and temporal variabilities, i.e., it is large west of Luzon Island all the year, east of the Indo-China Peninsula all the year except in spring, and in the northern SCS from May to Septem- ber. The large monthly mean NIEF in the first two zones may be affected by the large local wind stress curl whilst that in the last zone is probably due to the shallow mixed layer depth. Moreover, the monthly mean NIEF is relatively large in summer and autumn due to the passage of typhoons. The spatial mean NIEF in the mixed layer of the SCS is estimated to be about 1.25 mW/m2 and the total wind energy input from wind is approximately 4.4 GW. Furthermore, the interannual variability of the spatial monthly mean NIEF and the Nifio3.4 index are negatively correlated.展开更多
Previous studies have tended to adopt the quasi-decadal variability of the solar cycle (e.g.sunspot number (SSN) or solar radio flux at 10.7 cm (F10.7) to investigate the effect of solar activity on El Ni(n)o-S...Previous studies have tended to adopt the quasi-decadal variability of the solar cycle (e.g.sunspot number (SSN) or solar radio flux at 10.7 cm (F10.7) to investigate the effect of solar activity on El Ni(n)o-Southern Oscillation (ENSO).As one of the major terrestrial energy sources,the effect of solar wind energy flux in Earth's magnetosphere (Ein) on the climate has not drawn much attention,due to the big challenge associated with its quantitative estimation.Based on a new Ein index estimated by three-dimensional magnetohydrodynamic simulations from a previous study,this study reveals that Ein exhibits both quasi-decadal variability (periodic 11-year) and interannual (2-4 years) variability,which has rarely before been detected by SSN and F10.7.A significant interannual relationship between the annual mean Ein and subsequent early-winter ENSO is further revealed.Following high Ein,the sea level pressure in the subsequent early winter shows significant positive anomalies from Asia southward to the Maritime Continent,and significant negative anomalies over the Southeast and Northeast Pacific,resembling the Southern Oscillation.Meanwhile,significant upper-level anomalous convergence and divergence winds appear over the western and eastern Pacific,which is configured with significant lower-level anomalous divergence and convergence,indicating a weakening of the Walker circulation.Consequently,notable surface easterly wind anomalies prevail over the eastern tropical Pacific,leading to El Ni(n展开更多
The land surface processes of the Noah-MP and Noah models are evaluated over four typical landscapes in the Haihe River Basin(HRB) using in-situ observations. The simulated soil temperature and moisture in the two lan...The land surface processes of the Noah-MP and Noah models are evaluated over four typical landscapes in the Haihe River Basin(HRB) using in-situ observations. The simulated soil temperature and moisture in the two land surface models(LSMs) is consistent with the observation, especially in the rainy season. The models reproduce the mean values and seasonality of the energy fluxes of the croplands, despite the obvious underestimated total evaporation. Noah shows the lower deep soil temperature. The net radiation is well simulated for the diurnal time scale. The daytime latent heat fluxes are always underestimated, while the sensible heat fluxes are overestimated to some degree. Compared with Noah, Noah-MP has improved daily average soil heat flux with diurnal variations. Generally, Noah-MP performs fairly well for different landscapes of the HRB. The simulated cold bias in soil temperature is possibly linked with the parameterized partition of the energy into surface fluxes. Thus, further improvement of these LSMs remains a major challenge.展开更多
Through the experiments and the numerical simulation of temperature field in multi-heatsource synthesis Si C furnace, in order to research the feature point in multi-heat-source synthesis furnace, the variation law of...Through the experiments and the numerical simulation of temperature field in multi-heatsource synthesis Si C furnace, in order to research the feature point in multi-heat-source synthesis furnace, the variation law of heat fl ux was studied and the multi-directional energy fl ow diffusion mechanism was revealed. The results show that, due to the shielding action between the heat-source and the superposition effect of thermal fields, the insulating effect is best in multi-heat-source synthesis furnace. The heat emission effect is good outside the common area between heat-sources, but the heat storage is poor. Compared with the synthesis furnace that heat source is parallelly arranged, the furnace of stereoscopic arrangement has a more obvious heat stacking effect and better heat preservation effect, but the air permeability of heat source connecting regions is worse. In the case with the same ingredients, the resistance to thermal diffusion and mass diffusion is higher in heat source connecting regions.展开更多
Cognitive behaviors are determined by underlying neural networks. Many brain functions, such as learning and memory, have been successfully described by attractor dynamics. For decision making in the brain, a quantita...Cognitive behaviors are determined by underlying neural networks. Many brain functions, such as learning and memory, have been successfully described by attractor dynamics. For decision making in the brain, a quantitative description of global attractor landscapes has not yet been completely given. Here, we developed a theoretical framework to quantify the landscape associated with the steady state probability distributions and associated steady state curl flux, measuring the degree of non-equilibrium through the degree of detailed balance breaking for decision making. We quantified the decision-making processes with optimal paths from the undecided attractor states to the decided attractor states, which are identified as basins of attractions, on the landscape. Both landscape and flux determine the kinetic paths and speed. The kinetics and global stability of decision making are explored by quantifying the landscape topography through the barrier heights and the mean first passage time. Our theoretical predictions are in agreement with experimental observations: more errors occur under time pressure. We quantitatively explored two mechanisms of the speed-accuracy tradeoff with speed emphasis and further uncovered the tradeoffs among speed, accuracy, and energy cost. Our results imply that there is an optimal balance among speed, accuracy, and the energy cost in decision making. We uncovered the possible mechanisms of changes of mind and how mind changes improve performance in decision processes. Our landscape approach can help facilitate an understanding of the underlying physical mechanisms of cognitive processes and identify the key factors in the corresponding neural networks.展开更多
Over the past decades,sea ice in the polar regions has been significantly affecting local and even hemispheric climate through a positive ice albedo feedback mechanism.The role of fast ice,as opposed to drift ice,has ...Over the past decades,sea ice in the polar regions has been significantly affecting local and even hemispheric climate through a positive ice albedo feedback mechanism.The role of fast ice,as opposed to drift ice,has not been well-studied due to its relatively small coverage over the earth.In this paper,the optical properties and surface energy balance of land fast ice in spring are studied using in situ observations in Barrow,Alaska.The results show that the albedo of the fast ice varied between 0.57 and 0.85 while the transmittance increased from 1.3×10-3 to 4.1×10-3 during the observation period.Snowfall and air temperature affected the albedo and absorbance of sea ice,but the transmittance had no obvious relationship with precipitation or snow cover.Net solar shortwave radiation contributes to the surface energy balance with a positive 99.2%of the incident flux,with sensible heat flux for the remaining 0.8%.Meanwhile,the ice surface loses energy through the net longwave radiation by 18.7%of the total emission,while the latent heat flux accounts for only 0.1%.Heat conduction is also an important factor in the overall energy budget of sea ice,contributing 81.2%of the energy loss.Results of the radiative transfer model reveal that the spectral transmittance of the fast ice is determined by the thickness of snow and sea ice as well as the amount of inclusions.As major inclusions,the ice biota and particulates have a significant influence on the magnitude and distribution of the spectral transmittance.Based on the radiative transfer model,concentrations of chlorophyll and particulate in the fast ice are estimated at 5.51 mg/m^(2)and 95.79 g/m^(2),which are typical values in the spring in Barrow.展开更多
By the statistical entropy of the Dirac field of the static spherically symmetric black hole, the result is obtained that the radiation energy flux of the black hole is proportional to the quartic of the temperature o...By the statistical entropy of the Dirac field of the static spherically symmetric black hole, the result is obtained that the radiation energy flux of the black hole is proportional to the quartic of the temperature of its event horizon. That is, the thermal radiation of the black hole always satisfies the generalised Stenfan-Boltzmann law. The derived generalised Stenfan-Boltzmann coefficient is no longer a constant. When the cut-off distance and the thin film thickness are both fixed, it is a proportional coefficient related to the space-time metric near the event horizon and the average radial effusion velocity of the radiation particles from the thin film. Finally, the radiation energy fluxes and the radiation powers of the Schwarzschild black hole and the Reissner-NordstrSm black hole are derived, separately.展开更多
Electron thermal transport is one of the most complex processes in fusionplasmas. It is generally described by a simple thermal diffusivity in transport analyses ofdischarges, but there is evidence of critical gradien...Electron thermal transport is one of the most complex processes in fusionplasmas. It is generally described by a simple thermal diffusivity in transport analyses ofdischarges, but there is evidence of critical gradient effects with moderate stiffness. By analyzingperiodic perturbations to an equilibrium, one canmeasure the variations in electron energy flux andelectron temperature gradient over the perturbation cycle, obtaining the flux as a function ofgradient over the range of parameters generated by the perturbation. Although time-dependenttransport analysis is very sensitive to noise in the input data, averaging over many cycles of aperiodic perturbation can provide data of sufficient quality. The analyses presented here are basedon the ECE temperature data with high spatial and temporal resolution and full profile coverage onDIII-D for sawteeth and modulated ECH heating.展开更多
基金the National Natural Science Foundation of China(Grant No.U20A2081)West Light Foundation of the Chinese Academy of Sciences(Grant No.xbzg-zdsys-202102)the Second Tibetan Plateau Scientific Expedition and Research(STEP)Project(Grant No.2019QZKK0105).
文摘Accurate initial soil conditions play a crucial role in simulating soil hydrothermal and surface energy fluxes in land surface process modeling.This study emphasized the influence of the initial soil temperature(ST)and soil moisture(SM)conditions on a land surface energy and water simulation in the permafrost region in the Tibetan Plateau(TP)using the Community Land Model version 5.0(CLM5.0).The results indicate that the default initial schemes for ST and SM in CLM5.0 were simplistic,and inaccurately represented the soil characteristics of permafrost in the TP which led to underestimating ST during the freezing period while overestimating ST and underestimating SLW during the thawing period at the XDT site.Applying the long-term spin-up method to obtain initial soil conditions has only led to limited improvement in simulating soil hydrothermal and surface energy fluxes.The modified initial soil schemes proposed in this study comprehensively incorporate the characteristics of permafrost,which coexists with soil liquid water(SLW),and soil ice(SI)when the ST is below freezing temperature,effectively enhancing the accuracy of the simulated soil hydrothermal and surface energy fluxes.Consequently,the modified initial soil schemes greatly improved upon the results achieved through the long-term spin-up method.Three modified initial soil schemes experiments resulted in a 64%,88%,and 77%reduction in the average mean bias error(MBE)of ST,and a 13%,21%,and 19%reduction in the average root-mean-square error(RMSE)of SLW compared to the default simulation results.Also,the average MBE of net radiation was reduced by 7%,22%,and 21%.
基金supported inpart by the National Basic Research Program of China(973 program2009CB421402)the NOAA Center for Atmospheric Sciences (NCAS) at Howard University(NA06OAR4810172)
文摘Understanding changes in land surface processes over the past several decades requires knowledge of trends and interannual variability in surface energy fluxes in response to climate change. In our study, the Community Land Model version 3.5 (CLM3.5), driven by the latest updated hybrid reanalysis-observational surface climate data from Princeton University, is used to obtain global distributions of surface energy fluxes during 1948 to 2000. Based on the climate data and simulation results, long-term trends and interannual variability (IAV) of both climatic variables and surface energy fluxes for this span of 50+ years are derived and analyzed. Regions with strong long-term trends and large IAV for both climatic variables and surface energy fluxes are identified. These analyses reveal seasonal variations in the spatial patterns of climate and surface fluxes; however, spatial patterns in trends and IAV for surface energy fluxes over the past ~50 years do not fully correspond to those for climatic variables, indicating complex responses of land surfaces to changes in the climatic forcings.
基金supported by the the Scientific Startup Foundation of Ocean University of China (No.0900-813586)
文摘High time resolution measurements of the electrostatic fluctuations and the turbulent particle and energy fluxes have been performed with a Langmuir probe array in the edge plasma in HT-7 tokamak. Bursty behaviour was observed in the time resolved turbulent fluxes with positive skewness and large kurtosis. The contribution of the large sporadic bursts to the transport losses were estimated. The analysis shows that the turbulent fluxes have different behaviour in different frequency domains and the probability distribution functions (PDFs) of the particle and energy fluxes present two distinct scaling ranges. All these are essentially consistent with the predictions of the self-organized criticality (SOC) model, though further studies are needed.
基金Supported by the National Basic Research Program of China (973 Program, No. 2005CB422303)the International Cooperation Program (No. 2004DFB02700)+1 种基金the National Natural Science Foundation of China (No. 40552002)The TOPEX/POSEIDON data are provided by Physical Oceanography Distributed Active Archive Center (PO DACC)
文摘TOPEX/POSEIDON altimeter data from October 1992 to June 2002 are used to calculate the global barotropic M2 tidal currents using long-term tidal harmonic analysis. The tides calculated agree well with ADCP data obtained from the South China Sea (SCS). The maximum tide velocities along the semi-major axis and semi-minor axis can be computed from the tidal ellipse. The global distribution of M2 internal tide vertical energy flux from the sea bottom is calculated based on a linear internal wave generation model. The global vertical energy flux of M2 internal tide is 0.96 TW, with 0.36 TW in the Pacific, 0.31 TW in the Atlantic and 0.29 TW in the Indian Ocean, obtained in this study. The total horizontal energy flux of M2 internal tide radiating into the open ocean from the lateral boundaries is 0.13 TW, with 0.06 TW in the Pacific, 0.04TW in the Atlantic, and 0.03 TW in the Indian Ocean. The result shows that the principal lunar semi-diurnal tide Me provides enough energy to maintain the large-scale thermohaline circulation of the ocean.
基金Supported by the Outstanding Middle-aged and Young Scientist Foundation in Shandong Province under Grant of No.2008BS06003National High Technology Research and development Program (863 Program) (No.2007AA06A403)National Nature Science Foundation under Grant of No.40706008
文摘The spatial distribution of the energy flux, bottom boundary layer (BBL) energy dissipation, surface elevation amplitude and current magnitude of the major semidiurnal tidal constituents in the Bering Sea are examined in detail. These distributions are obtained from the results of a three-dimensional numerical simulation model (POM). Compared with observation data from seven stations, the root mean square errors of tidal height are 2.6 cm and 1.2 cm for M2 and N2 respectively, and those of phase-lag are 21.8~ and 15.8~ respectively. The majority of the tidal energy flux off the deep basin is along the shelf edge, although some of this flux crosses the shelf edge, especially in the southeast of the shelf break. The total M2 energy dissipation in the Bering Sea is 30.43 GW, which is about 10 times of that of N2 and $2. The semidiurnal tidal energy enters mainly to the Bering Sea by Samalga Pass, Amukta Pass and Seguam Pass, accounting more than 60% of the total energy entering the Being Sea from the Pacific.
基金the National Basic Research Program of China (973 Program, 2006CB500401)
文摘Based on 3 years (2003-05) of the eddy covariance (EC) observations on degraded grassland and cropland surfaces in a semi-arid area of Tongyu (44°25′N, 122°52′E, 184 m a.s.1.), Northeast China, seasonal and annual variations of water, energy and CO2 fluxes have been investigated. The soil moisture in the thin soil layer (at 0.05, 0.10 and 0.20 m) clearly indicates the pronounced annual wet-dry cycle; the annual cycle is divided into the wet (growing season) and dry seasons (non-growing season). During the growing season (from May to September), the sensible and latent heat fluxes showed a linear dependence on the global solar radiation. However, in the non-growing season, the latent heat flux was always less than 50 W m^-2, while the available energy was dissipated as sensible, rather than latent heat flux. During the growing season in 2003-05, the daily average sensible and latent heat fluxes were larger on the cropland surface than on the degraded grassland surface. The cropland ecosystem absorbed more CO2 than the degraded grassland ecosystem in the growing season in 2003-05. The total evapotranspiration on the cropland was more than the total precipitation, while the total evapotranspiration on the degraded grassland was almost the same as the total annual precipitation in the growing season. The soil moisture had a good correlation with the rainfall in the growing season. Precipitation in the growing season is an important factor on the water and carbon budget in the semi-arid area.
基金supported by the National Natural Science Foundation of China (Grant Nos. 91337212, 41175008)Cold and Arid Regions Environmental and Engineering Research Institute Youth Science Technology Service Network initiative (STS)+1 种基金the China Exchange Project (Grant No. 13CDP007)the National Natural Science Foundation of China (Grant Nos. 40825015 and 40675012)
文摘The land-atmosphere energy and turbulence exchange is key to understanding land surface processes on the Tibetan Plateau(TP). Using observed data for Aug. 4 to Dec. 3, 2012 from the Bujiao observation point(BJ) of the Nagqu Plateau Climate and Environment Station(NPCE-BJ), different characteristics of the energy flux during the Asian summer monsoon(ASM) season and post-monsoon period were analyzed. This study outlines the impact of the ASM on energy fluxes in the central TP. It also demonstrates that the surface energy closure rate during the ASM season is higher than that of the post-monsoon period. Footprint modeling shows the distribution of data quality assessments(QA) and quality controls(QC) surrounding the observation point. The measured turbulent flux data at the NPCE-BJ site were highly representative of the target land-use type. The target surface contributed more to the fluxes under unstable conditions than under stable conditions. The main wind directions(180° and 210°) with the highest data density showed flux contributions reaching 100%, even under stable conditions. The lowest flux contributions were found in sectors with low data density, e.g., 90.4% in the 360° sector under stable conditions during the ASM season. Lastly, a surface energy water balance(SEWAB) model was used to gap-fill any absent or corrected turbulence data. The potential simulation error was also explored in this study. The Nash-Sutcliffe model efficiency coefficients(NSEs) of the observed fluxes with the SEWAB model runs were 0.78 for sensible heat flux and 0.63 for latent heat flux during the ASM season, but unrealistic values of-0.9 for latent heat flux during the post-monsoon period.
基金supported by Special Fund for National Environmental Protection Industry Scientific Research in the Public Welfare (201209034)the National Natural Science Foundation of China (41371114)the Fundamental Research Funds for the Central Universities (lzujbky-2-14-275)
文摘The Badain Jaran Desert is the second-largest area of shifting sands in China. Our first measurements of the energy components and water vapor fluxes on a megadune using eddy covariance technology were taken from April 2012 to April 2013. The results indicate that the Iongwave and shortwave radiative fluxes exhibited large fluctuations and seasonal dynamics. The total radiative energy loss by Iongwave and shortwave radiation was greater on the megadune than from other underlying surfaces. The radiation partitioning was different in different seasons. The land-atmosphere interaction was primarily represented by the sensible heat flux. The average sensi- ble heat flux (40.1 W/m2) was much larger than the average latent heat flux (14.5 W/m2). Soil heat flux played an important role in the energy balance. The mean actual evaporation was 0.41 mm/d, and the cumulative actual evaporation was approximately 150 mm/a. The water vapor would transport downwardly and appear as dew con- densation water. The amount of precipitation determined the actual evaporation. The actual evaporation was sup- posed to be equal to the precipitation on the megadune and the precipitation was difficult to recharge the ground- water. Our study can provide a foundation for further research on land-atmosphere interactions in this area.
基金Project supported by the National Natural Science Foun-dation of China(Grant No.11372161,51209230)
文摘The turbulent flow over a channel bed roughened by three layers of closely packed spheres with a Reynolds number of Re= 15 000 is investigated using the large eddy simulation(LES) and the double-averaging(DA) method. The DA velocity is compared with the results of the corresponding laboratory experiments to validate the LES results. The existence of the types of vortex structures is demonstrated by the Q-criterion above the permeable bed. The turbulent kinetic energy(TKE) fluxes and budget are quantified and discussed. The results show that the TKE fluxes are directed downward and downstream near the virtual bed level. In the TKE budget, the form-induced diffusion rate is significant in the vicinity of the crest bed level, and the TKE production rate and the dissipation rate attain their peaks at the crest bed level and decrease sharply below it.
基金SupportedbytheFoundationofPost doctoralResearchof China (2 0 0 0F0 0 4 )
文摘Based on the measurement of monthly litterfall and their gross calor ic values, the seasonal dynamics of energy return through litterfall were determ ined in a pure and a mixed T. odorum (Tsoongiodendron odorum Chun) forests with Ch inese fir (Cunninghamia lanceolata (Lamb.) Hook.) in Sanming, Fujian Provinc e. Annual ene rgy return through litterfall was estimated as 12.648×10 6J·m -2 for the mixed fo rest, being 4 2% higher than that of the pure forest, and a large proportion of the energy return comprised leaf litter. The conversion efficiency of solar rad i ation energy into litterfall was 0 56% for mixed forest and 0 54% for pure for es t, respectively. The monthly energy flux in litterfall of Chinese fir showed a t hree-apex curve, peaked in March, August and December, respectively, which was s imilar to that in various fractions of leaf, twig, flower and fruit litter. The consistency in monthly patterns among different litter fractions of Chinese fir was attributed to their solid connections all the while. The monthly energy flux in litterfall of T. odorum culminated in January, May and August, the same was true for its leaf and twig litter. However, energy flux in flower litter only oc curred during March to May and that in fruit litter appeared in January and Marc h. The monthly dynamics of energy flux through litterfall of the two forests wer e both determined by their respective litterfall pattern of Chinese fir. Seasona l energy flux in litterfall for both mixed and pure forests followed the sequenc e of spring>winter>summer>autumn, but fluctuations in the former were less disti nct than those in the latter.
文摘The 3-D ECOMSED ocean model was applied to establish a time-dependent boundary model for Jiaozhou Bay (JZB), in which the operator-splitting technique was used and the ‘dry and wet’ method was introduced. The influence caused by JZB reclamation on the surface level, residual currents, tidal system and tidal energy of M2 tidal system were predicted and analyzed. The results show that JZB reclamation has slight impact on the M2 tidal system, in which the variation of amplitude and phase is less than 1%.The changes of the currents and residual currents in Qian Bay and near the reclamation areas are greater, but in other areas the changes are smaller, in which the currents have a change of around 1%, while the residual currents change ranges from 1.82%–9.61%. After reclamation, the tidal energy fluxes increase by 2.62%–5.24% inside and outside the JZB mouth, but decrease by 20.21%–87.23% near Qian Bay and the reclamation area.
基金supported by the National Natural Science Foundation of China(41530745)the Central Asia Atmospheric Science Research Fund(CAAS201703)the Fundamental Research Funds for the Central Universities(lzujbky-2016-267)
文摘Exploring the surface energy exchange between atmosphere and water bodies is essential to gain a quantitative understanding of regional climate change, especially for the lakes in the desert. In this study, measurements of energy flux and water vapor were performed over a lake in the Badain Jaran Desert, China from March 2012 to March 2013. The studied lake had about a 2-month frozen period (December and January) and a 10-month open-water period (February-November). Latent heat flux (LE) and sensible heat flux (Hs) acquired using the eddy covariance technique were argued by measurements of long'wave and shortwave radiation. Both fluxes of longwave and shortwave radiation showed seasonal dynamics and daily fluctuations during the study period. The reflected solar radiation was much higher in winter than in other seasons. LE exhibited diurnal and seasonal variations. On a daily scale, LE was low in the morning and peaked in the afternoon. From spring (April) to winter (January), the diurnal amplitude of LE decreased slowly. LE was the dominant heat flux throughout the year and consumed most of the energy from the lake. Generally speaking, LE was mostly affected by changes in the ambient wind speed, while Hs was primarily affected by the product of water-air temperature difference and wind speed. The diurnal LE and Hs were negatively correlated in the open-water period. The variations in Hs and LE over the lake were differed from those on the nearby land surface. The mean evaporation rate on the lake was about 4.0 mm/d over the entire year, and the cumulative annual evaporation rate was 1445 mm/a. The cumulative annual evaporation was 10 times larger than the cumulative annual precipitation. Furthermore, the average evaporation rates over the frozen period and open-water period were approximately 0.6 and 5.0 mm/d, respectively. These results can be used to analyze the water balance and quantify the source of lake water in the Badain Jaran Desert.
基金The Strategic Priority Research Program of the Chinese Academy of Sciences under contract No.XDA11020201the National Basic Research Program of China under contract No.2013CB956101+2 种基金the Knowledge Innovation Program of the Chinese Academy of Sciences under con-tract No.SQ201302the National Science Foundation Council Grant of China under contract Nos 41430964,41406023 and 41025019the Chinese Academy of Sciences/State Administration of Foreign Experts Affairs International Partnership Program for Creative Research Teams and General Research Fund of Hong Kong Research Grants Council under contract No.CUHK402912
文摘On the basis of the QSCAT/NCEP blended wind data and simple ocean data assimilation (SODA), the wind-induced near-inertial energy flux (NIEF) in the mixed layer of the South China Sea (SCS) is estimated by a slab model, and the model results are verified by observational data near the Xisha Islands in the SCS. Then, the spatial and temporal variations of the NIEF in the SCS are analyzed. It is found that, the monthly mean NIEF exhibits obvious spatial and temporal variabilities, i.e., it is large west of Luzon Island all the year, east of the Indo-China Peninsula all the year except in spring, and in the northern SCS from May to Septem- ber. The large monthly mean NIEF in the first two zones may be affected by the large local wind stress curl whilst that in the last zone is probably due to the shallow mixed layer depth. Moreover, the monthly mean NIEF is relatively large in summer and autumn due to the passage of typhoons. The spatial mean NIEF in the mixed layer of the SCS is estimated to be about 1.25 mW/m2 and the total wind energy input from wind is approximately 4.4 GW. Furthermore, the interannual variability of the spatial monthly mean NIEF and the Nifio3.4 index are negatively correlated.
基金supported by the National Key R&D Program of China[grant number 2016YFA0600703]the National Natural Science Foundation of China[grant numbers 41421004,41505073,and 41605059]the Young Talent Support Plan launched by the China Association for Science and Technology[grant number 2016QNRC001]
文摘Previous studies have tended to adopt the quasi-decadal variability of the solar cycle (e.g.sunspot number (SSN) or solar radio flux at 10.7 cm (F10.7) to investigate the effect of solar activity on El Ni(n)o-Southern Oscillation (ENSO).As one of the major terrestrial energy sources,the effect of solar wind energy flux in Earth's magnetosphere (Ein) on the climate has not drawn much attention,due to the big challenge associated with its quantitative estimation.Based on a new Ein index estimated by three-dimensional magnetohydrodynamic simulations from a previous study,this study reveals that Ein exhibits both quasi-decadal variability (periodic 11-year) and interannual (2-4 years) variability,which has rarely before been detected by SSN and F10.7.A significant interannual relationship between the annual mean Ein and subsequent early-winter ENSO is further revealed.Following high Ein,the sea level pressure in the subsequent early winter shows significant positive anomalies from Asia southward to the Maritime Continent,and significant negative anomalies over the Southeast and Northeast Pacific,resembling the Southern Oscillation.Meanwhile,significant upper-level anomalous convergence and divergence winds appear over the western and eastern Pacific,which is configured with significant lower-level anomalous divergence and convergence,indicating a weakening of the Walker circulation.Consequently,notable surface easterly wind anomalies prevail over the eastern tropical Pacific,leading to El Ni(n
基金supported by a project of the National Key Research and Development Program of China (Grant No.2016YFA0602501)a project of the National Natural Science Foundation of China (Grant Nos.41630532 and 41575093)
文摘The land surface processes of the Noah-MP and Noah models are evaluated over four typical landscapes in the Haihe River Basin(HRB) using in-situ observations. The simulated soil temperature and moisture in the two land surface models(LSMs) is consistent with the observation, especially in the rainy season. The models reproduce the mean values and seasonality of the energy fluxes of the croplands, despite the obvious underestimated total evaporation. Noah shows the lower deep soil temperature. The net radiation is well simulated for the diurnal time scale. The daytime latent heat fluxes are always underestimated, while the sensible heat fluxes are overestimated to some degree. Compared with Noah, Noah-MP has improved daily average soil heat flux with diurnal variations. Generally, Noah-MP performs fairly well for different landscapes of the HRB. The simulated cold bias in soil temperature is possibly linked with the parameterized partition of the energy into surface fluxes. Thus, further improvement of these LSMs remains a major challenge.
基金Funded by the National Natural Science Foundation of China(No.51074123)the Scientif ic Research Program Funded by Shaanxi Provincial Education Department(No.12JK0785)+1 种基金the Cooperation Project of Industry,Academe and Research of Yulin City(2011)the Ph D Foundation of Xi’an University of Science and Technology(No.2011QDJ022)
文摘Through the experiments and the numerical simulation of temperature field in multi-heatsource synthesis Si C furnace, in order to research the feature point in multi-heat-source synthesis furnace, the variation law of heat fl ux was studied and the multi-directional energy fl ow diffusion mechanism was revealed. The results show that, due to the shielding action between the heat-source and the superposition effect of thermal fields, the insulating effect is best in multi-heat-source synthesis furnace. The heat emission effect is good outside the common area between heat-sources, but the heat storage is poor. Compared with the synthesis furnace that heat source is parallelly arranged, the furnace of stereoscopic arrangement has a more obvious heat stacking effect and better heat preservation effect, but the air permeability of heat source connecting regions is worse. In the case with the same ingredients, the resistance to thermal diffusion and mass diffusion is higher in heat source connecting regions.
基金Project supported by the National Natural Science Foundation of China(Grant Nos.21190040,91430217,and 11305176)
文摘Cognitive behaviors are determined by underlying neural networks. Many brain functions, such as learning and memory, have been successfully described by attractor dynamics. For decision making in the brain, a quantitative description of global attractor landscapes has not yet been completely given. Here, we developed a theoretical framework to quantify the landscape associated with the steady state probability distributions and associated steady state curl flux, measuring the degree of non-equilibrium through the degree of detailed balance breaking for decision making. We quantified the decision-making processes with optimal paths from the undecided attractor states to the decided attractor states, which are identified as basins of attractions, on the landscape. Both landscape and flux determine the kinetic paths and speed. The kinetics and global stability of decision making are explored by quantifying the landscape topography through the barrier heights and the mean first passage time. Our theoretical predictions are in agreement with experimental observations: more errors occur under time pressure. We quantitatively explored two mechanisms of the speed-accuracy tradeoff with speed emphasis and further uncovered the tradeoffs among speed, accuracy, and energy cost. Our results imply that there is an optimal balance among speed, accuracy, and the energy cost in decision making. We uncovered the possible mechanisms of changes of mind and how mind changes improve performance in decision processes. Our landscape approach can help facilitate an understanding of the underlying physical mechanisms of cognitive processes and identify the key factors in the corresponding neural networks.
基金The National Major Research High Resolution Sea Ice Model Development Program of China under contract No.2018YFA0605903the National Natural Science Foundation of China under contract No.41776192the Fundamental Research Funds for the Central Universities under contract No.202165005。
文摘Over the past decades,sea ice in the polar regions has been significantly affecting local and even hemispheric climate through a positive ice albedo feedback mechanism.The role of fast ice,as opposed to drift ice,has not been well-studied due to its relatively small coverage over the earth.In this paper,the optical properties and surface energy balance of land fast ice in spring are studied using in situ observations in Barrow,Alaska.The results show that the albedo of the fast ice varied between 0.57 and 0.85 while the transmittance increased from 1.3×10-3 to 4.1×10-3 during the observation period.Snowfall and air temperature affected the albedo and absorbance of sea ice,but the transmittance had no obvious relationship with precipitation or snow cover.Net solar shortwave radiation contributes to the surface energy balance with a positive 99.2%of the incident flux,with sensible heat flux for the remaining 0.8%.Meanwhile,the ice surface loses energy through the net longwave radiation by 18.7%of the total emission,while the latent heat flux accounts for only 0.1%.Heat conduction is also an important factor in the overall energy budget of sea ice,contributing 81.2%of the energy loss.Results of the radiative transfer model reveal that the spectral transmittance of the fast ice is determined by the thickness of snow and sea ice as well as the amount of inclusions.As major inclusions,the ice biota and particulates have a significant influence on the magnitude and distribution of the spectral transmittance.Based on the radiative transfer model,concentrations of chlorophyll and particulate in the fast ice are estimated at 5.51 mg/m^(2)and 95.79 g/m^(2),which are typical values in the spring in Barrow.
基金supported by the National Natural Science Foundation of China (Grant No.10773002)the Technology Planning Project of Education Bureau of Shandong Province,China (Grant No.J07WJ49)
文摘By the statistical entropy of the Dirac field of the static spherically symmetric black hole, the result is obtained that the radiation energy flux of the black hole is proportional to the quartic of the temperature of its event horizon. That is, the thermal radiation of the black hole always satisfies the generalised Stenfan-Boltzmann law. The derived generalised Stenfan-Boltzmann coefficient is no longer a constant. When the cut-off distance and the thin film thickness are both fixed, it is a proportional coefficient related to the space-time metric near the event horizon and the average radial effusion velocity of the radiation particles from the thin film. Finally, the radiation energy fluxes and the radiation powers of the Schwarzschild black hole and the Reissner-NordstrSm black hole are derived, separately.
基金the US Department of Energy under grant DE-FG03-97-ER54415
文摘Electron thermal transport is one of the most complex processes in fusionplasmas. It is generally described by a simple thermal diffusivity in transport analyses ofdischarges, but there is evidence of critical gradient effects with moderate stiffness. By analyzingperiodic perturbations to an equilibrium, one canmeasure the variations in electron energy flux andelectron temperature gradient over the perturbation cycle, obtaining the flux as a function ofgradient over the range of parameters generated by the perturbation. Although time-dependenttransport analysis is very sensitive to noise in the input data, averaging over many cycles of aperiodic perturbation can provide data of sufficient quality. The analyses presented here are basedon the ECE temperature data with high spatial and temporal resolution and full profile coverage onDIII-D for sawteeth and modulated ECH heating.