The new energy vehicle plays a crucial role in green transportation,and the energy management strategy of hybrid power systems is essential for ensuring energy-efficient driving.This paper presents a state-of-the-art ...The new energy vehicle plays a crucial role in green transportation,and the energy management strategy of hybrid power systems is essential for ensuring energy-efficient driving.This paper presents a state-of-the-art survey and review of reinforcement learning-based energy management strategies for hybrid power systems.Additionally,it envisions the outlook for autonomous intelligent hybrid electric vehicles,with reinforcement learning as the foundational technology.First of all,to provide a macro view of historical development,the brief history of deep learning,reinforcement learning,and deep reinforcement learning is presented in the form of a timeline.Then,the comprehensive survey and review are conducted by collecting papers from mainstream academic databases.Enumerating most of the contributions based on three main directions—algorithm innovation,powertrain innovation,and environment innovation—provides an objective review of the research status.Finally,to advance the application of reinforcement learning in autonomous intelligent hybrid electric vehicles,future research plans positioned as“Alpha HEV”are envisioned,integrating Autopilot and energy-saving control.展开更多
Energy management is an inspiring domain in developing of renewable energy sources.However,the growth of decentralized energy production is revealing an increased complexity for power grid managers,inferring more qual...Energy management is an inspiring domain in developing of renewable energy sources.However,the growth of decentralized energy production is revealing an increased complexity for power grid managers,inferring more quality and reliability to regulate electricity flows and less imbalance between electricity production and demand.The major objective of an energy management system is to achieve optimum energy procurement and utilization throughout the organization,minimize energy costs without affecting production,and minimize environmental effects.Modern energy management is an essential and complex subject because of the excessive consumption in residential buildings,which necessitates energy optimization and increased user comfort.To address the issue of energy management,many researchers have developed various frameworks;while the objective of each framework was to sustain a balance between user comfort and energy consumption,this problem hasn’t been fully solved because of how difficult it is to solve it.An inclusive and Intelligent Energy Management System(IEMS)aims to provide overall energy efficiency regarding increased power generation,increase flexibility,increase renewable generation systems,improve energy consumption,reduce carbon dioxide emissions,improve stability,and reduce energy costs.Machine Learning(ML)is an emerging approach that may be beneficial to predict energy efficiency in a better way with the assistance of the Internet of Energy(IoE)network.The IoE network is playing a vital role in the energy sector for collecting effective data and usage,resulting in smart resource management.In this research work,an IEMS is proposed for Smart Cities(SC)using the ML technique to better resolve the energy management problem.The proposed system minimized the energy consumption with its intelligent nature and provided better outcomes than the previous approaches in terms of 92.11% accuracy,and 7.89% miss-rate.展开更多
This article focuses on the challenges ofmodeling energy supply systems for buildings,encompassing both methods and tools for simulating thermal regimes and engineering systems within buildings.Enhancing the comfort o...This article focuses on the challenges ofmodeling energy supply systems for buildings,encompassing both methods and tools for simulating thermal regimes and engineering systems within buildings.Enhancing the comfort of living or working in buildings often necessitates increased consumption of energy and material,such as for thermal upgrades,which consequently incurs additional economic costs.It is crucial to acknowledge that such improvements do not always lead to a decrease in total pollutant emissions,considering emissions across all stages of production and usage of energy and materials aimed at boosting energy efficiency and comfort in buildings.In addition,it explores the methods and mechanisms for modeling the operating modes of electric boilers used to collectively improve energy efficiency and indoor climatic conditions.Using the developed mathematical models,the study examines the dynamic states of building energy supply systems and provides recommendations for improving their efficiency.These dynamic models are executed in software environments such as MATLAB/Simscape and Python,where the component detailing schemes for various types of controllers are demonstrated.Additionally,controllers based on reinforcement learning(RL)displayed more adaptive load level management.These RL-based controllers can lower instantaneous power usage by up to 35%,reduce absolute deviations from a comfortable temperature nearly by half,and cut down energy consumption by approximately 1%while maintaining comfort.When the energy source produces a constant energy amount,the RL-based heat controllermore effectively maintains the temperature within the set range,preventing overheating.In conclusion,the introduced energydynamic building model and its software implementation offer a versatile tool for researchers,enabling the simulation of various energy supply systems to achieve optimal energy efficiency and indoor climate control in buildings.展开更多
Hydrocarbons,carbon monoxide and other pollutants from the transportation sector harm human health in many ways.Fuel cell(FC)has been evolving rapidly over the past two decades due to its efficient mechanism to transf...Hydrocarbons,carbon monoxide and other pollutants from the transportation sector harm human health in many ways.Fuel cell(FC)has been evolving rapidly over the past two decades due to its efficient mechanism to transform the chemical energy in hydrogen-rich compounds into electrical energy.The main drawback of the standalone FC is its slow dynamic response and its inability to supply rapid variations in the load demand.Therefore,adding energy storage systems is necessary.However,to manage and distribute the power-sharing among the hybrid proton exchange membrane(PEM)fuel cell(FC),battery storage(BS),and supercapacitor(SC),an energy management strategy(EMS)is essential.In this research work,an optimal EMS based on a spotted hyena optimizer(SHO)for hybrid PEM fuel cell/BS/SC is proposed.The main goal of an EMS is to improve the performance of hybrid FC/BS/SC and to reduce the amount of hydrogen consumption.To prove the superiority of the SHO method,the obtained results are compared with the chimp optimizer(CO),the artificial ecosystem-based optimizer(AEO),the seagull optimization algorithm(SOA),the sooty tern optimization algorithm(STOA),and the coyote optimization algorithm(COA).Two main metrics are used as a benchmark for the comparison:the minimum consumed hydrogen and the efficiency of the system.The main findings confirm that the minimum amount of hydrogen consumption and maximum efficiency are achieved by the proposed SHO based EMS.展开更多
Plug-in Hybrid Electric Vehicles(PHEVs)represent an innovative breed of transportation,harnessing diverse power sources for enhanced performance.Energy management strategies(EMSs)that coordinate and control different ...Plug-in Hybrid Electric Vehicles(PHEVs)represent an innovative breed of transportation,harnessing diverse power sources for enhanced performance.Energy management strategies(EMSs)that coordinate and control different energy sources is a critical component of PHEV control technology,directly impacting overall vehicle performance.This study proposes an improved deep reinforcement learning(DRL)-based EMSthat optimizes realtime energy allocation and coordinates the operation of multiple power sources.Conventional DRL algorithms struggle to effectively explore all possible state-action combinations within high-dimensional state and action spaces.They often fail to strike an optimal balance between exploration and exploitation,and their assumption of a static environment limits their ability to adapt to changing conditions.Moreover,these algorithms suffer from low sample efficiency.Collectively,these factors contribute to convergence difficulties,low learning efficiency,and instability.To address these challenges,the Deep Deterministic Policy Gradient(DDPG)algorithm is enhanced using entropy regularization and a summation tree-based Prioritized Experience Replay(PER)method,aiming to improve exploration performance and learning efficiency from experience samples.Additionally,the correspondingMarkovDecision Process(MDP)is established.Finally,an EMSbased on the improvedDRLmodel is presented.Comparative simulation experiments are conducted against rule-based,optimization-based,andDRL-based EMSs.The proposed strategy exhibitsminimal deviation fromthe optimal solution obtained by the dynamic programming(DP)strategy that requires global information.In the typical driving scenarios based onWorld Light Vehicle Test Cycle(WLTC)and New European Driving Cycle(NEDC),the proposed method achieved a fuel consumption of 2698.65 g and an Equivalent Fuel Consumption(EFC)of 2696.77 g.Compared to the DP strategy baseline,the proposed method improved the fuel efficiency variances(FEV)by 18.13%,15.1%,and 8.37%over the Deep QNetwork(DQN),Double DRL(DDRL),and original DDPG methods,respectively.The observational outcomes demonstrate that the proposed EMS based on improved DRL framework possesses good real-time performance,stability,and reliability,effectively optimizing vehicle economy and fuel consumption.展开更多
In the era of an energy revolution,grid decentralization has emerged as a viable solution to meet the increasing global energy demand by incorporating renewables at the distributed level.Microgrids are considered a dr...In the era of an energy revolution,grid decentralization has emerged as a viable solution to meet the increasing global energy demand by incorporating renewables at the distributed level.Microgrids are considered a driving component for accelerating grid decentralization.To optimally utilize the available resources and address potential challenges,there is a need to have an intelligent and reliable energy management system(EMS)for the microgrid.The artificial intelligence field has the potential to address the problems in EMS and can provide resilient,efficient,reliable,and scalable solutions.This paper presents an overview of existing conventional and AI-based techniques for energy management systems in microgrids.We analyze EMS methods for centralized,decentralized,and distributed microgrids separately.Then,we summarize machine learning techniques such as ANNs,federated learning,LSTMs,RNNs,and reinforcement learning for EMS objectives such as economic dispatch,optimal power flow,and scheduling.With the incorporation of AI,microgrids can achieve greater performance efficiency and more reliability for managing a large number of energy resources.However,challenges such as data privacy,security,scalability,explainability,etc.,need to be addressed.To conclude,the authors state the possible future research directions to explore AI-based EMS's potential in real-world applications.展开更多
The plug-in hybrid vehicles(PHEV)technology can effectively address the issues of poor dynamics and higher energy consumption commonly found in traditional mining dump trucks.Meanwhile,plug-in hybrid electric trucks c...The plug-in hybrid vehicles(PHEV)technology can effectively address the issues of poor dynamics and higher energy consumption commonly found in traditional mining dump trucks.Meanwhile,plug-in hybrid electric trucks can achieve excellent fuel economy through efficient energy management strategies(EMS).Therefore,a series hybrid system is constructed based on a 100-ton mining dump truck in this paper.And inspired by the dynamic programming(DP)algorithm,a predictive equivalent consumption minimization strategy(P-ECMS)based on the DP optimization result is proposed.Based on the optimal control manifold and the SOC reference trajectory obtained by the DP algorithm,the P-ECMS strategy performs real-time stage parameter optimization to obtain the optimal equivalent factor(EF).Finally,applying the equivalent consumption minimization strategy(ECMS)realizes real-time control.The simulation results show that the equivalent fuel consumption of the P-ECMS strategy under the experimentally collected mining cycle conditions is 150.8 L/100 km,which is 10.9%less than that of the common CDCS strategy(169.3 L/100 km),and achieves 99.47%of the fuel saving effect of the DP strategy(150 L/100 km).展开更多
This paper presents the design and implementation of an energy management system (EMS) with wavelet transform and fuzzy control for a residential micro-grid. The hybrid system in this paper consists of a wind turbin...This paper presents the design and implementation of an energy management system (EMS) with wavelet transform and fuzzy control for a residential micro-grid. The hybrid system in this paper consists of a wind turbine generator, photovoltaic (PV) panels, an electric vehicle (EV), and a super capacitor (SC), which is able to connect or disconnect to the main grid. The control strategy is responsible for compensating the difference between the generated power by the wind and solar generators and the demanded power by the loads. Wavelet transform decomposes the power difference into a smoothed component and a fast fluctuated component. The command approach used for fuzzy logic rules considers the state of charging (SOC) of EV, renewable production, and the load demand as parameters. Furthermore, the command rules are developed in order to ensure a reliable grid when taking into account the EV battery protection to decide the output power of the EV. The model of the hybrid system is developed in detail under Matlab/Simulink software environment.展开更多
Regarding the problem of the short driving distance of pure electric vehicles,a battery,super-capacitor,and DC/DC converter are combined to form a hybrid energy storage system(HESS).A fuzzy adaptive filtering-based en...Regarding the problem of the short driving distance of pure electric vehicles,a battery,super-capacitor,and DC/DC converter are combined to form a hybrid energy storage system(HESS).A fuzzy adaptive filtering-based energy management strategy(FAFBEMS)is proposed to allocate the required power of the vehicle.Firstly,the state of charge(SOC)of the super-capacitor is limited according to the driving/braking mode of the vehicle to ensure that it is in a suitable working state,and fuzzy rules are designed to adaptively adjust the filtering time constant,to realize reasonable power allocation.Then,the positive and negative power are determined,and the average power of driving/braking is calculated so as to limit the power amplitude to protect the battery.To verify the proposed FAFBEMS strategy for HESS,simulations are performed under the UDDS(Urban Dynamometer Driving Schedule)driving cycle.The results show that the FAFBEMS strategy can effectively reduce the current amplitude of the battery,and the final SOC of the battery and super-capacitor is optimized to varying degrees.The energy consumption is 7.8%less than that of the rule-based energy management strategy,10.9%less than that of the fuzzy control energy management strategy,and 13.1%less than that of the filtering-based energy management strategy,which verifies the effectiveness of the FAFBEMS strategy.展开更多
Building Energy Management Systems(BEMS)are computer-based systems that aid in managing,controlling,and monitoring the building technical services and energy consumption by equipment used in the building.The effective...Building Energy Management Systems(BEMS)are computer-based systems that aid in managing,controlling,and monitoring the building technical services and energy consumption by equipment used in the building.The effectiveness of BEMS is dependent upon numerous factors,among which the operational characteristics of the building and the BEMS control parameters also play an essential role.This research develops a user-driven simulation tool where users can input the building parameters and BEMS controls to determine the effectiveness of their BEMS.The simulation tool gives the user the flexibility to understand the potential energy savings by employing specific BEMS control and help in making intelligent decisions.The simulation is developed using Visual Basic Application(VBA)in Microsoft Excel,based on discrete-event Monte Carlo Simulation(MCS).The simulation works by initially calculating the energy required for space cooling and heating based on current building parameters input by the user in the model.Further,during the second simulation,the user selects all the BEMS controls and improved building envelope to determine the energy required for space cooling and heating during that case.The model compares the energy consumption from the first simulation and the second simulation.Then the simulation model will provide the rating of the effectiveness of BEMS on a continuous scale of 1 to 5(1 being poor effectiveness and 5 being excellent effectiveness of BEMS).This work is intended to facilitate building owner/energy managers to analyze the building energy performance concerning the efficacy of their energy management system.展开更多
Given the strategic importance of energy and air pollution in the today world and due to the fact that the maritime transport system is one of the main sources of energy consumption and emissions in the environment, p...Given the strategic importance of energy and air pollution in the today world and due to the fact that the maritime transport system is one of the main sources of energy consumption and emissions in the environment, particularly contamination of water, so in recent years, fuel consumption and emissions reduction in the maritime transport industry has received considerable attention. Thus, in this paper, a new method is provided for typical boat hybridization, so by adding an electric motor and battery to boat power transmission system, dynamic performance will improve fuel consumption and emissions reduces. For this purpose, power transmission system elements are modelled and boat function is evaluated in real terms of movement by defining energy management strategy between power sources. The simulation results show that boat hybridization considerably reduces fuel consumption and emissions.展开更多
The flux-modulated compound-structure permanent magnet synchronous machine (CS-PMSM), composed of a brushless double rotor machine (DRM) and a conventional permanent magnet synchronous machine (PMSM), is a power split...The flux-modulated compound-structure permanent magnet synchronous machine (CS-PMSM), composed of a brushless double rotor machine (DRM) and a conventional permanent magnet synchronous machine (PMSM), is a power split device for plug-in hybrid electric vehicles. In this paper, its operating principle and mathematical model are introduced. A modified current controller with decoupled state feedback is proposed and verified. The system control strategy is simulated in Matlab, and the feasibility of the control system is proven. To improve fuel economy, an energy management strategy based on fuzzy logic controller is proposed and evaluated by the Urban Dynamometer Driving Schedule (UDDS) drive cycle. The results show that the total energy consumption is similar to that of Prius 2012.展开更多
Home energy management systems (HEMs) are used to provide comfortable life for consumers as well as to save energy. An essential component of HEMs is a home area network (HAN) that is used to remotely control the ...Home energy management systems (HEMs) are used to provide comfortable life for consumers as well as to save energy. An essential component of HEMs is a home area network (HAN) that is used to remotely control the electric devices at homes and buildings. Although HAN prices have dropped in ~ecent years but they are still expensive enough to prohibit a mass scale deployments. In this paper, a very low cost alternative to the expensive HANs is presented. We have applied a combination of non-intrusive load monitoring (NILM) and very low cost one-way HAN to develop a HEM. By using NILM and machine learning algorithms we find the status of devices and their energy consumption from a central meter and communicate with devices through the one-way HAN. The evaluations show that the proposed machine learning algorithm for NILM achieves up to 99% accuracy in certain cases. On the other hand our radio frequency (RF)-based one-way HAN achieves a range of 80 feet in all settings.展开更多
Recent advancements of the intelligent transportation system(ITS)provide an effective way of improving the overall efficiency of the energy management strategy(EMSs)for autonomous vehicles(AVs).The use of AVs possesse...Recent advancements of the intelligent transportation system(ITS)provide an effective way of improving the overall efficiency of the energy management strategy(EMSs)for autonomous vehicles(AVs).The use of AVs possesses many advantages such as congestion control,accident prevention,and etc.However,energy management and traffic flow prediction(TFP)still remains a challenging problem in AVs.The complexity and uncertainties of driving situations adequately affect the outcome of the designed EMSs.In this view,this paper presents novel sustainable energy management with traffic flow prediction strategy(SEM-TPS)for AVs.The SEM-TPS technique applies type II fuzzy logic system(T2FLS)energy management scheme to accomplish the desired engine torque based on distinct parameters.In addition,the membership functions of the T2FLS scheme are chosen optimally using the barnacles mating optimizer(BMO).For accurate TFP,the bidirectional gated recurrent neural network(Bi-GRNN)model is used in AVs.A comprehensive experimental validation process is performed and the results are inspected with respect to several evaluation metrics.The experimental outcomes highlighted the supreme performance of the SEM-TPS technique over the recent state of art approaches.展开更多
In the context of both the Virtual Power Plant (VPP) and microgrid(MG), the Energy Management System (EMS) is a key decision-maker forintegrating Distributed renewable Energy Resources (DERs) efficiently. TheEMS is re...In the context of both the Virtual Power Plant (VPP) and microgrid(MG), the Energy Management System (EMS) is a key decision-maker forintegrating Distributed renewable Energy Resources (DERs) efficiently. TheEMS is regarded as a strong enabler of providing the optimized schedulingcontrol in operation and management of usage of disperse DERs and RenewableEnergy reSources (RES) such as a small-size wind-turbine (WT) andphotovoltaic (PV) energies. The main objective to be pursued by the EMSis the minimization of the overall operating cost of the MG integrated VPPnetwork. However, the minimization of the power peaks is a new objective andopen issue to a well-functional EMS, along with the maximization of profitin the energy market. Thus, both objectives have to be taken into accountat the same time. Thus, this paper proposes the EMS application incorporatingpower offering strategy applying a nature-inspired algorithm such asParticle Swarm Optimization (PSO) algorithm, in order to find the optimalsolution of the objective function in the context of the overall operating cost,the coordination of DERs, and the energy losses in a MG integrated VPPnetwork. For a fair DERs coordination with minimized power fluctuationsin the power flow, the power offering strategies with an active power controland re-distribution are proposed. Simulation results show that the proposedMG integrated VPP model with PSO-based EMS employing EgalitarianreDistribution (ED) power offering strategy is most feasible option for theoverall operating cost of VPP revenue. The total operating cost of the proposedEMS with ED strategy is 40.98$ compared to 432.8$ of MGs only withoutEMS. It is concluded that each MGs in the proposed VPP model intelligentlyparticipates in energy trading market compliant with the objective function,to minimize the overall cost and the power fluctuation.展开更多
The introduction of several small and large-scale industries,malls,shopping complexes,and domestic applications has significantly increased energy consumption.The aim of the work is to simulate a technically viable an...The introduction of several small and large-scale industries,malls,shopping complexes,and domestic applications has significantly increased energy consumption.The aim of the work is to simulate a technically viable and economically optimum hybrid power system for residential buildings.The proposed micro-grid model includes four power generators:solar power,wind power,Electricity Board(EB)source,and a Diesel Generator(DG)set,with solar and wind power performing as major sources and the EB supply and DG set serving as backup sources.The core issue in direct current to alternate current conversion is harmonics distortion,a five-stage multilevel inverter is employed with the assistance of an intelligent control system is simulated and the optimum system configuration is estimated to reduce harmonics and improve the power quality.The monthly demand for residential buildings is 13-15 Megawatts.So,almost 433 Kilo-Watts(KW)of electricity is required every day,and if it is used for 8 h per day,50-60 KW of electricity is needed per hour.The overall micro-grid model’s operation and performance are established using MATLAB/SIMULINK software,and simulation results are provided.The simulation results show that the developed system is both cost-effective and environment friendly resulting in yearly cost reductions.展开更多
A microgrid(MG)refers to a set of loads,generation resources and energy storage systems acting as a controllable load or a generator to supply power and heating to a local area.The MG-generated power management is a c...A microgrid(MG)refers to a set of loads,generation resources and energy storage systems acting as a controllable load or a generator to supply power and heating to a local area.The MG-generated power management is a central topic for MG design and operation.The existence of dispersed generation(DG)resources has faced MG management with new issues.Depending on the level of exchanges between an MG and the main grid,the MG operation states can be divided into independent or grid-connected ones.Energy management in MGs aims to supply power at the lowest cost for optimal load response.This study examines MG energy management in two operational modes of islanded and grid-connected,and proposes a structure with two control layers(primary and secondary)for energy management.At the principal level of control,the energy management system is determined individually for all MG by taking into consideration the probability constraints and RES uncertainty by the Weibull the probability density function(PDF),generation resources’power as well as the generation surplus and deficit of each MG.Then,the information of the power surplus and deficit of each MG must be sent to the central energy management system.To confirm the proposed structure,a case system with two MGs and a condensive load is simulated by using a multi-time harmony search algorithm.Several scenarios are applied to evaluate the performance of this algorithm.The findings clearly show the effectiveness of the proposed system in the energy management of several MGs,leading to the optimal performance of the resources per MG.Moreover,the proposed control scheme properly controls the MG and grid’s performance in their interactions and offers a high level of robustness,stable behavior under different conditions and high quality of power supply.展开更多
The networking of microgrids has received significant attention in the form of a smart grid.In this paper,a set of smart railway stations,which is assumed as microgrids,is connected together.It has been tried to manag...The networking of microgrids has received significant attention in the form of a smart grid.In this paper,a set of smart railway stations,which is assumed as microgrids,is connected together.It has been tried to manage the energy exchanged between the networked microgrids to reduce received energy from the utility grid.Also,the operational costs of stations under various conditions decrease by applying the proposed method.The smart railway stations are studied in the presence of photovoltaic(PV)units,energy storage systems(ESSs),and regenerative braking strategies.Studying regenerative braking is one of the essential contributions.Moreover,the stochastic behaviors of the ESS’s initial state of energy and the uncertainty of PV power generation are taken into account through a scenario-based method.The networked microgrid scheme of railway stations(based on coordinated operation and scheduling)and independent operation of railway stations are studied.The proposed method is applied to realistic case studies,including three stations of Line 3 of Tehran Urban and Suburban Railway Operation Company(TUSROC).The rolling stock is simulated in the MATLAB environment.Thus,the coordinated operation of networked microgrids and independent operation of railway stations are optimized in the GAMS environment utilizing mixed-integer linear programming(MILP).展开更多
The construction of relevant standards for building carbon emission assessment in China has just started,and the quantitative analysis method and evaluation system are still imperfect,which hinders the development of ...The construction of relevant standards for building carbon emission assessment in China has just started,and the quantitative analysis method and evaluation system are still imperfect,which hinders the development of low-carbon building design.Therefore,the use of intelligent energy management system is very necessary.The purpose of this paper is to explore the design optimization of low-carbon buildings based on intelligent energy management systems.Based on the proposed quantitative method of building carbon emission,this paper establishes the quota theoretical system of building carbon emission analysis,and develops the quota based carbon emission calculation software.Smart energy management system is a low-carbon energy-saving system based on the reference of large-scale building energy-saving system and combined with energy consumption.It provides a fast and effective calculation tool for the quantitative evaluation of carbon emission of construction projects,so as to realize the carbon emission control and optimization in the early stage of architectural design and construction.On this basis,the evaluation,analysis and calculation method of building structure based on carbon reduction target is proposed,combined with the carbon emission quota management standard proposed in this paper.Taking small high-rise residential buildings as an example,this paper compares and analyzes different building structural systems from the perspectives of structural performance,economy and carbon emission level.It provides a reference for the design and evaluation of low-carbon building structures.The smart energy management system collects user energy use parameters.It uses time period and time sequence to obtain a large amount of data for analysis and integration,which provides users with intuitive energy consumption data.Compared with the traditional architectural design method,the industrialized construction method can save 589.22 megajoules(MJ)per square meter.Based on 29270 megajoules(MJ)per ton of standard coal,the construction area of the case is about 8000 m2,and the energy saving of residential buildings is 161.04 tons of standard coal.This research is of great significance in reducing the carbon emission intensity of buildings.展开更多
The energy management system(EMS),which acts as the heart of the energy management center of a steel enterprise,is a large computer system focused on the concentrative monitor and control of the production and utiliza...The energy management system(EMS),which acts as the heart of the energy management center of a steel enterprise,is a large computer system focused on the concentrative monitor and control of the production and utilization of energy.Although Chinese steel industry was well developed in the latest decade, so far the levels of the comprehensive energy consumption per ton steel among Chinese steel enterprises are remarkably distinct,and the average value of the comprehensive energy consumption per ton steel of them has still been much higher than the value of those in developed countries.This bad situation,in the opinion of the author,partially results from the poor ability for most Chinese steel enterprises to manage the production and utilization of energy.National policies associated to energy-saving and ejection-decreasing call for steel enterprises to build the EMS;and more and more steel enterprises themselves also desire to achieve EMS projects so that they can optimize their energy production and utilization.Baosteel,the largest and most advanced steel enterprise in China,has got plenty of experience in the EMS due to its incessant practice for more than 30 years in the design,construction,application,and revampment of its EMS.In the present article,the features of an advanced EMS is described and discussed based on the design practice of the EMS of Baosteel Zhanjiang Project.An advanced EMS should be an optimized and integrated system,which possesses of the characteristic of high managing efficiency,enough openness in expansion,friendly interfaces, and simple structure.Furthermore,it could support many-sided applications,e.g.,energy related data mineing,energy network combination and co-supply,application of geographic information technology,and other technical researched on energy-saving aspects.It is known that some energy-related indexes of Baosteel have stood on a high level better than those of some worldwide famous steel enterprises.Moreover,it goes without saying that the indexes of Baosteel Zhanjiang will be better than those of present Baosteel.Therefore, one can easily expect that the new EMS of Baosteel Zhanjiang will be much more advanced,which will be more helpful to fulfil systematiclly saving of energy,to elevate the efficiency of energy utilization,to lower the comprehensive energy consumption per ton steel.展开更多
基金Supported by National Natural Science Foundation of China (Grant Nos.52222215,52072051)Fundamental Research Funds for the Central Universities in China (Grant No.2023CDJXY-025)Chongqing Municipal Natural Science Foundation of China (Grant No.CSTB2023NSCQ-JQX0003)。
文摘The new energy vehicle plays a crucial role in green transportation,and the energy management strategy of hybrid power systems is essential for ensuring energy-efficient driving.This paper presents a state-of-the-art survey and review of reinforcement learning-based energy management strategies for hybrid power systems.Additionally,it envisions the outlook for autonomous intelligent hybrid electric vehicles,with reinforcement learning as the foundational technology.First of all,to provide a macro view of historical development,the brief history of deep learning,reinforcement learning,and deep reinforcement learning is presented in the form of a timeline.Then,the comprehensive survey and review are conducted by collecting papers from mainstream academic databases.Enumerating most of the contributions based on three main directions—algorithm innovation,powertrain innovation,and environment innovation—provides an objective review of the research status.Finally,to advance the application of reinforcement learning in autonomous intelligent hybrid electric vehicles,future research plans positioned as“Alpha HEV”are envisioned,integrating Autopilot and energy-saving control.
文摘Energy management is an inspiring domain in developing of renewable energy sources.However,the growth of decentralized energy production is revealing an increased complexity for power grid managers,inferring more quality and reliability to regulate electricity flows and less imbalance between electricity production and demand.The major objective of an energy management system is to achieve optimum energy procurement and utilization throughout the organization,minimize energy costs without affecting production,and minimize environmental effects.Modern energy management is an essential and complex subject because of the excessive consumption in residential buildings,which necessitates energy optimization and increased user comfort.To address the issue of energy management,many researchers have developed various frameworks;while the objective of each framework was to sustain a balance between user comfort and energy consumption,this problem hasn’t been fully solved because of how difficult it is to solve it.An inclusive and Intelligent Energy Management System(IEMS)aims to provide overall energy efficiency regarding increased power generation,increase flexibility,increase renewable generation systems,improve energy consumption,reduce carbon dioxide emissions,improve stability,and reduce energy costs.Machine Learning(ML)is an emerging approach that may be beneficial to predict energy efficiency in a better way with the assistance of the Internet of Energy(IoE)network.The IoE network is playing a vital role in the energy sector for collecting effective data and usage,resulting in smart resource management.In this research work,an IEMS is proposed for Smart Cities(SC)using the ML technique to better resolve the energy management problem.The proposed system minimized the energy consumption with its intelligent nature and provided better outcomes than the previous approaches in terms of 92.11% accuracy,and 7.89% miss-rate.
文摘This article focuses on the challenges ofmodeling energy supply systems for buildings,encompassing both methods and tools for simulating thermal regimes and engineering systems within buildings.Enhancing the comfort of living or working in buildings often necessitates increased consumption of energy and material,such as for thermal upgrades,which consequently incurs additional economic costs.It is crucial to acknowledge that such improvements do not always lead to a decrease in total pollutant emissions,considering emissions across all stages of production and usage of energy and materials aimed at boosting energy efficiency and comfort in buildings.In addition,it explores the methods and mechanisms for modeling the operating modes of electric boilers used to collectively improve energy efficiency and indoor climatic conditions.Using the developed mathematical models,the study examines the dynamic states of building energy supply systems and provides recommendations for improving their efficiency.These dynamic models are executed in software environments such as MATLAB/Simscape and Python,where the component detailing schemes for various types of controllers are demonstrated.Additionally,controllers based on reinforcement learning(RL)displayed more adaptive load level management.These RL-based controllers can lower instantaneous power usage by up to 35%,reduce absolute deviations from a comfortable temperature nearly by half,and cut down energy consumption by approximately 1%while maintaining comfort.When the energy source produces a constant energy amount,the RL-based heat controllermore effectively maintains the temperature within the set range,preventing overheating.In conclusion,the introduced energydynamic building model and its software implementation offer a versatile tool for researchers,enabling the simulation of various energy supply systems to achieve optimal energy efficiency and indoor climate control in buildings.
基金supported by the Deanship of Scientific Research at Prince Sattam Bin Abdulaziz University under the research project No.2020/01/11742.
文摘Hydrocarbons,carbon monoxide and other pollutants from the transportation sector harm human health in many ways.Fuel cell(FC)has been evolving rapidly over the past two decades due to its efficient mechanism to transform the chemical energy in hydrogen-rich compounds into electrical energy.The main drawback of the standalone FC is its slow dynamic response and its inability to supply rapid variations in the load demand.Therefore,adding energy storage systems is necessary.However,to manage and distribute the power-sharing among the hybrid proton exchange membrane(PEM)fuel cell(FC),battery storage(BS),and supercapacitor(SC),an energy management strategy(EMS)is essential.In this research work,an optimal EMS based on a spotted hyena optimizer(SHO)for hybrid PEM fuel cell/BS/SC is proposed.The main goal of an EMS is to improve the performance of hybrid FC/BS/SC and to reduce the amount of hydrogen consumption.To prove the superiority of the SHO method,the obtained results are compared with the chimp optimizer(CO),the artificial ecosystem-based optimizer(AEO),the seagull optimization algorithm(SOA),the sooty tern optimization algorithm(STOA),and the coyote optimization algorithm(COA).Two main metrics are used as a benchmark for the comparison:the minimum consumed hydrogen and the efficiency of the system.The main findings confirm that the minimum amount of hydrogen consumption and maximum efficiency are achieved by the proposed SHO based EMS.
文摘Plug-in Hybrid Electric Vehicles(PHEVs)represent an innovative breed of transportation,harnessing diverse power sources for enhanced performance.Energy management strategies(EMSs)that coordinate and control different energy sources is a critical component of PHEV control technology,directly impacting overall vehicle performance.This study proposes an improved deep reinforcement learning(DRL)-based EMSthat optimizes realtime energy allocation and coordinates the operation of multiple power sources.Conventional DRL algorithms struggle to effectively explore all possible state-action combinations within high-dimensional state and action spaces.They often fail to strike an optimal balance between exploration and exploitation,and their assumption of a static environment limits their ability to adapt to changing conditions.Moreover,these algorithms suffer from low sample efficiency.Collectively,these factors contribute to convergence difficulties,low learning efficiency,and instability.To address these challenges,the Deep Deterministic Policy Gradient(DDPG)algorithm is enhanced using entropy regularization and a summation tree-based Prioritized Experience Replay(PER)method,aiming to improve exploration performance and learning efficiency from experience samples.Additionally,the correspondingMarkovDecision Process(MDP)is established.Finally,an EMSbased on the improvedDRLmodel is presented.Comparative simulation experiments are conducted against rule-based,optimization-based,andDRL-based EMSs.The proposed strategy exhibitsminimal deviation fromthe optimal solution obtained by the dynamic programming(DP)strategy that requires global information.In the typical driving scenarios based onWorld Light Vehicle Test Cycle(WLTC)and New European Driving Cycle(NEDC),the proposed method achieved a fuel consumption of 2698.65 g and an Equivalent Fuel Consumption(EFC)of 2696.77 g.Compared to the DP strategy baseline,the proposed method improved the fuel efficiency variances(FEV)by 18.13%,15.1%,and 8.37%over the Deep QNetwork(DQN),Double DRL(DDRL),and original DDPG methods,respectively.The observational outcomes demonstrate that the proposed EMS based on improved DRL framework possesses good real-time performance,stability,and reliability,effectively optimizing vehicle economy and fuel consumption.
文摘In the era of an energy revolution,grid decentralization has emerged as a viable solution to meet the increasing global energy demand by incorporating renewables at the distributed level.Microgrids are considered a driving component for accelerating grid decentralization.To optimally utilize the available resources and address potential challenges,there is a need to have an intelligent and reliable energy management system(EMS)for the microgrid.The artificial intelligence field has the potential to address the problems in EMS and can provide resilient,efficient,reliable,and scalable solutions.This paper presents an overview of existing conventional and AI-based techniques for energy management systems in microgrids.We analyze EMS methods for centralized,decentralized,and distributed microgrids separately.Then,we summarize machine learning techniques such as ANNs,federated learning,LSTMs,RNNs,and reinforcement learning for EMS objectives such as economic dispatch,optimal power flow,and scheduling.With the incorporation of AI,microgrids can achieve greater performance efficiency and more reliability for managing a large number of energy resources.However,challenges such as data privacy,security,scalability,explainability,etc.,need to be addressed.To conclude,the authors state the possible future research directions to explore AI-based EMS's potential in real-world applications.
文摘The plug-in hybrid vehicles(PHEV)technology can effectively address the issues of poor dynamics and higher energy consumption commonly found in traditional mining dump trucks.Meanwhile,plug-in hybrid electric trucks can achieve excellent fuel economy through efficient energy management strategies(EMS).Therefore,a series hybrid system is constructed based on a 100-ton mining dump truck in this paper.And inspired by the dynamic programming(DP)algorithm,a predictive equivalent consumption minimization strategy(P-ECMS)based on the DP optimization result is proposed.Based on the optimal control manifold and the SOC reference trajectory obtained by the DP algorithm,the P-ECMS strategy performs real-time stage parameter optimization to obtain the optimal equivalent factor(EF).Finally,applying the equivalent consumption minimization strategy(ECMS)realizes real-time control.The simulation results show that the equivalent fuel consumption of the P-ECMS strategy under the experimentally collected mining cycle conditions is 150.8 L/100 km,which is 10.9%less than that of the common CDCS strategy(169.3 L/100 km),and achieves 99.47%of the fuel saving effect of the DP strategy(150 L/100 km).
基金supported by the National Science Foundation of China under Grant No.51205046
文摘This paper presents the design and implementation of an energy management system (EMS) with wavelet transform and fuzzy control for a residential micro-grid. The hybrid system in this paper consists of a wind turbine generator, photovoltaic (PV) panels, an electric vehicle (EV), and a super capacitor (SC), which is able to connect or disconnect to the main grid. The control strategy is responsible for compensating the difference between the generated power by the wind and solar generators and the demanded power by the loads. Wavelet transform decomposes the power difference into a smoothed component and a fast fluctuated component. The command approach used for fuzzy logic rules considers the state of charging (SOC) of EV, renewable production, and the load demand as parameters. Furthermore, the command rules are developed in order to ensure a reliable grid when taking into account the EV battery protection to decide the output power of the EV. The model of the hybrid system is developed in detail under Matlab/Simulink software environment.
基金supported by the National Natural Science Foundation of China(61673164)the Natural Science Foundation of Hunan Province(2020JJ6024)the Scientific Research Fund of Hunan Provincal Education Department(19K025).
文摘Regarding the problem of the short driving distance of pure electric vehicles,a battery,super-capacitor,and DC/DC converter are combined to form a hybrid energy storage system(HESS).A fuzzy adaptive filtering-based energy management strategy(FAFBEMS)is proposed to allocate the required power of the vehicle.Firstly,the state of charge(SOC)of the super-capacitor is limited according to the driving/braking mode of the vehicle to ensure that it is in a suitable working state,and fuzzy rules are designed to adaptively adjust the filtering time constant,to realize reasonable power allocation.Then,the positive and negative power are determined,and the average power of driving/braking is calculated so as to limit the power amplitude to protect the battery.To verify the proposed FAFBEMS strategy for HESS,simulations are performed under the UDDS(Urban Dynamometer Driving Schedule)driving cycle.The results show that the FAFBEMS strategy can effectively reduce the current amplitude of the battery,and the final SOC of the battery and super-capacitor is optimized to varying degrees.The energy consumption is 7.8%less than that of the rule-based energy management strategy,10.9%less than that of the fuzzy control energy management strategy,and 13.1%less than that of the filtering-based energy management strategy,which verifies the effectiveness of the FAFBEMS strategy.
基金The first three authors who conducted this research were partly funded by the Industrial Assessment Center Project,supported by grants from the US Department of Energy and by the West Virginia Development Office.
文摘Building Energy Management Systems(BEMS)are computer-based systems that aid in managing,controlling,and monitoring the building technical services and energy consumption by equipment used in the building.The effectiveness of BEMS is dependent upon numerous factors,among which the operational characteristics of the building and the BEMS control parameters also play an essential role.This research develops a user-driven simulation tool where users can input the building parameters and BEMS controls to determine the effectiveness of their BEMS.The simulation tool gives the user the flexibility to understand the potential energy savings by employing specific BEMS control and help in making intelligent decisions.The simulation is developed using Visual Basic Application(VBA)in Microsoft Excel,based on discrete-event Monte Carlo Simulation(MCS).The simulation works by initially calculating the energy required for space cooling and heating based on current building parameters input by the user in the model.Further,during the second simulation,the user selects all the BEMS controls and improved building envelope to determine the energy required for space cooling and heating during that case.The model compares the energy consumption from the first simulation and the second simulation.Then the simulation model will provide the rating of the effectiveness of BEMS on a continuous scale of 1 to 5(1 being poor effectiveness and 5 being excellent effectiveness of BEMS).This work is intended to facilitate building owner/energy managers to analyze the building energy performance concerning the efficacy of their energy management system.
文摘Given the strategic importance of energy and air pollution in the today world and due to the fact that the maritime transport system is one of the main sources of energy consumption and emissions in the environment, particularly contamination of water, so in recent years, fuel consumption and emissions reduction in the maritime transport industry has received considerable attention. Thus, in this paper, a new method is provided for typical boat hybridization, so by adding an electric motor and battery to boat power transmission system, dynamic performance will improve fuel consumption and emissions reduces. For this purpose, power transmission system elements are modelled and boat function is evaluated in real terms of movement by defining energy management strategy between power sources. The simulation results show that boat hybridization considerably reduces fuel consumption and emissions.
基金This work was supported by National Natural Science Foundation of China under Project 51325701,51377030,and 51407042.
文摘The flux-modulated compound-structure permanent magnet synchronous machine (CS-PMSM), composed of a brushless double rotor machine (DRM) and a conventional permanent magnet synchronous machine (PMSM), is a power split device for plug-in hybrid electric vehicles. In this paper, its operating principle and mathematical model are introduced. A modified current controller with decoupled state feedback is proposed and verified. The system control strategy is simulated in Matlab, and the feasibility of the control system is proven. To improve fuel economy, an energy management strategy based on fuzzy logic controller is proposed and evaluated by the Urban Dynamometer Driving Schedule (UDDS) drive cycle. The results show that the total energy consumption is similar to that of Prius 2012.
文摘Home energy management systems (HEMs) are used to provide comfortable life for consumers as well as to save energy. An essential component of HEMs is a home area network (HAN) that is used to remotely control the electric devices at homes and buildings. Although HAN prices have dropped in ~ecent years but they are still expensive enough to prohibit a mass scale deployments. In this paper, a very low cost alternative to the expensive HANs is presented. We have applied a combination of non-intrusive load monitoring (NILM) and very low cost one-way HAN to develop a HEM. By using NILM and machine learning algorithms we find the status of devices and their energy consumption from a central meter and communicate with devices through the one-way HAN. The evaluations show that the proposed machine learning algorithm for NILM achieves up to 99% accuracy in certain cases. On the other hand our radio frequency (RF)-based one-way HAN achieves a range of 80 feet in all settings.
基金This work was supported by Taif University Researchers Supporting Program(project number:TURSP-2020/195),Taif University,Saudi Arabia.
文摘Recent advancements of the intelligent transportation system(ITS)provide an effective way of improving the overall efficiency of the energy management strategy(EMSs)for autonomous vehicles(AVs).The use of AVs possesses many advantages such as congestion control,accident prevention,and etc.However,energy management and traffic flow prediction(TFP)still remains a challenging problem in AVs.The complexity and uncertainties of driving situations adequately affect the outcome of the designed EMSs.In this view,this paper presents novel sustainable energy management with traffic flow prediction strategy(SEM-TPS)for AVs.The SEM-TPS technique applies type II fuzzy logic system(T2FLS)energy management scheme to accomplish the desired engine torque based on distinct parameters.In addition,the membership functions of the T2FLS scheme are chosen optimally using the barnacles mating optimizer(BMO).For accurate TFP,the bidirectional gated recurrent neural network(Bi-GRNN)model is used in AVs.A comprehensive experimental validation process is performed and the results are inspected with respect to several evaluation metrics.The experimental outcomes highlighted the supreme performance of the SEM-TPS technique over the recent state of art approaches.
文摘In the context of both the Virtual Power Plant (VPP) and microgrid(MG), the Energy Management System (EMS) is a key decision-maker forintegrating Distributed renewable Energy Resources (DERs) efficiently. TheEMS is regarded as a strong enabler of providing the optimized schedulingcontrol in operation and management of usage of disperse DERs and RenewableEnergy reSources (RES) such as a small-size wind-turbine (WT) andphotovoltaic (PV) energies. The main objective to be pursued by the EMSis the minimization of the overall operating cost of the MG integrated VPPnetwork. However, the minimization of the power peaks is a new objective andopen issue to a well-functional EMS, along with the maximization of profitin the energy market. Thus, both objectives have to be taken into accountat the same time. Thus, this paper proposes the EMS application incorporatingpower offering strategy applying a nature-inspired algorithm such asParticle Swarm Optimization (PSO) algorithm, in order to find the optimalsolution of the objective function in the context of the overall operating cost,the coordination of DERs, and the energy losses in a MG integrated VPPnetwork. For a fair DERs coordination with minimized power fluctuationsin the power flow, the power offering strategies with an active power controland re-distribution are proposed. Simulation results show that the proposedMG integrated VPP model with PSO-based EMS employing EgalitarianreDistribution (ED) power offering strategy is most feasible option for theoverall operating cost of VPP revenue. The total operating cost of the proposedEMS with ED strategy is 40.98$ compared to 432.8$ of MGs only withoutEMS. It is concluded that each MGs in the proposed VPP model intelligentlyparticipates in energy trading market compliant with the objective function,to minimize the overall cost and the power fluctuation.
文摘The introduction of several small and large-scale industries,malls,shopping complexes,and domestic applications has significantly increased energy consumption.The aim of the work is to simulate a technically viable and economically optimum hybrid power system for residential buildings.The proposed micro-grid model includes four power generators:solar power,wind power,Electricity Board(EB)source,and a Diesel Generator(DG)set,with solar and wind power performing as major sources and the EB supply and DG set serving as backup sources.The core issue in direct current to alternate current conversion is harmonics distortion,a five-stage multilevel inverter is employed with the assistance of an intelligent control system is simulated and the optimum system configuration is estimated to reduce harmonics and improve the power quality.The monthly demand for residential buildings is 13-15 Megawatts.So,almost 433 Kilo-Watts(KW)of electricity is required every day,and if it is used for 8 h per day,50-60 KW of electricity is needed per hour.The overall micro-grid model’s operation and performance are established using MATLAB/SIMULINK software,and simulation results are provided.The simulation results show that the developed system is both cost-effective and environment friendly resulting in yearly cost reductions.
文摘A microgrid(MG)refers to a set of loads,generation resources and energy storage systems acting as a controllable load or a generator to supply power and heating to a local area.The MG-generated power management is a central topic for MG design and operation.The existence of dispersed generation(DG)resources has faced MG management with new issues.Depending on the level of exchanges between an MG and the main grid,the MG operation states can be divided into independent or grid-connected ones.Energy management in MGs aims to supply power at the lowest cost for optimal load response.This study examines MG energy management in two operational modes of islanded and grid-connected,and proposes a structure with two control layers(primary and secondary)for energy management.At the principal level of control,the energy management system is determined individually for all MG by taking into consideration the probability constraints and RES uncertainty by the Weibull the probability density function(PDF),generation resources’power as well as the generation surplus and deficit of each MG.Then,the information of the power surplus and deficit of each MG must be sent to the central energy management system.To confirm the proposed structure,a case system with two MGs and a condensive load is simulated by using a multi-time harmony search algorithm.Several scenarios are applied to evaluate the performance of this algorithm.The findings clearly show the effectiveness of the proposed system in the energy management of several MGs,leading to the optimal performance of the resources per MG.Moreover,the proposed control scheme properly controls the MG and grid’s performance in their interactions and offers a high level of robustness,stable behavior under different conditions and high quality of power supply.
文摘The networking of microgrids has received significant attention in the form of a smart grid.In this paper,a set of smart railway stations,which is assumed as microgrids,is connected together.It has been tried to manage the energy exchanged between the networked microgrids to reduce received energy from the utility grid.Also,the operational costs of stations under various conditions decrease by applying the proposed method.The smart railway stations are studied in the presence of photovoltaic(PV)units,energy storage systems(ESSs),and regenerative braking strategies.Studying regenerative braking is one of the essential contributions.Moreover,the stochastic behaviors of the ESS’s initial state of energy and the uncertainty of PV power generation are taken into account through a scenario-based method.The networked microgrid scheme of railway stations(based on coordinated operation and scheduling)and independent operation of railway stations are studied.The proposed method is applied to realistic case studies,including three stations of Line 3 of Tehran Urban and Suburban Railway Operation Company(TUSROC).The rolling stock is simulated in the MATLAB environment.Thus,the coordinated operation of networked microgrids and independent operation of railway stations are optimized in the GAMS environment utilizing mixed-integer linear programming(MILP).
基金supported by“Key Technology Research on Operational Performance Improvement of the Green Building”(2020YFS0060)Key Project of Science and Technology Department of Sichuan Province+2 种基金supported by“Creative VR Teaching and Learning Research Based on‘PBL+’and Multidimensional Collaboration”(JG2021-721)“Reform in the Mode and Practice of Architecture Education with the Characteristics of Geology”(JG2021-672)Education Quality and Teaching Reform Project of Higher Education in Sichuan Province in 2021–2023.
文摘The construction of relevant standards for building carbon emission assessment in China has just started,and the quantitative analysis method and evaluation system are still imperfect,which hinders the development of low-carbon building design.Therefore,the use of intelligent energy management system is very necessary.The purpose of this paper is to explore the design optimization of low-carbon buildings based on intelligent energy management systems.Based on the proposed quantitative method of building carbon emission,this paper establishes the quota theoretical system of building carbon emission analysis,and develops the quota based carbon emission calculation software.Smart energy management system is a low-carbon energy-saving system based on the reference of large-scale building energy-saving system and combined with energy consumption.It provides a fast and effective calculation tool for the quantitative evaluation of carbon emission of construction projects,so as to realize the carbon emission control and optimization in the early stage of architectural design and construction.On this basis,the evaluation,analysis and calculation method of building structure based on carbon reduction target is proposed,combined with the carbon emission quota management standard proposed in this paper.Taking small high-rise residential buildings as an example,this paper compares and analyzes different building structural systems from the perspectives of structural performance,economy and carbon emission level.It provides a reference for the design and evaluation of low-carbon building structures.The smart energy management system collects user energy use parameters.It uses time period and time sequence to obtain a large amount of data for analysis and integration,which provides users with intuitive energy consumption data.Compared with the traditional architectural design method,the industrialized construction method can save 589.22 megajoules(MJ)per square meter.Based on 29270 megajoules(MJ)per ton of standard coal,the construction area of the case is about 8000 m2,and the energy saving of residential buildings is 161.04 tons of standard coal.This research is of great significance in reducing the carbon emission intensity of buildings.
文摘The energy management system(EMS),which acts as the heart of the energy management center of a steel enterprise,is a large computer system focused on the concentrative monitor and control of the production and utilization of energy.Although Chinese steel industry was well developed in the latest decade, so far the levels of the comprehensive energy consumption per ton steel among Chinese steel enterprises are remarkably distinct,and the average value of the comprehensive energy consumption per ton steel of them has still been much higher than the value of those in developed countries.This bad situation,in the opinion of the author,partially results from the poor ability for most Chinese steel enterprises to manage the production and utilization of energy.National policies associated to energy-saving and ejection-decreasing call for steel enterprises to build the EMS;and more and more steel enterprises themselves also desire to achieve EMS projects so that they can optimize their energy production and utilization.Baosteel,the largest and most advanced steel enterprise in China,has got plenty of experience in the EMS due to its incessant practice for more than 30 years in the design,construction,application,and revampment of its EMS.In the present article,the features of an advanced EMS is described and discussed based on the design practice of the EMS of Baosteel Zhanjiang Project.An advanced EMS should be an optimized and integrated system,which possesses of the characteristic of high managing efficiency,enough openness in expansion,friendly interfaces, and simple structure.Furthermore,it could support many-sided applications,e.g.,energy related data mineing,energy network combination and co-supply,application of geographic information technology,and other technical researched on energy-saving aspects.It is known that some energy-related indexes of Baosteel have stood on a high level better than those of some worldwide famous steel enterprises.Moreover,it goes without saying that the indexes of Baosteel Zhanjiang will be better than those of present Baosteel.Therefore, one can easily expect that the new EMS of Baosteel Zhanjiang will be much more advanced,which will be more helpful to fulfil systematiclly saving of energy,to elevate the efficiency of energy utilization,to lower the comprehensive energy consumption per ton steel.