Globally, solar energy is expected to play a significant role in the changing face of energy economies in the near future. However, the variability of this resource has been the main barrier for solar energy developme...Globally, solar energy is expected to play a significant role in the changing face of energy economies in the near future. However, the variability of this resource has been the main barrier for solar energy development in most locations around the world. This paper investigated the distribution and variability of solar radiation using the a 10-year (2006 to 2015) data collected at Sorhs meteor- ological station located at latitude 59° 39' N and longitude 10° 47'E, about 93.3 m above sea level (about 30 km from Oslo), in south-eastern part of Norway. It is found that on annual basis, the total number of days with a global solar radiation of less than 1 kWh/(m2.d) is 120 days while the total number of days with an expected global solar radiation greater than 3 kWh/(m2.d) is 156 days (42.74%) per year. The potential energy output from a horizontally placed solar collector in these 156 days is approximately 75% of the estimated annual energy output. In addition, it is found that the inter-annual coefficient of variation of the global solar radiation is 4.28%, while that of diffuse radiation is 4.96%.展开更多
文摘Globally, solar energy is expected to play a significant role in the changing face of energy economies in the near future. However, the variability of this resource has been the main barrier for solar energy development in most locations around the world. This paper investigated the distribution and variability of solar radiation using the a 10-year (2006 to 2015) data collected at Sorhs meteor- ological station located at latitude 59° 39' N and longitude 10° 47'E, about 93.3 m above sea level (about 30 km from Oslo), in south-eastern part of Norway. It is found that on annual basis, the total number of days with a global solar radiation of less than 1 kWh/(m2.d) is 120 days while the total number of days with an expected global solar radiation greater than 3 kWh/(m2.d) is 156 days (42.74%) per year. The potential energy output from a horizontally placed solar collector in these 156 days is approximately 75% of the estimated annual energy output. In addition, it is found that the inter-annual coefficient of variation of the global solar radiation is 4.28%, while that of diffuse radiation is 4.96%.