In recent years,wearable electrochemical biosensors have received increasing attention,benefiting from the growing demand for continuous monitoring for personalized medicine and point-of-care medical assistance.Incorp...In recent years,wearable electrochemical biosensors have received increasing attention,benefiting from the growing demand for continuous monitoring for personalized medicine and point-of-care medical assistance.Incorporating electrochemical biosensing and corresponding power supply into everyday textiles could be a promising strategy for next-generation non-invasive and comfort interaction mode with healthcare.This review starts with the manufacturing and structural design of electrochemical biosensing textiles and discusses a series of wearable electrochemical biosensing textiles monitoring various biomarkers(e.g.,pH,electrolytes,metabolite,and cytokines)at the molecular level.The fiber-shaped or textile-based solar cells and aqueous batteries as corresponding energy harvesting and storage devices are further introduced as a complete power supply for electrochemical biosensing textiles.Finally,we discuss the challenges and prospects relating to sensing textile systems from wearability,durability,washability,sample collection and analysis,and clinical validation.展开更多
Fiber materials are highly desirable for wearable electronics that are expected to be flexible and stretchable.Compared with rigid and planar electronic devices,fiber-based wearable electronics provide significant adv...Fiber materials are highly desirable for wearable electronics that are expected to be flexible and stretchable.Compared with rigid and planar electronic devices,fiber-based wearable electronics provide significant advantages in terms of flexibility,stretchability and breathability,and they are considered as the pioneers in the new generation of soft wearables.The con-vergence of textile science,electronic engineering and nanotechnology has made it feasible to build electronic functions on fibers and maintain them during wear.Over the last few years,fiber-shaped wearable electronics with desired designability and integration features have been intensively explored and developed.As an indispensable part and cornerstone of flexible wearable devices,fibers are of great significance.Herein,the research progress of advanced fiber materials is reviewed,which mainly includes various material preparations,fabrication technologies and representative studies on different wearable applications.Finally,key challenges and future directions of fiber materials and wearable electronics are examined along with an analysis of possible solutions.展开更多
The smart clothes emerge as a new generation of garments developed in the scientific and industrial communities,gaining increasing attention due to the real-time responses to exterior environments or stimuli.Owing to ...The smart clothes emerge as a new generation of garments developed in the scientific and industrial communities,gaining increasing attention due to the real-time responses to exterior environments or stimuli.Owing to the unique merits of liquid metal(LM)such as excellent fluidity,high conductivity and intrinsic stretchability in ambient environment,LM-based smart textiles are widely applied in chemical sensors,wearable electronics and stretchable devices.This review is dedicated to summarizing different preparation methods and functions of LM-based textiles(LMTs)for smart clothes,which consists of the design principles,the fabrication strategies,the working mechanism of LMTs,and the tremendous applications sorted by the features of LM.Typical methods of the synthesis to build LMTs are divided into two domains classified by spatial arrangement.One strategy is the exterior decoration with LM,while the other is interior encapsulation of LM.Moreover,the primary applications of LMT-based smart clothes have been illustrated through the utilization of the properties of LM matrix.The categorization of LMTs aims to facilitate further investigation and research in the future development of LM-based smart clothes.Finally,future prospects and opportunities of LMT-based smart clothes are discussed in this area.展开更多
基金National Natural Science Foundation of China,Grant/Award Number:52103300Guangdong Basic and Applied Basic Research Foundation,Grant/Award Number:2023A1515010572Shenzhen Science and Technology Program,Grant/Award Numbers:JCYJ20210324132806017,GXWD20220811163904001。
文摘In recent years,wearable electrochemical biosensors have received increasing attention,benefiting from the growing demand for continuous monitoring for personalized medicine and point-of-care medical assistance.Incorporating electrochemical biosensing and corresponding power supply into everyday textiles could be a promising strategy for next-generation non-invasive and comfort interaction mode with healthcare.This review starts with the manufacturing and structural design of electrochemical biosensing textiles and discusses a series of wearable electrochemical biosensing textiles monitoring various biomarkers(e.g.,pH,electrolytes,metabolite,and cytokines)at the molecular level.The fiber-shaped or textile-based solar cells and aqueous batteries as corresponding energy harvesting and storage devices are further introduced as a complete power supply for electrochemical biosensing textiles.Finally,we discuss the challenges and prospects relating to sensing textile systems from wearability,durability,washability,sample collection and analysis,and clinical validation.
基金supported by the Fundamental Research Funds for the Central Universities(2232022D-15).
文摘Fiber materials are highly desirable for wearable electronics that are expected to be flexible and stretchable.Compared with rigid and planar electronic devices,fiber-based wearable electronics provide significant advantages in terms of flexibility,stretchability and breathability,and they are considered as the pioneers in the new generation of soft wearables.The con-vergence of textile science,electronic engineering and nanotechnology has made it feasible to build electronic functions on fibers and maintain them during wear.Over the last few years,fiber-shaped wearable electronics with desired designability and integration features have been intensively explored and developed.As an indispensable part and cornerstone of flexible wearable devices,fibers are of great significance.Herein,the research progress of advanced fiber materials is reviewed,which mainly includes various material preparations,fabrication technologies and representative studies on different wearable applications.Finally,key challenges and future directions of fiber materials and wearable electronics are examined along with an analysis of possible solutions.
基金supported by the National Natural Science Foundation of China(Grant Nos.12072054 and 22201223)Natural Science Foundation of Hubei,China(Grant No.2022CFA023)。
文摘The smart clothes emerge as a new generation of garments developed in the scientific and industrial communities,gaining increasing attention due to the real-time responses to exterior environments or stimuli.Owing to the unique merits of liquid metal(LM)such as excellent fluidity,high conductivity and intrinsic stretchability in ambient environment,LM-based smart textiles are widely applied in chemical sensors,wearable electronics and stretchable devices.This review is dedicated to summarizing different preparation methods and functions of LM-based textiles(LMTs)for smart clothes,which consists of the design principles,the fabrication strategies,the working mechanism of LMTs,and the tremendous applications sorted by the features of LM.Typical methods of the synthesis to build LMTs are divided into two domains classified by spatial arrangement.One strategy is the exterior decoration with LM,while the other is interior encapsulation of LM.Moreover,the primary applications of LMT-based smart clothes have been illustrated through the utilization of the properties of LM matrix.The categorization of LMTs aims to facilitate further investigation and research in the future development of LM-based smart clothes.Finally,future prospects and opportunities of LMT-based smart clothes are discussed in this area.