For the porous‐membrane‐based osmotic energy generator,the potential synergistic enhancement mechanism of various key parameters is still controversial,especially because optimizing the trade‐off between permeabili...For the porous‐membrane‐based osmotic energy generator,the potential synergistic enhancement mechanism of various key parameters is still controversial,especially because optimizing the trade‐off between permeability and selectivity is still a challenge.Here,to construct a permeability and selectivity synergistically enhanced osmotic energy generator,the twodimensional porous membranes with tunable charge density are prepared by inserting sulfonated polyether sulfone into graphene oxide.Influences of charge density and pore size on the ion transport are explored,and the ionic behaviors in the channel are calculated by numerical simulations.The mechanism of ion transport in the process is studied in depth,and the fundamental principles of energy conversion are revealed.The results demonstrate that charge density and pore size should be matched to construct the optimal ion channel.This collaborative enhancement strategy of permeability and selectivity has significantly improved the output power in osmotic energy generation;compared to the pure graphene oxide membrane,the composite membrane presents almost 20 times improvement.展开更多
The fluid-solid coupling theory, an interdisciplinary science between hydrodynamics and solid mechanics, is an important tool for response analysis and direct design of structures in naval architecture and ocean engin...The fluid-solid coupling theory, an interdisciplinary science between hydrodynamics and solid mechanics, is an important tool for response analysis and direct design of structures in naval architecture and ocean engineering. By applying the corresponding relations between generalized forces and generalized displacements, convolutions were performed between the basic equations of elasto-dynamics in the primary space and corresponding virtual quantities. The results were integrated and then added algebraically. In light of the fact that body forces and surface forces are both follower forces, the generalized quasi-complementary energy principle with two kinds of variables for an initial value problem is established in non-conservative systems. Using the generalized quasi-complementary energy principle to deal with the fluid-solid coupling problem and to analyze the dynamic response of structures, a method for using two kinds of variables simultaneously for calculation of force and displacement was derived.展开更多
The kinetic energy generation in either the dry or moist atmosphere may be estimated by the same relationships if we introduce the new concept of generalized available potential energy. The largest magnitude of genera...The kinetic energy generation in either the dry or moist atmosphere may be estimated by the same relationships if we introduce the new concept of generalized available potential energy. The largest magnitude of generalized available potential energy and corresponding reference state of either dry or moist atmosphere are calculated in terms of the mitial conditions and entropy variation of the atmosphere. The obtained relationships are applicable for the statically unstable atmosphere as well. The generalized available potential energy associated with reversible processes reaches the maximum with respect to same initial state. While the generation of kinetic energy in irreversible processes is characterized by sudden changes. When the reference state is assumed to be saturated, we may predict the final temperature and moisture fields corresponding to provided initial state and entropy variation.展开更多
The wind energy generation,utilization and its grid penetration in electrical grid are increasing world-wide.The wind generated power is always fluctuating due to its time varying nature and causing stability problem....The wind energy generation,utilization and its grid penetration in electrical grid are increasing world-wide.The wind generated power is always fluctuating due to its time varying nature and causing stability problem.This weak interconnection of wind generating source in the electrical network affects the power quality and reliability.The localized energy storages shall compensate the fluctuating power and support to strengthen the wind generator in the power system.In this paper,it is proposed to control the voltage source inverter (VSI) in current control mode with energy storage,that is,batteries across the dc bus.The generated wind power can be extracted under varying wind speed and stored in the batteries.This energy storage maintains the stiff voltage across the dc bus of the voltage source inverter.The proposed scheme enhances the stability and reliability of the power system and maintains unity power factor.It can also be operated in stand-alone mode in the power system.The power exchange across the wind generation and the load under dynamic situation is feasible while maintaining the power quality norms at the common point of coupling.It strengthens the weak grid in the power system.This control strategy is evaluated on the test system under dynamic condition by using simulation.The results are verified by comparing the performance of controllers.展开更多
The linear two-layer barotropic primitive equations in cylindrical coordinates are used to derive a gen- eralized energy equation, which is subsequently applied to explain the instability of the spiral wave in the mod...The linear two-layer barotropic primitive equations in cylindrical coordinates are used to derive a gen- eralized energy equation, which is subsequently applied to explain the instability of the spiral wave in the model. In the two-layer model, there are not only the generalized barotropic instability and the super high- speed instability, but also some other new instabilities, which fall into the range of the Kelvin-Helmholtz instability and the generalized baroclinic instability, when the upper and lower basic flows are different. They are perhaps the mechanisms of the generation of spiral cloud bands in tropical cyclones as well.展开更多
Based on a barotropic vortex model, generalized energy-conserving equation was derived and twonecessary conditions of basic flow destabilization are gained. These conditions correspond to generalizedbarotropic instabi...Based on a barotropic vortex model, generalized energy-conserving equation was derived and twonecessary conditions of basic flow destabilization are gained. These conditions correspond to generalizedbarotropic instability and super speed instability. They are instabilities of vortex and gravity inertial waverespectively. In order to relate to practical situation, a barotropic vortex was analyzed, the basic flow of which issimilar to lower level basic wind field of tropical cyclones and the maximum wind radius of which is 500 km.The results show that generalized barotropic instability depending upon the radial gradient of relative vorticitycan appear in this vortex. It can be concluded that unstable vortex Rossby wave may appear in barotropic vortex.展开更多
The binding energy and generalized stacking-fault energy (GSFE) are two critical interface properties of two dimensional layered materials, and it is still unclear how neighboring layers affect the interface energy of...The binding energy and generalized stacking-fault energy (GSFE) are two critical interface properties of two dimensional layered materials, and it is still unclear how neighboring layers affect the interface energy of adjacent layers. Here, we investigate the effect of neighboring layers by comparing the differences of binding energy and GSFE between trilayer heterostructures (graphene/graphene/graphene, graphene/graphene/boron nitride,boron nitride/graphene/boron nitride) and bilayer heterostructures (graphene/graphene,graphene/boron nitride) using density functional theory. The binding energy of the adjacent layers changes from -2.3% to 22.55% due to the effect of neighboring layer, with a very small change of the interlayer distance. Neighboring layers also make a change from -2% to 10% change the GSFE, depending on the property of the interface between adjacent layers. In addition, a new simple expression is proven to describe the GSFE landscape of graphene-like structure with high accuracy.展开更多
The genearlized planar fault energies of Al and Al-RE (RE = Sc, Y, Dy, Tb, Nd) alloys have been investigated using first-principles methods combined with a quasiharmonic approach. The stacking fault energies, unstab...The genearlized planar fault energies of Al and Al-RE (RE = Sc, Y, Dy, Tb, Nd) alloys have been investigated using first-principles methods combined with a quasiharmonic approach. The stacking fault energies, unstable stacking fault energies, and unstable twinning energies decrease slightly with increasing temperature. The ductility parameter D, the relative barrier difference Sut, and the twinnability τa of Al and Al-RE alloys at different temperatures have been determined. It is found that the ductilities of Al and Al alloys are nearly the same and the ductilities increase slightly with increasing temperature. The RE alloying elements make twinning more likely and the twinnabilities of Al and Al alloys decrease with increasing temperature.展开更多
We study and derive the energy conditions in generalized non-local gravity, which is the modified theory of general relativity obtained by adding a term m2n-2R□-nRto the Einstein-Hilbert action. Moreover, to obtain s...We study and derive the energy conditions in generalized non-local gravity, which is the modified theory of general relativity obtained by adding a term m2n-2R□-nRto the Einstein-Hilbert action. Moreover, to obtain some insight on the meaning of the energy conditions, we illustrate the evolutions of four energy conditions with the model parameter ε for different n. By analysis we give the constraints on the model parameters ε.展开更多
Micron-scale crack propagation in red-bed soft rocks under hydraulic action is a common cause of engineering disasters due to damage to the hard rockesoft rockewater interface.Previous studies have not provided a theo...Micron-scale crack propagation in red-bed soft rocks under hydraulic action is a common cause of engineering disasters due to damage to the hard rockesoft rockewater interface.Previous studies have not provided a theoretical analysis of the length,inclination angle,and propagation angle of micron-scale cracks,nor have they established appropriate criteria to describe the crack propagation process.The propagation mechanism of micron-scale cracks in red-bed soft rocks under hydraulic action is not yet fully understood,which makes it challenging to prevent engineering disasters in these types of rocks.To address this issue,we have used the existing generalized maximum tangential stress(GMTS)and generalized maximum energy release rate(GMERR)criteria as the basis and introduced parameters related to micron-scale crack propagation and water action.The GMTS and GMERR criteria for micronscale crack propagation in red-bed soft rocks under hydraulic action(abbreviated as the Wmic-GMTS and Wmic-GMERR criteria,respectively)were established to evaluate micron-scale crack propagation in redbed soft rocks under hydraulic action.The influence of the parameters was also described.The process of micron-scale crack propagation under hydraulic action was monitored using uniaxial compression tests(UCTs)based on digital image correlation(DIC)technology.The study analyzed the length,propagation and inclination angles,and mechanical parameters of micron-scale crack propagation to confirm the reliability of the established criteria.The findings suggest that the Wmic-GMTS and Wmic-GMERR criteria are effective in describing the micron-scale crack propagation in red-bed soft rocks under hydraulic action.This study discusses the mechanism of micron-scale crack propagation and its effect on engineering disasters under hydraulic action.It covers topics such as the internal-external weakening of nano-scale particles,lateral propagation of micron-scale cracks,weakening of the mechanical properties of millimeter-scale soft rocks,and resulting interface damage at the engineering scale.The study provides a theoretical basis for the mechanism of disasters in red-bed soft-rock engineering under hydraulic action.展开更多
We chose a definition of heatwaves (HWs) that has ~4-year recurrence frequency at world hot spots. We first examined the 1940-2022 HWs climatology and trends in lifespan, severity, spatial extent, and recurrence frequ...We chose a definition of heatwaves (HWs) that has ~4-year recurrence frequency at world hot spots. We first examined the 1940-2022 HWs climatology and trends in lifespan, severity, spatial extent, and recurrence frequency. HWs are becoming more frequent and more severe for extratropical mid- and low-latitudes. To euphemize HWs, we here propose a novel clean energy-tapping concept that utilizes the available nano-technology, micro-meteorology knowledge of temperature distribution within/without buildings, and radiative properties of earth atmosphere. The key points for a practical electricity generation scheme from HWs are defogging, insulation, and minimizing the absorption of infrared downward radiation at the cold legs of the thermoelectric generators. One sample realization is presented which, through relay with existing photovoltaic devices, provides all-day electricity supply sufficient for providing air conditioning requirement for a residence (~2000-watt throughput). The provision of power to air conditioning systems, usually imposes a significant stress on traditional city power grids during heatwaves.展开更多
Under the background of implementing renewable portfolio standards and the ever-improving tradable green certificate scheme,the increasingly environmentally-friendly preference of power users is leading to changes in ...Under the background of implementing renewable portfolio standards and the ever-improving tradable green certificate scheme,the increasingly environmentally-friendly preference of power users is leading to changes in electricity demand,which,in turn,is driving changes in the decision-making behaviors of various actors in the power supply chain.Based on this,with the goal of pursuing maximum profit,consumer-power-demand functions have been introduced with some consideration of the factors of consumer preference to establish an optimal profit model for each trading subject in non-cooperative states of the power supply chain,under the constraints of meeting renewable energy portfolio standards.Here,the optimal strategy of each trading subject is presented by adopting the reverse induction method.Furthermore,examples are used to analyze factors such as the influence of environmental protection preferences,quota ratios,price substitutions,and market demand as well as the optimal profit of each trading subject in view of providing a reference for the decision-making in the power supply chain trading subjects.展开更多
Refer to the Hamiltonian system, first integrals of the Birkhoffian system can be found by using of the perfect differential method. Through these first integrals, the order of the Birkhoffian system can be reduced. T...Refer to the Hamiltonian system, first integrals of the Birkhoffian system can be found by using of the perfect differential method. Through these first integrals, the order of the Birkhoffian system can be reduced. Then according to the alternate of the coordinate, a kind of new partial differential operator was defined in order to hold the Birkhoff form. The result shows that the Birkhoffian system has generalized energy integrals and cyclic integrals. Furthermore, each integral can reduce the order of equations two degrees.展开更多
The energy selective electron device works among electron reservoirs with different temperatures and chemical potentials.Electrons obey the Fermi-Dirac distribution,and with the help of resonant filters,a part of elec...The energy selective electron device works among electron reservoirs with different temperatures and chemical potentials.Electrons obey the Fermi-Dirac distribution,and with the help of resonant filters,a part of electrons with specific energy levels can tunnel among reservoirs and provide current to an external circuit.Herein,an irreversible three-terminal energy selective electron generator model is proposed.Using statistical mechanics and finite-time-thermodynamics,analytical expressions of power and efficiency are derived,and the optimal performance of the device is investigated.Results show that the central energy level difference of filters,the chemical potential difference of low-temperature reservoirs,the interval of mean-central-energy-level of filters and the mean-chemical-potential of low-temperature reservoirs can be optimized to maximize power and efficiency.On the basis of power and efficiency analyses,performance characteristics under different objective functions,including efficient power and ecological function,are discussed and the corresponding optimal performance regions are obtained.The relationship between the entropy generation rate and the efficiency is investigated,and it is shown that the minimum-entropy-generation-state does not coincide with the maximum-efficiency-state.展开更多
From the Boltzmann's constitutive law of viscoelastic materials and the linear theory of elastic materials with voids, a constitutive model of generalized force fields for viscoelastic solids with voids was given....From the Boltzmann's constitutive law of viscoelastic materials and the linear theory of elastic materials with voids, a constitutive model of generalized force fields for viscoelastic solids with voids was given. By using the variational integral method, the convolution-type functional was given and the corresponding generalized variational principles and potential energy principle of viscoelastic solids with voids were presented. It can be shown that the variational principles correspond to the differential equations and the initial and boundary conditions of viscoelastic body with voids. As an application, a generalized variational principle of viscoelastic Timoshenko beams with damage was obtained which corresponds to the differential equations of generalized motion and the initial and boundary conditions of beams. The variational principles provide a way for solving problems of viscoelastic solids with voids.展开更多
A new concept of pseudo mean wave resistance is introduced to find theoretical mean wave resistances of the precursor soliton generation in two-layer how over a localized topography at near-resonance in this paper. Th...A new concept of pseudo mean wave resistance is introduced to find theoretical mean wave resistances of the precursor soliton generation in two-layer how over a localized topography at near-resonance in this paper. The pseudo mean wave resistance of the precursor soliton generation of two-layer how is determined in terms of the AfKdV equation. From the theoretical results it is shown that the theoretical mean wave resistance is equal to the pseudo mean wave resistance times 1/m(1), where m(1) is the coefficient of the fKdV equation. From the regional distribution of the energy of the precursor soliton generation at the resonant points, it is shown that ratios of the theoretical mean wave resistance and regional mean energy to the total mean energy are invariant constants, i.e. <(E)over circle (1)>/(E) over circle : <(E)over circle (2)>/(E) over circle: <(E)over circle (3)>(E) over circle :< D > /(E) over circle = (1/2) : (-1/2) : 1 : 1, in which <(E)over circle 1>,<(E)over circle (2)> and <(E)over circle (3)> are the mean energy of the generating regions of the precursor solitons, of the depression and of the trailing wavetrain at the resonant points respectively, (E) over circle and < D > are the total energy of the system and the theoretical mean wave resistance at the resonant points. A prediction of the theoretical mean wave resistances of two-layer how over the semicircular topography is carried out in terms of the theoretical results of the present paper. The comparison shows that the theoretical mean wave resistance is in good agreement with the numerical calculation.展开更多
With the vigorous promotion of energy conservation and implementation of clean energy strategies,China's natural gas industry has entered a rapid development phase,and natural gas is playing an increasingly important...With the vigorous promotion of energy conservation and implementation of clean energy strategies,China's natural gas industry has entered a rapid development phase,and natural gas is playing an increasingly important role in China's energy structure.This paper uses a Generalized Weng model to forecast Chinese regional natural gas production,where accuracy and reasonableness compared with other predictions are enhanced by taking remaining estimated recoverable resources as a criterion.The forecast shows that China's natural gas production will maintain a rapid growth with peak gas of 323 billion cubic meters a year coming in 2036;in 2020,natural gas production will surpass that of oil to become a more important source of energy.Natural gas will play an important role in optimizing China's energy consumption structure and will be a strategic replacement of oil.This will require that exploration and development of conventional natural gas is highly valued and its industrial development to be reasonably planned.As well,full use should be made of domestic and international markets.Initiative should also be taken in the exploration and development of unconventional and deepwater gas,which shall form a complement to the development of China's conventional natural gas industry.展开更多
The anomalous flow behavior of γ'-Ni_(3)Al phases at high temperature is closely related to the cross-slip of 1/2<110>{111}super-partial dislocations.Generalized stacking fault energy curves(i.e.,Γ-surface...The anomalous flow behavior of γ'-Ni_(3)Al phases at high temperature is closely related to the cross-slip of 1/2<110>{111}super-partial dislocations.Generalized stacking fault energy curves(i.e.,Γ-surfaces)along the lowest energy path can provide a great deal of information on the nucleation and movement of dislocations.With the first-principles calculation,the interplay between Re and W,Mo,Ta,Ti doped at preferential sites and their synergetic influence on Γ-surfaces and ideal shear strength(τ_(max))in γ'-Ni_(3)Al phases are investigated.Similar to single Re-addition,the Suzuki segregation of W at stacking faults is demonstrated to enable to impede the movement of 1/6<112>{111} Shockley partial dislocations and promote the cross-slip of 1/2<110>{111}super-partial dislocations.With the replacement of a part of Re by W,a decreased γ_(APB)^(111)/γ_(APB)^(001) indicates that the anomalous flow behavior of γ'phases at high temperature is not as excellent as the double Re-addition,but an increasedτmax means that the creep rupture strength of Ni-based single crystal superalloys can be benefited from this replacement to some extent,especially in the co-segregation of Re and W at Al−Al sites.As the interaction between X1_(Al) and X2_(Al) point defects is characterized by an correlation energy function ΔE^(X1_(Al)+X2_(Al))(d),it is found that both strong attraction and strong repulsion are unfavarable for the improvement of yield strengths of γ'phase.展开更多
Al-Mg alloys are considered to have potentials to form twins during deformation because Mg can reduce the intrinsicstacking fault energy?ISFE of Al.Nevertheless,twinning has rarely been found in Al-Mg alloys even subj...Al-Mg alloys are considered to have potentials to form twins during deformation because Mg can reduce the intrinsicstacking fault energy?ISFE of Al.Nevertheless,twinning has rarely been found in Al-Mg alloys even subjected to various severeplastic deformation(SPD)techniques.In order to probe the twinning propensity of Al-Mg alloys,first-principles calculations werecarried out to investigate the effects of Mg and vacancies on the generalized planar fault energy(GPFE)of Al.It is found that bothMg and vacancies exhibit a Suzuki segregation feature to the stacking fault,and have the influence of decreasing the?ISFE of Al.However,?ISFE does not decrease and the twinnability parameterτa of Al does not increase monotonically with increasing Mgconcentration in the alloy.On the basis ofτa evaluated from the calculated GPFE of Al-Mg alloys,we conclude that deformationtwinning is difficult for Al-Mg alloys even with a high content of Mg.Besides,the decrease of?ISFE caused by the introduction ofMg and vacancies is supposed to have the effect of improving the work-hardening rate and facilitating the formation of bandstructures in Al-Mg alloys subjected to SPD.展开更多
We analyze the influences of interstitial atoms on the generalized stacking fault energy (GSFE), strength, and ductility of Ni by first-principles calculations. Surface energies and GSFE curves are calculated for t...We analyze the influences of interstitial atoms on the generalized stacking fault energy (GSFE), strength, and ductility of Ni by first-principles calculations. Surface energies and GSFE curves are calculated for the (112) (111) and / 101) ( 1 1 1) systems. Because of the anisotropy of the single crystal, the addition of interstitials tends to promote the strength of Ni by slipping along the (10T) direction while facilitating plastic deformation by slipping along the (115) direction. There is a different impact on the mechanical behavior of Ni when the interstitials are located in the slip plane. The evaluation of the Rice criterion reveals that the addition of the interstitials H and O increases the brittleness in Ni and promotes the probability of cleavage fracture, while the addition of S and N tends to increase the ductility. Besides, P, H, and S have a negligible effect on the deformation tendency in Ni, while the tendency of partial dislocation is more prominent with the addition of N and O. The addition of interstitial atoms tends to increase the high-energy barrier γmax, thereby the second partial resulting from the dislocation tends to reside and move on to the next layer.展开更多
基金Natural Science Foundation of Jilin Province,Grant/Award Number:YDZJ202101ZYTS002National Natural Science Foundation of China,Grant/Award Number:52003099+1 种基金Capital Construction Fund of Jilin Province,Grant/Award Number:2021C039‐1Fundamental Research Funds for the Central Universities。
文摘For the porous‐membrane‐based osmotic energy generator,the potential synergistic enhancement mechanism of various key parameters is still controversial,especially because optimizing the trade‐off between permeability and selectivity is still a challenge.Here,to construct a permeability and selectivity synergistically enhanced osmotic energy generator,the twodimensional porous membranes with tunable charge density are prepared by inserting sulfonated polyether sulfone into graphene oxide.Influences of charge density and pore size on the ion transport are explored,and the ionic behaviors in the channel are calculated by numerical simulations.The mechanism of ion transport in the process is studied in depth,and the fundamental principles of energy conversion are revealed.The results demonstrate that charge density and pore size should be matched to construct the optimal ion channel.This collaborative enhancement strategy of permeability and selectivity has significantly improved the output power in osmotic energy generation;compared to the pure graphene oxide membrane,the composite membrane presents almost 20 times improvement.
基金Supported by the National Natural Science Foundation under Grant No.10272034the Doctoral Education Foundation under Grant No.20060217020
文摘The fluid-solid coupling theory, an interdisciplinary science between hydrodynamics and solid mechanics, is an important tool for response analysis and direct design of structures in naval architecture and ocean engineering. By applying the corresponding relations between generalized forces and generalized displacements, convolutions were performed between the basic equations of elasto-dynamics in the primary space and corresponding virtual quantities. The results were integrated and then added algebraically. In light of the fact that body forces and surface forces are both follower forces, the generalized quasi-complementary energy principle with two kinds of variables for an initial value problem is established in non-conservative systems. Using the generalized quasi-complementary energy principle to deal with the fluid-solid coupling problem and to analyze the dynamic response of structures, a method for using two kinds of variables simultaneously for calculation of force and displacement was derived.
文摘The kinetic energy generation in either the dry or moist atmosphere may be estimated by the same relationships if we introduce the new concept of generalized available potential energy. The largest magnitude of generalized available potential energy and corresponding reference state of either dry or moist atmosphere are calculated in terms of the mitial conditions and entropy variation of the atmosphere. The obtained relationships are applicable for the statically unstable atmosphere as well. The generalized available potential energy associated with reversible processes reaches the maximum with respect to same initial state. While the generation of kinetic energy in irreversible processes is characterized by sudden changes. When the reference state is assumed to be saturated, we may predict the final temperature and moisture fields corresponding to provided initial state and entropy variation.
文摘The wind energy generation,utilization and its grid penetration in electrical grid are increasing world-wide.The wind generated power is always fluctuating due to its time varying nature and causing stability problem.This weak interconnection of wind generating source in the electrical network affects the power quality and reliability.The localized energy storages shall compensate the fluctuating power and support to strengthen the wind generator in the power system.In this paper,it is proposed to control the voltage source inverter (VSI) in current control mode with energy storage,that is,batteries across the dc bus.The generated wind power can be extracted under varying wind speed and stored in the batteries.This energy storage maintains the stiff voltage across the dc bus of the voltage source inverter.The proposed scheme enhances the stability and reliability of the power system and maintains unity power factor.It can also be operated in stand-alone mode in the power system.The power exchange across the wind generation and the load under dynamic situation is feasible while maintaining the power quality norms at the common point of coupling.It strengthens the weak grid in the power system.This control strategy is evaluated on the test system under dynamic condition by using simulation.The results are verified by comparing the performance of controllers.
基金This work was jointly supported by the National Natural Science Foundation of China under Grant Nos. 40575023 and 40175014.
文摘The linear two-layer barotropic primitive equations in cylindrical coordinates are used to derive a gen- eralized energy equation, which is subsequently applied to explain the instability of the spiral wave in the model. In the two-layer model, there are not only the generalized barotropic instability and the super high- speed instability, but also some other new instabilities, which fall into the range of the Kelvin-Helmholtz instability and the generalized baroclinic instability, when the upper and lower basic flows are different. They are perhaps the mechanisms of the generation of spiral cloud bands in tropical cyclones as well.
基金Research on wave spectrum of Meso-beta-scale system and its application in severe weatherforecast, a project from National Natural Science Foundation of China (40575023)
文摘Based on a barotropic vortex model, generalized energy-conserving equation was derived and twonecessary conditions of basic flow destabilization are gained. These conditions correspond to generalizedbarotropic instability and super speed instability. They are instabilities of vortex and gravity inertial waverespectively. In order to relate to practical situation, a barotropic vortex was analyzed, the basic flow of which issimilar to lower level basic wind field of tropical cyclones and the maximum wind radius of which is 500 km.The results show that generalized barotropic instability depending upon the radial gradient of relative vorticitycan appear in this vortex. It can be concluded that unstable vortex Rossby wave may appear in barotropic vortex.
文摘The binding energy and generalized stacking-fault energy (GSFE) are two critical interface properties of two dimensional layered materials, and it is still unclear how neighboring layers affect the interface energy of adjacent layers. Here, we investigate the effect of neighboring layers by comparing the differences of binding energy and GSFE between trilayer heterostructures (graphene/graphene/graphene, graphene/graphene/boron nitride,boron nitride/graphene/boron nitride) and bilayer heterostructures (graphene/graphene,graphene/boron nitride) using density functional theory. The binding energy of the adjacent layers changes from -2.3% to 22.55% due to the effect of neighboring layer, with a very small change of the interlayer distance. Neighboring layers also make a change from -2% to 10% change the GSFE, depending on the property of the interface between adjacent layers. In addition, a new simple expression is proven to describe the GSFE landscape of graphene-like structure with high accuracy.
基金supported by the National Natural Science Foundation of China(Grant Nos.11104361 and 11304403)the Fundamental Research Funds for the Central Universities,China(Grant No.CQDXWL2012015)
文摘The genearlized planar fault energies of Al and Al-RE (RE = Sc, Y, Dy, Tb, Nd) alloys have been investigated using first-principles methods combined with a quasiharmonic approach. The stacking fault energies, unstable stacking fault energies, and unstable twinning energies decrease slightly with increasing temperature. The ductility parameter D, the relative barrier difference Sut, and the twinnability τa of Al and Al-RE alloys at different temperatures have been determined. It is found that the ductilities of Al and Al alloys are nearly the same and the ductilities increase slightly with increasing temperature. The RE alloying elements make twinning more likely and the twinnabilities of Al and Al alloys decrease with increasing temperature.
基金Supported by the National Natural Science Foundation of China under Grant Nos 11175077 and 11575075the Natural Science Foundation of Liaoning Province under Grant No L201683666
文摘We study and derive the energy conditions in generalized non-local gravity, which is the modified theory of general relativity obtained by adding a term m2n-2R□-nRto the Einstein-Hilbert action. Moreover, to obtain some insight on the meaning of the energy conditions, we illustrate the evolutions of four energy conditions with the model parameter ε for different n. By analysis we give the constraints on the model parameters ε.
基金funded by the National Natural Science Foundation of China(NSFC)(Grant Nos.42293354,42293351,and 42277131).
文摘Micron-scale crack propagation in red-bed soft rocks under hydraulic action is a common cause of engineering disasters due to damage to the hard rockesoft rockewater interface.Previous studies have not provided a theoretical analysis of the length,inclination angle,and propagation angle of micron-scale cracks,nor have they established appropriate criteria to describe the crack propagation process.The propagation mechanism of micron-scale cracks in red-bed soft rocks under hydraulic action is not yet fully understood,which makes it challenging to prevent engineering disasters in these types of rocks.To address this issue,we have used the existing generalized maximum tangential stress(GMTS)and generalized maximum energy release rate(GMERR)criteria as the basis and introduced parameters related to micron-scale crack propagation and water action.The GMTS and GMERR criteria for micronscale crack propagation in red-bed soft rocks under hydraulic action(abbreviated as the Wmic-GMTS and Wmic-GMERR criteria,respectively)were established to evaluate micron-scale crack propagation in redbed soft rocks under hydraulic action.The influence of the parameters was also described.The process of micron-scale crack propagation under hydraulic action was monitored using uniaxial compression tests(UCTs)based on digital image correlation(DIC)technology.The study analyzed the length,propagation and inclination angles,and mechanical parameters of micron-scale crack propagation to confirm the reliability of the established criteria.The findings suggest that the Wmic-GMTS and Wmic-GMERR criteria are effective in describing the micron-scale crack propagation in red-bed soft rocks under hydraulic action.This study discusses the mechanism of micron-scale crack propagation and its effect on engineering disasters under hydraulic action.It covers topics such as the internal-external weakening of nano-scale particles,lateral propagation of micron-scale cracks,weakening of the mechanical properties of millimeter-scale soft rocks,and resulting interface damage at the engineering scale.The study provides a theoretical basis for the mechanism of disasters in red-bed soft-rock engineering under hydraulic action.
文摘We chose a definition of heatwaves (HWs) that has ~4-year recurrence frequency at world hot spots. We first examined the 1940-2022 HWs climatology and trends in lifespan, severity, spatial extent, and recurrence frequency. HWs are becoming more frequent and more severe for extratropical mid- and low-latitudes. To euphemize HWs, we here propose a novel clean energy-tapping concept that utilizes the available nano-technology, micro-meteorology knowledge of temperature distribution within/without buildings, and radiative properties of earth atmosphere. The key points for a practical electricity generation scheme from HWs are defogging, insulation, and minimizing the absorption of infrared downward radiation at the cold legs of the thermoelectric generators. One sample realization is presented which, through relay with existing photovoltaic devices, provides all-day electricity supply sufficient for providing air conditioning requirement for a residence (~2000-watt throughput). The provision of power to air conditioning systems, usually imposes a significant stress on traditional city power grids during heatwaves.
基金supported by Project of Philosophy and Social Science Foundation of Shanghai,China(Grant No.2020BGL011).
文摘Under the background of implementing renewable portfolio standards and the ever-improving tradable green certificate scheme,the increasingly environmentally-friendly preference of power users is leading to changes in electricity demand,which,in turn,is driving changes in the decision-making behaviors of various actors in the power supply chain.Based on this,with the goal of pursuing maximum profit,consumer-power-demand functions have been introduced with some consideration of the factors of consumer preference to establish an optimal profit model for each trading subject in non-cooperative states of the power supply chain,under the constraints of meeting renewable energy portfolio standards.Here,the optimal strategy of each trading subject is presented by adopting the reverse induction method.Furthermore,examples are used to analyze factors such as the influence of environmental protection preferences,quota ratios,price substitutions,and market demand as well as the optimal profit of each trading subject in view of providing a reference for the decision-making in the power supply chain trading subjects.
文摘Refer to the Hamiltonian system, first integrals of the Birkhoffian system can be found by using of the perfect differential method. Through these first integrals, the order of the Birkhoffian system can be reduced. Then according to the alternate of the coordinate, a kind of new partial differential operator was defined in order to hold the Birkhoff form. The result shows that the Birkhoffian system has generalized energy integrals and cyclic integrals. Furthermore, each integral can reduce the order of equations two degrees.
基金This work was supported by the National Natural Science Foundation of China(Grant Nos.51576207 and 51306206)the Hubei Province Natural Science Foundation of China(Grant No.2017CFB498).
文摘The energy selective electron device works among electron reservoirs with different temperatures and chemical potentials.Electrons obey the Fermi-Dirac distribution,and with the help of resonant filters,a part of electrons with specific energy levels can tunnel among reservoirs and provide current to an external circuit.Herein,an irreversible three-terminal energy selective electron generator model is proposed.Using statistical mechanics and finite-time-thermodynamics,analytical expressions of power and efficiency are derived,and the optimal performance of the device is investigated.Results show that the central energy level difference of filters,the chemical potential difference of low-temperature reservoirs,the interval of mean-central-energy-level of filters and the mean-chemical-potential of low-temperature reservoirs can be optimized to maximize power and efficiency.On the basis of power and efficiency analyses,performance characteristics under different objective functions,including efficient power and ecological function,are discussed and the corresponding optimal performance regions are obtained.The relationship between the entropy generation rate and the efficiency is investigated,and it is shown that the minimum-entropy-generation-state does not coincide with the maximum-efficiency-state.
文摘From the Boltzmann's constitutive law of viscoelastic materials and the linear theory of elastic materials with voids, a constitutive model of generalized force fields for viscoelastic solids with voids was given. By using the variational integral method, the convolution-type functional was given and the corresponding generalized variational principles and potential energy principle of viscoelastic solids with voids were presented. It can be shown that the variational principles correspond to the differential equations and the initial and boundary conditions of viscoelastic body with voids. As an application, a generalized variational principle of viscoelastic Timoshenko beams with damage was obtained which corresponds to the differential equations of generalized motion and the initial and boundary conditions of beams. The variational principles provide a way for solving problems of viscoelastic solids with voids.
基金The project supported by the Foundation of The State Education Commission"The Dynamics of Upper Ocean"and the Grants of The Physical Oceanography Laboratory of Ocean University of Qingdao
文摘A new concept of pseudo mean wave resistance is introduced to find theoretical mean wave resistances of the precursor soliton generation in two-layer how over a localized topography at near-resonance in this paper. The pseudo mean wave resistance of the precursor soliton generation of two-layer how is determined in terms of the AfKdV equation. From the theoretical results it is shown that the theoretical mean wave resistance is equal to the pseudo mean wave resistance times 1/m(1), where m(1) is the coefficient of the fKdV equation. From the regional distribution of the energy of the precursor soliton generation at the resonant points, it is shown that ratios of the theoretical mean wave resistance and regional mean energy to the total mean energy are invariant constants, i.e. <(E)over circle (1)>/(E) over circle : <(E)over circle (2)>/(E) over circle: <(E)over circle (3)>(E) over circle :< D > /(E) over circle = (1/2) : (-1/2) : 1 : 1, in which <(E)over circle 1>,<(E)over circle (2)> and <(E)over circle (3)> are the mean energy of the generating regions of the precursor solitons, of the depression and of the trailing wavetrain at the resonant points respectively, (E) over circle and < D > are the total energy of the system and the theoretical mean wave resistance at the resonant points. A prediction of the theoretical mean wave resistances of two-layer how over the semicircular topography is carried out in terms of the theoretical results of the present paper. The comparison shows that the theoretical mean wave resistance is in good agreement with the numerical calculation.
基金the National Social Science Funds of China (13&ZD159)the National Natural Science Foundation of China (71303258, 71373285)+1 种基金MOE (Ministry of Education in China) Project of Humanities and Social Sciences (13YJC630148)Science Foundation of China University of Petroleum, Beijing (ZX20150130) for sponsoring this joint research
文摘With the vigorous promotion of energy conservation and implementation of clean energy strategies,China's natural gas industry has entered a rapid development phase,and natural gas is playing an increasingly important role in China's energy structure.This paper uses a Generalized Weng model to forecast Chinese regional natural gas production,where accuracy and reasonableness compared with other predictions are enhanced by taking remaining estimated recoverable resources as a criterion.The forecast shows that China's natural gas production will maintain a rapid growth with peak gas of 323 billion cubic meters a year coming in 2036;in 2020,natural gas production will surpass that of oil to become a more important source of energy.Natural gas will play an important role in optimizing China's energy consumption structure and will be a strategic replacement of oil.This will require that exploration and development of conventional natural gas is highly valued and its industrial development to be reasonably planned.As well,full use should be made of domestic and international markets.Initiative should also be taken in the exploration and development of unconventional and deepwater gas,which shall form a complement to the development of China's conventional natural gas industry.
基金the financial supports from the National Natural Science Foundation of China(Nos.51871096,52071136).
文摘The anomalous flow behavior of γ'-Ni_(3)Al phases at high temperature is closely related to the cross-slip of 1/2<110>{111}super-partial dislocations.Generalized stacking fault energy curves(i.e.,Γ-surfaces)along the lowest energy path can provide a great deal of information on the nucleation and movement of dislocations.With the first-principles calculation,the interplay between Re and W,Mo,Ta,Ti doped at preferential sites and their synergetic influence on Γ-surfaces and ideal shear strength(τ_(max))in γ'-Ni_(3)Al phases are investigated.Similar to single Re-addition,the Suzuki segregation of W at stacking faults is demonstrated to enable to impede the movement of 1/6<112>{111} Shockley partial dislocations and promote the cross-slip of 1/2<110>{111}super-partial dislocations.With the replacement of a part of Re by W,a decreased γ_(APB)^(111)/γ_(APB)^(001) indicates that the anomalous flow behavior of γ'phases at high temperature is not as excellent as the double Re-addition,but an increasedτmax means that the creep rupture strength of Ni-based single crystal superalloys can be benefited from this replacement to some extent,especially in the co-segregation of Re and W at Al−Al sites.As the interaction between X1_(Al) and X2_(Al) point defects is characterized by an correlation energy function ΔE^(X1_(Al)+X2_(Al))(d),it is found that both strong attraction and strong repulsion are unfavarable for the improvement of yield strengths of γ'phase.
基金Project(222173) supported by the FRINATEK project ‘BENTMAT’ from the Research Council of Norway
文摘Al-Mg alloys are considered to have potentials to form twins during deformation because Mg can reduce the intrinsicstacking fault energy?ISFE of Al.Nevertheless,twinning has rarely been found in Al-Mg alloys even subjected to various severeplastic deformation(SPD)techniques.In order to probe the twinning propensity of Al-Mg alloys,first-principles calculations werecarried out to investigate the effects of Mg and vacancies on the generalized planar fault energy(GPFE)of Al.It is found that bothMg and vacancies exhibit a Suzuki segregation feature to the stacking fault,and have the influence of decreasing the?ISFE of Al.However,?ISFE does not decrease and the twinnability parameterτa of Al does not increase monotonically with increasing Mgconcentration in the alloy.On the basis ofτa evaluated from the calculated GPFE of Al-Mg alloys,we conclude that deformationtwinning is difficult for Al-Mg alloys even with a high content of Mg.Besides,the decrease of?ISFE caused by the introduction ofMg and vacancies is supposed to have the effect of improving the work-hardening rate and facilitating the formation of bandstructures in Al-Mg alloys subjected to SPD.
基金supported by the National Natural Science Foundation of China(Grant No 51371123)the Specialized Research Fund for the Doctoral Program of Higher Education of China(Grant No.2013140211003)+1 种基金the Natural Science Foundation of Shanxi Science Technological Commission,China(Grant No.2014011002)the Scientific and Technological Research Program of Chongqing Municipal Education Commission,China(Grant No.KJ131315)
文摘We analyze the influences of interstitial atoms on the generalized stacking fault energy (GSFE), strength, and ductility of Ni by first-principles calculations. Surface energies and GSFE curves are calculated for the (112) (111) and / 101) ( 1 1 1) systems. Because of the anisotropy of the single crystal, the addition of interstitials tends to promote the strength of Ni by slipping along the (10T) direction while facilitating plastic deformation by slipping along the (115) direction. There is a different impact on the mechanical behavior of Ni when the interstitials are located in the slip plane. The evaluation of the Rice criterion reveals that the addition of the interstitials H and O increases the brittleness in Ni and promotes the probability of cleavage fracture, while the addition of S and N tends to increase the ductility. Besides, P, H, and S have a negligible effect on the deformation tendency in Ni, while the tendency of partial dislocation is more prominent with the addition of N and O. The addition of interstitial atoms tends to increase the high-energy barrier γmax, thereby the second partial resulting from the dislocation tends to reside and move on to the next layer.