In heterogeneous network with hybrid energy supplies including green energy and on-grid energy, it is imperative to increase the utilization of green energy as well as to improve the utilities of users and networks. A...In heterogeneous network with hybrid energy supplies including green energy and on-grid energy, it is imperative to increase the utilization of green energy as well as to improve the utilities of users and networks. As the difference of hybrid energy source in stability and economy, thus, this paper focuses on the network with hybrid energy source, and design the utility of each user in the hybrid energy source system from the perspective of stability, economy and environment pollution. A dual power allocation algorithm based on Stackelberg game to maximize the utilities of users and networks is proposed. In addition, an iteration method is proposed which enables all players to reach the Stackelberg equilibrium(SE). Simulation results validate that players can reach the SE and the utilities of users and networks can be maximization, and the green energy can be efficiently used.展开更多
The electricity distribution network is experiencing a profound transformation with the concept of the smart grid,providing possibilities for selfish consumers to interact with the distribution system operator(DSO)and...The electricity distribution network is experiencing a profound transformation with the concept of the smart grid,providing possibilities for selfish consumers to interact with the distribution system operator(DSO)and to maximize their individual energy consumption utilities.However,this profitseeking behavior among consumers may violate the network constraints,such as line flows,transformer capacity and bus voltage magnitude limits.Therefore,a network-constrained energy consumption(NCEC)game among active load aggregators(ALAs)is proposed to guarantee the safety of the distribution network.The temporal and spatial constraints of an ALA are both considered,which leads the formulated model to a generalized Nash equilibrium problem(GNEP).By resorting to a well-developed variational inequality(VI)theory,we study the existence of solutions to the NCEC game problem.Subsequently,a two-level distributed algorithm is proposed to find the variational equilibrium(VE),a fair and stable solution to the formulated game model.Finally,the effectiveness of the proposed game model and the efficiency of the distributed algorithm are tested on an IEEE-33 bus system.展开更多
基金supported by the Beijing Natural Science Foundation (4142049)863 project No. 2014AA01A701the Fundamental Research Funds for Central Universities of China No. 2015XS07
文摘In heterogeneous network with hybrid energy supplies including green energy and on-grid energy, it is imperative to increase the utilization of green energy as well as to improve the utilities of users and networks. As the difference of hybrid energy source in stability and economy, thus, this paper focuses on the network with hybrid energy source, and design the utility of each user in the hybrid energy source system from the perspective of stability, economy and environment pollution. A dual power allocation algorithm based on Stackelberg game to maximize the utilities of users and networks is proposed. In addition, an iteration method is proposed which enables all players to reach the Stackelberg equilibrium(SE). Simulation results validate that players can reach the SE and the utilities of users and networks can be maximization, and the green energy can be efficiently used.
基金This work was supported in part by the Science and Technology Project of SGCC“Research on Morphologies and Pathways of Future Power System”。
文摘The electricity distribution network is experiencing a profound transformation with the concept of the smart grid,providing possibilities for selfish consumers to interact with the distribution system operator(DSO)and to maximize their individual energy consumption utilities.However,this profitseeking behavior among consumers may violate the network constraints,such as line flows,transformer capacity and bus voltage magnitude limits.Therefore,a network-constrained energy consumption(NCEC)game among active load aggregators(ALAs)is proposed to guarantee the safety of the distribution network.The temporal and spatial constraints of an ALA are both considered,which leads the formulated model to a generalized Nash equilibrium problem(GNEP).By resorting to a well-developed variational inequality(VI)theory,we study the existence of solutions to the NCEC game problem.Subsequently,a two-level distributed algorithm is proposed to find the variational equilibrium(VE),a fair and stable solution to the formulated game model.Finally,the effectiveness of the proposed game model and the efficiency of the distributed algorithm are tested on an IEEE-33 bus system.