Portable electronics is usually powered by battery,which is not sustainable not only to the longtime outdoor use but also to our living environment.There is rich kinetic energy in footstep motion during walking,so it ...Portable electronics is usually powered by battery,which is not sustainable not only to the longtime outdoor use but also to our living environment.There is rich kinetic energy in footstep motion during walking,so it is ideal to harvest the kinetic energy from human footstep motion as power source for portable electronic devices.In this paper,a novel mechanism based on dual-oscillating mode is designed to harvest the kinetic energy from footstep motion.The harvester contains two oscillating sub-mechanisms:one is spring-mass oscillator to absorb the vibration from external excitation,i.e.,the footstep motion,and the other is cantilever beam with tip mass for amplifying the vibration.Theoretic analysis shows that the dual-oscillating mechanism can be more effectively harness the foot step motion.The energy conversion sub-mechanism is based on the electromagnetic induction,where the wire coils fixed at the tip end of the cantilever beam serves as the slider and permanent magnets and yoke form the changing magnetic field.Simulation shows that the harvester,with total mass 70 g,can produce about 100 mW of electricity at the walking speed of 2 steps per second.展开更多
In our daily lives,low-frequency kinetic energy primarily manifests as vibrations.However,effective harnessing of lowfrequency kinetic energy remains a formidable challenge.This paper proposes a rope-driven rotor that...In our daily lives,low-frequency kinetic energy primarily manifests as vibrations.However,effective harnessing of lowfrequency kinetic energy remains a formidable challenge.This paper proposes a rope-driven rotor that rotates around an axis and consists of an ultra-high-molecular-weight polyethylene(UHMWPE)wire wrapped around a metal shaft.The rotor can convert ultra-low frequency vibration/linear motion into rapid rotation by pressing the top at low frequencies and driving the rope for a quick release.The harvester can generate up to 36.25 m W power using a 0.1-mm-diameter UHMWPE wire as the rotor when periodically pressed down to 20 mm at a frequency of 1 Hz.A simple power generation floor is assembled,generating 28.58-m W power with a matching load at a frequency of 1.5 Hz.Moreover,the harvester can increase the charging voltage of a 0.47-F supercapacitor from 0 to 6.8 V within 10 min.In addition,the harvester can harvest energy through a light finger press motion,and the energy obtained can also support the continuous operation of multiple electronic devices concurrently.This study introduces an effective method for harvesting ultra-low frequency energy and has great prospects in the field of power generation floor and human movement energy harvesting.展开更多
文中设计了三自由度机械能采集器,将人体随机运动时产生的机械能转换为电能,以便为各种便携式或穿戴式电子装置供电。该采集器由1个球状永磁体和1个外表上置有感应线圈的球状壳体组成。当人体运动时,球状永磁体在球状壳体中作无规则自...文中设计了三自由度机械能采集器,将人体随机运动时产生的机械能转换为电能,以便为各种便携式或穿戴式电子装置供电。该采集器由1个球状永磁体和1个外表上置有感应线圈的球状壳体组成。当人体运动时,球状永磁体在球状壳体中作无规则自由运动运动,引起壳体上线圈的磁通量变化,从而实现磁感应发电。系统研究了在不同人体运动状态下,线圈的匝数、厚度和放置位置,以及球状永磁体与球状壳体的直径比等因素对采集器发电特性的影响。实现了在正常行走状态下产生0.567 m W的发电量,可满足某些可穿戴电子式设备的用电需求。展开更多
Harvesting energy from human movement and converting it into electricity is a promising method to address the issue of sustainable power supply for wearable electronic devices.Using traditional energy harvesters for p...Harvesting energy from human movement and converting it into electricity is a promising method to address the issue of sustainable power supply for wearable electronic devices.Using traditional energy harvesters for practical applications is difficult due to their low output power.In this paper,an energy harvester with high power and efficiency is reported based on the principle of electromagnetic induction.It adopts a tiny compound mechanism comprising symmetrical lever-sector gear,which can amplify the vertical displacement of the human heel of 1.44 times without affecting the flexibility and comfort of human movement.The lever-sector gear and gear acceleration mechanism can achieve high output power from the tiny vertical movements of the heel.The results demonstrated that the average power and energy harvesting efficiency of the device are 1 W and 63%,respectively.Moreover,combining a novel controllable electric switch and energy management circuit allows the energy harvester to be worn by individuals with different weights and functions as a continuous real-time power supply for various electronic devices(mobile phones,smartwatches,etc.).Therefore,this research provides a new approach for the highly efficient harvesting of human motion energy and sustainable power supply of wearable electronics.展开更多
基金supported by Fundamental Research Funds for the Central Universities of China (Grant No. 2011ZM0061)National Natural Science Foundation of China (Grant No. 51105146)
文摘Portable electronics is usually powered by battery,which is not sustainable not only to the longtime outdoor use but also to our living environment.There is rich kinetic energy in footstep motion during walking,so it is ideal to harvest the kinetic energy from human footstep motion as power source for portable electronic devices.In this paper,a novel mechanism based on dual-oscillating mode is designed to harvest the kinetic energy from footstep motion.The harvester contains two oscillating sub-mechanisms:one is spring-mass oscillator to absorb the vibration from external excitation,i.e.,the footstep motion,and the other is cantilever beam with tip mass for amplifying the vibration.Theoretic analysis shows that the dual-oscillating mechanism can be more effectively harness the foot step motion.The energy conversion sub-mechanism is based on the electromagnetic induction,where the wire coils fixed at the tip end of the cantilever beam serves as the slider and permanent magnets and yoke form the changing magnetic field.Simulation shows that the harvester,with total mass 70 g,can produce about 100 mW of electricity at the walking speed of 2 steps per second.
基金supported by the National Natural Science Foundation of China(Grant Nos.62171414,U2341210,52175554,and 52205608)the Fundamental Research Program of Shanxi Province(Grant Nos.20210302123059,and 20210302124610)+1 种基金the Hebei Province Central Guiding Local Science and Technology Development Fund Project(Grant No.236Z4901G)the National Defense Fundamental Research Project。
文摘In our daily lives,low-frequency kinetic energy primarily manifests as vibrations.However,effective harnessing of lowfrequency kinetic energy remains a formidable challenge.This paper proposes a rope-driven rotor that rotates around an axis and consists of an ultra-high-molecular-weight polyethylene(UHMWPE)wire wrapped around a metal shaft.The rotor can convert ultra-low frequency vibration/linear motion into rapid rotation by pressing the top at low frequencies and driving the rope for a quick release.The harvester can generate up to 36.25 m W power using a 0.1-mm-diameter UHMWPE wire as the rotor when periodically pressed down to 20 mm at a frequency of 1 Hz.A simple power generation floor is assembled,generating 28.58-m W power with a matching load at a frequency of 1.5 Hz.Moreover,the harvester can increase the charging voltage of a 0.47-F supercapacitor from 0 to 6.8 V within 10 min.In addition,the harvester can harvest energy through a light finger press motion,and the energy obtained can also support the continuous operation of multiple electronic devices concurrently.This study introduces an effective method for harvesting ultra-low frequency energy and has great prospects in the field of power generation floor and human movement energy harvesting.
文摘文中设计了三自由度机械能采集器,将人体随机运动时产生的机械能转换为电能,以便为各种便携式或穿戴式电子装置供电。该采集器由1个球状永磁体和1个外表上置有感应线圈的球状壳体组成。当人体运动时,球状永磁体在球状壳体中作无规则自由运动运动,引起壳体上线圈的磁通量变化,从而实现磁感应发电。系统研究了在不同人体运动状态下,线圈的匝数、厚度和放置位置,以及球状永磁体与球状壳体的直径比等因素对采集器发电特性的影响。实现了在正常行走状态下产生0.567 m W的发电量,可满足某些可穿戴电子式设备的用电需求。
基金supported by the National Key R&D Program of China (Grant No.2019YFE0120300)the National Natural Science Foundation of China (Grant Nos.62171414,52175554,52205608,62171415 and62001431)+1 种基金the Fundamental Research Program of Shanxi Province (Grant Nos.20210302123059 and 20210302124610)the Program for the Scientific and Technological Innovation Programs of Higher Education Institutions in Shanxi (Grant No.2020L0316)。
文摘Harvesting energy from human movement and converting it into electricity is a promising method to address the issue of sustainable power supply for wearable electronic devices.Using traditional energy harvesters for practical applications is difficult due to their low output power.In this paper,an energy harvester with high power and efficiency is reported based on the principle of electromagnetic induction.It adopts a tiny compound mechanism comprising symmetrical lever-sector gear,which can amplify the vertical displacement of the human heel of 1.44 times without affecting the flexibility and comfort of human movement.The lever-sector gear and gear acceleration mechanism can achieve high output power from the tiny vertical movements of the heel.The results demonstrated that the average power and energy harvesting efficiency of the device are 1 W and 63%,respectively.Moreover,combining a novel controllable electric switch and energy management circuit allows the energy harvester to be worn by individuals with different weights and functions as a continuous real-time power supply for various electronic devices(mobile phones,smartwatches,etc.).Therefore,this research provides a new approach for the highly efficient harvesting of human motion energy and sustainable power supply of wearable electronics.
基金supported by the National Natural Science Foundation of China(21975132 and 21991143)the Fundamental Research Funds for the Central Universities(63196006)the PhD Candidate Research Innovation Fund of the School of Materials Science and Engineering,Nankai University。