期刊文献+
共找到1,660篇文章
< 1 2 83 >
每页显示 20 50 100
Inter-stage performance and energy characteristics analysis of electric submersible pump based on entropy production theory
1
作者 Hui Wang Yang Yang +5 位作者 Bin Xi Wei-Dong Shi Chuan Wang Lei-Lei Ji Xiang-Yu Song Zhao-Ming He 《Petroleum Science》 SCIE EI CAS CSCD 2024年第2期1354-1368,共15页
The electric submersible pump(ESP) is a crucial apparatus utilized for lifting in the oil extraction process.Its lifting capacity is enhanced by the multi-stage tandem structure, but variations in energy characteristi... The electric submersible pump(ESP) is a crucial apparatus utilized for lifting in the oil extraction process.Its lifting capacity is enhanced by the multi-stage tandem structure, but variations in energy characteristics and internal flow across stages are also introduced. In this study, the inter-stage variability of energy characteristics in ESP hydraulic systems is investigated through entropy production(EP) analysis,which incorporates numerical simulations and experimental validation. The EP theory facilitates the quantification of energy loss in each computational subdomain at all ESP stages, establishing a correlation between microscopic flow structure and energy dissipation within the system. Furthermore, the underlying causes of inter-stage variability in ESP hydraulic systems are examined, and the advantages and disadvantages of applying the EP theory in this context are evaluated. Consistent energy characteristics within the ESP, aligned with the distribution of internal flow structure, are provided by the EP theory, as demonstrated by our results. The EP theory also enables the quantitative analysis of internal flow losses and complements existing performance analysis methods to map the internal flow structure to hydraulic losses. Nonetheless, an inconsistency between the energy characterization based on EP theory and the traditional efficiency index when reflecting inter-stage differences is identified. This inconsistency arises from the exclusive focus of the EP theory on flow losses within the flow field, disregarding the quantification of external energy input to the flow field. This study provides a reference for the optimization of EP theory in rotating machinery while deeply investigating the energy dissipation characteristics of multistage hydraulic system, which has certain theoretical and practical significance. 展开更多
关键词 Electric submersible pump(ESP) entropy production theory energy characteristics Inter-stage differences
下载PDF
Standard-state entropies and their impact on the potential-dependent apparent activation energy in electrocatalysis
2
作者 Kai S.Exner 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2023年第8期247-254,I0008,共9页
The apparent activation energy,Eapp,is a common measure in thermal catalysis to discuss the activity and limiting steps of catalytic processes on solid-state materials.Recently,the electrocatalysis community adopted t... The apparent activation energy,Eapp,is a common measure in thermal catalysis to discuss the activity and limiting steps of catalytic processes on solid-state materials.Recently,the electrocatalysis community adopted the concept of Eappand combined it with the Butler-Volmer theory.Certain observations though,such as potential-dependent fluctuations of Eapp,are yet surprising because they conflict with the proposed linear decrease in Eappwith increasing overpotential.The most common explanation for this finding refers to coverage changes upon alterations in the temperature or the applied electrode potential.In the present contribution,it is demonstrated that the modulation of surface coverages cannot entirely explain potential-dependent oscillations of Eapp,and rather the impact of entropic contributions of the transition states has been overlooked so far.In the case of a nearly constant surface coverage,these entropic contributions can be extracted by a dedicated combination of Tafel plots and temperature-dependent experiments. 展开更多
关键词 ELECTROCATALYSIS Standard-state entropy Microkinetic modeling Apparent activation energy Degree of rate control
下载PDF
Relationship between Energy of Motion and D-Entropy in the Physics of Evolution
3
作者 Vyacheslav Mikhailovich Somsikov 《World Journal of Mechanics》 2023年第9期173-185,共13页
The purpose of the paper is to substantiate the possibility of constructing the physics of the evolution of matter based on the fundamental laws of physics. It is shown how this can be done within the framework of an ... The purpose of the paper is to substantiate the possibility of constructing the physics of the evolution of matter based on the fundamental laws of physics. It is shown how this can be done within the framework of an extension of classical mechanics. Its expansion is based on the motion equation of a structured body. The fundamental difference between this equation and Newton’s motion equation is that instead of a model of a body in the form of a material point, it uses a structured body in the form of a system of potentially interacting material points. To obtain this equation, the principle of symmetry dualism, new for classical mechanics, was used. According to this principle, the dynamics of a body are determined not only by the symmetries of space, as in the case of a structureless body, but also by its symmetries. Thanks to this derivation of the equation, it takes into account the fact that the work of external forces, in addition to changing the body’s motion energy, also changes its internal energy. This change occurs due to the body’s motion energy when it moves in a non-uniform field of forces. It is shown why the motion equation of a structured body is irreversible. Its irreversibility made it possible to introduce the concept of D-entropy into extended classical mechanics. It is defined as the value of the relative increase in the body’s internal energy due to the motion energy. The relationship between the values of motion energy and D-entropy in the process of matter evolution is considered. It is shown how this connection is realized during the transition from one hierarchical level of matter to the next level. As a result, it was possible to prove that the evolution of the hierarchical structure of matter is characterized by the relationship between D-entropy and the motion energy of elements at each of its hierarchical levels. 展开更多
关键词 Dynamics SYMMETRY MECHANICS energy entropy EVOLUTION
下载PDF
Equilibrium Energy and Entropy of Vortex Filaments in the Context of Tornadogenesis and Tornadic Flows
4
作者 Pavel Bělík Douglas P. Dokken +3 位作者 Mikhail M. Shvartsman Eric Bibelnieks Robert Laskowski Alek Lukanen 《Open Journal of Fluid Dynamics》 2023年第3期144-176,共33页
In this work, we study approximations of supercritical or suction vortices in tornadic flows and their contribution to tornadogenesis and tornado maintenance using self-avoiding walks on a cubic lattice. We extend the... In this work, we study approximations of supercritical or suction vortices in tornadic flows and their contribution to tornadogenesis and tornado maintenance using self-avoiding walks on a cubic lattice. We extend the previous work on turbulence by A. Chorin and collaborators to approximate the statistical equilibrium quantities of vortex filaments on a cubic lattice when both an energy and a statistical temperature are involved. Our results confirm that supercritical (smooth, “straight”) vortices have the highest average energy and correspond to negative temperatures in this model. The lowest-energy configurations are folded up and “balled up” to a great extent. The results support A. Chorin’s findings that, in the context of supercritical vortices in a tornadic flow, when such high-energy vortices stretch, they need to fold and transfer energy to the surrounding flow, contributing to tornado maintenance or leading to its genesis. The computations are performed using a Markov Chain Monte Carlo approach with a simple sampling algorithm using local transformations that allow the results to be reliable over a wide range of statistical temperatures, unlike the originally used pivot algorithm that only performs well near infinite temperatures. Efficient ways to compute entropy are discussed and show that a system with supercritical vortices will increase entropy by having these vortices fold and transfer their energy to the surrounding flow. 展开更多
关键词 Tornadogenesis Supercritical Vortices Vortex Filaments Negative Temperature Kinetic energy entropy Statistical Mechanics Equilibrium Statistics Self-Avoiding Walks Cubic Lattice Monte-Carlo Techniques Pivot Algorithm
下载PDF
Energy Management
5
作者 Khaled(Moh’d Khalaf)Soleiman Alnobani 《Journal of Energy and Power Engineering》 CAS 2024年第1期29-33,共5页
A new revised energy concept is proposed from relativistic approach using different kinds of spaces.It is not always feasible to implement a project for saving energy.It is not merely heating a stream and cooling anot... A new revised energy concept is proposed from relativistic approach using different kinds of spaces.It is not always feasible to implement a project for saving energy.It is not merely heating a stream and cooling another stream.The study includes other considerations.A total feasibility study should be performed.The cost and the income should be calculated.In this study it is shown how to perform such a feasibility study from scratch up to detailed implementation.It is an investment approach.There are two energy balances:one thermal and the other mechanical.They are not separated but they complete each other.The decision is upon rigorous energy balance.First the question where the energy will go shall be answered from 2nd law of thermodynamics. 展开更多
关键词 entropy energy FEASIBILITY STUDY
下载PDF
Energy Entropy On-Demand Multipath Routing Protocol for Mobile Ad Hoc Networks 被引量:3
6
作者 孙宝林 桂超 宋莺 《China Communications》 SCIE CSCD 2011年第7期75-83,共9页
This paper provides a critical review of energy entropy theory in Mobile Ad Hoc Networks (MANETs) and proposes an Energy Entropy on Ad Hoc On-demand Distance Vector Multipath (EEAODVM) routing protocol. The essential ... This paper provides a critical review of energy entropy theory in Mobile Ad Hoc Networks (MANETs) and proposes an Energy Entropy on Ad Hoc On-demand Distance Vector Multipath (EEAODVM) routing protocol. The essential idea of the protocol is to find every route which can minimize the node residual energy in the process of selecting path. It balances individual node battery energy utilization and hence prolongs the entire network lifetime. The results of simulation show that, with the proposed EEAODVM routing protocol, packet delivery ratio, routing overhead ratio, average end-to-end delay, network's lifetime and minimal residual energy ratio can be improved in most of cases. It is an available approach for multipath routing decision. 展开更多
关键词 energy entropy multipath routing AODVM MANETS
下载PDF
Superior corrosion resistance-dependent laser energy density in(CoCrFeNi)95Nb5 high entropy alloy coating fabricated by laser cladding 被引量:10
7
作者 Wen-rui Wang Wu Qi +4 位作者 Xiao-li Zhang Xiao Yang Lu Xie Dong-yue Li Yong-hua Xiang 《International Journal of Minerals,Metallurgy and Materials》 SCIE EI CAS CSCD 2021年第5期888-897,共10页
(CoCrFeNi)95Nb5 high entropy alloy(HEA)coatings were successfully fabricated on a substrate of Q235 steel by laser cladding technology.These(CoCrFeNi)95Nb5 HEA coatings possess excellent properties,particularly corros... (CoCrFeNi)95Nb5 high entropy alloy(HEA)coatings were successfully fabricated on a substrate of Q235 steel by laser cladding technology.These(CoCrFeNi)95Nb5 HEA coatings possess excellent properties,particularly corrosion resistance,which is clearly superior to that of some typical bulk HEA and common engineering alloys.In order to obtain appropriate laser cladding preparation process parameters,the effects of laser energy density on the microstructure,microhardness,and corrosion resistance of(CoCrFeNi)95Nb5 HEA coating were closely studied.Results showed that as the laser energy density increases,precipitation of the Laves phase in(CoCrFeNi)95Nb5 HEA coating gradually decreases,and diffusion of the Fe element in the substrate intensifies,affecting the integrity of the(CoCrFeNi)95Nb5 HEA.This decreases the microhardness of(CoCrFeNi)95Nb5 HEA coatings.Moreover,the relative content of Cr2O3,Cr(OH)3,and Nb2O5 in the surface passive film of the coating decreases with increasing energy density,causing corrosion resistance to decrease.This study demonstrates the controllability of a high-performance HEA coating using laser cladding technology,which has significance for the laser cladding preparation of other CoCrFeNi-system HEA coatings. 展开更多
关键词 high entropy alloy coating laser cladding technology laser energy density corrosion resistance
下载PDF
Alcoholism Detection by Wavelet Energy Entropy and Linear Regression Classifier 被引量:2
8
作者 Xianqing Chen Yan Yan 《Computer Modeling in Engineering & Sciences》 SCIE EI 2021年第4期325-343,共19页
Alcoholism is an unhealthy lifestyle associated with alcohol dependence.Not only does drinking for a long time leads to poor mental health and loss of self-control,but alcohol seeps into the bloodstream and shortens t... Alcoholism is an unhealthy lifestyle associated with alcohol dependence.Not only does drinking for a long time leads to poor mental health and loss of self-control,but alcohol seeps into the bloodstream and shortens the lifespan of the body’s internal organs.Alcoholics often think of alcohol as an everyday drink and see it as a way to reduce stress in their lives because they cannot see the damage in their bodies and they believe it does not affect their physical health.As their drinking increases,they become dependent on alcohol and it affects their daily lives.Therefore,it is important to recognize the dangers of alcohol abuse and to stop drinking as soon as possible.To assist physicians in the diagnosis of patients with alcoholism,we provide a novel alcohol detection system by extracting image features of wavelet energy entropy from magnetic resonance imaging(MRI)combined with a linear regression classifier.Compared with the latest method,the 10-fold cross-validation experiment showed excellent results,including sensitivity 91.54±1.47%,specificity 93.66±1.34%,Precision 93.45±1.27%,accuracy 92.61±0.81%,F1 score 92.48±0.83%and MCC 85.26±1.62%. 展开更多
关键词 Alcohol detection wavelet energy entropy linear regression classifier cross-validation computer-aided diagnosis
下载PDF
Droplets diameter distribution using maximum entropy formulation combined with a new energy-based sub-model 被引量:2
9
作者 Seyed Mostafa Hosseinalipour Hadiseh Karimaei Ehsan Movahednejad 《Chinese Journal of Chemical Engineering》 SCIE EI CAS CSCD 2016年第11期1625-1630,共6页
The maximum entropy principle(MEP) is one of the first methods which have been used to predict droplet size and velocity distributions of liquid sprays. This method needs a mean droplets diameter as an input to predic... The maximum entropy principle(MEP) is one of the first methods which have been used to predict droplet size and velocity distributions of liquid sprays. This method needs a mean droplets diameter as an input to predict the droplet size distribution. This paper presents a new sub-model based on the deterministic aspects of liquid atomization process independent of the experimental data to provide the mean droplets diameter for using in the maximum entropy formulation(MEF). For this purpose, a theoretical model based on the approach of energy conservation law entitled energy-based model(EBM) is presented. Based on this approach, atomization occurs due to the kinetic energy loss. Prediction of the combined model(MEF/EBM) is in good agreement with the available experimental data. The energy-based model can be used as a fast and reliable enough model to obtain a good estimation of the mean droplets diameter of a spray and the combined model(MEF/EBM) can be used to well predict the droplet size distribution at the primary breakup. 展开更多
关键词 Mean droplets diameter energy conservation Maximum entropy formulation (MEF) Size distribution Statistical thermodynamics Mathematical modeling
下载PDF
Re-examination of Fundamental Concepts of Heat, Work, Energy, Entropy, and Information Based on NGST 被引量:1
10
作者 PAN Lingli CUI Weicheng 《Journal of Philosophy Study》 2022年第1期1-17,共17页
In order to use the framework of general system theory(GST)to unify the three mechanics subjects of classical mechanics,quantum mechanics,and relativistic mechanics,a new general system theory(NGST)is developed based ... In order to use the framework of general system theory(GST)to unify the three mechanics subjects of classical mechanics,quantum mechanics,and relativistic mechanics,a new general system theory(NGST)is developed based on a new ontology of ether and minds as the fundamental existences in the world.Based on this new ontology,many fundamental concepts have been detected to be ambiguously defined nowadays and particularly lack of ontological support.In our previous work,some of the fundamental concepts such as universe,world,time,space,matter,ether,mind,life,field,force have been redefined.The purpose of this paper is to clarify the concepts of energy,heat,work,entropy,and information in our NGST.This is an important and necessary step in the development of the NGST. 展开更多
关键词 new general system theory HEAT WORK energy entropy INFORMATION
下载PDF
Lattice Boltzmann simulation for the energy and entropy of excitable systems
11
作者 邓敏艺 唐国宁 +1 位作者 孔令江 刘慕仁 《Chinese Physics B》 SCIE EI CAS CSCD 2011年第2期158-163,共6页
The internal energy and the spatiotemporal entropy of excitable systems are investigated with the lattice Boltzmann method. The numerical results show that the breakup of spiral wave is attributed to the inadequate su... The internal energy and the spatiotemporal entropy of excitable systems are investigated with the lattice Boltzmann method. The numerical results show that the breakup of spiral wave is attributed to the inadequate supply of energy, i.e., the internal energy of system is smaller than the energy of self-sustained spiral wave. It is observed that the average internal energy of a regular wave state reduces with its spatiotemporal entropy decreasing. Interestingly, although the energy difference between two regular wave states is very small, the different states can be distinguished obviously due to the large difference between their spatiotemporal entropies. In addition, when the unstable spiral wave converts into the spatiotemporal chaos, the internal energy of system decreases, while the spatiotemporal entropy increases, which behaves as the thermodynamic entropy in an isolated system. 展开更多
关键词 lattice Boltzmann method energy entropy spiral wave
下载PDF
CALCULATION OF CONFORMATIONAL ENTROPY AND FREE ENERGY OF POLYSILANE CHAIN
12
作者 Meng-bo Luo Ying-cai Chen +1 位作者 Jian-hua Huang Jian-min Xu Department of Physics, Zhejiang University, Hangzhou 310028 China Department of Physics, Taizhou Teacher’s College, Taizhou 317000 China Department of Chemistry Zhejiang University Hangzhou 310028 China 《Chinese Journal of Polymer Science》 SCIE CAS CSCD 2001年第5期477-481,共5页
The conformational entropy S and free energy F were calculated by exact enumeration of polysilane chain up to 23 segments with excluded volume (EV) and long-range van der Waals (VW) interaction. A nonlinear relation b... The conformational entropy S and free energy F were calculated by exact enumeration of polysilane chain up to 23 segments with excluded volume (EV) and long-range van der Waals (VW) interaction. A nonlinear relation between SEV+VW and chain length n was found though S-EV was found to vary linearly with n. We found that the second-order transition temperature of polysilane chain with VW interaction increases with the increase of chain length, while that of polysilane chain without VW interaction is chain length independent. Moreover, the free energies FEV+VW and F-EV are both linearly related with n, and FEV+VW < F-EV for all temperatures. 展开更多
关键词 POLYSILANE exact enumeration conformational entropy conformational free energy
下载PDF
Ground-State Energy and Entropy for One-Dimensional Heisenberg Chain with Alternating D-Term
13
作者 Chunhuan Xiang Honglei Wang 《Journal of Applied Mathematics and Physics》 2019年第5期1220-1225,共6页
We study the ground-state information of one-dimensional Heisenberg chain with alternating D-term. Given the ground-state phase diagram, the ground-state energy and the entanglement entropy are obtained by tensor-net ... We study the ground-state information of one-dimensional Heisenberg chain with alternating D-term. Given the ground-state phase diagram, the ground-state energy and the entanglement entropy are obtained by tensor-net work algorithm. The phase transition points are shown in the entanglement entropy figure. The results are agreed with the phase diagram. 展开更多
关键词 GROUND-STATE energy entropy ONE-DIMENSIONAL HEISENBERG Chain
下载PDF
A New Energy-Efficient and Reliable Protocol for Stochastic WSNs Based on Back-Pressure and Entropy of Residual Energy
14
作者 Mohammed Almazaideh Janos Levendovszky 《Journal of Computer and Communications》 2020年第11期1-13,共13页
In this paper, a new energy-efficient and reliable routing protocol is introduced for WSNs including a stochastic traffic generation model and a wakeup/sleep mechanism. Our objective is to improve the longevity of the... In this paper, a new energy-efficient and reliable routing protocol is introduced for WSNs including a stochastic traffic generation model and a wakeup/sleep mechanism. Our objective is to improve the longevity of the WSNs by energy balancing but providing reliable packet transfer to the Base Station at the same time. The proposed protocol is based on the principle of the back-pressure method and besides the difference of backlogs, in order to optimize energy consumption, we use a cost function related to an entropy like function defined over the residual energies of the nodes. In the case of two-hop routing the optimal relay node is selected as the one which has maximum backlog difference and keeps the distribution of residual energy as close to uniform as possible where the uniformity is measured by the change of the entropy of the residual energy of the nodes. The protocol assumes Rayleigh fading model. Simulation results show that the proposed algorithm significantly improves the performance of traditional back-pressure protocol with respect to energy efficiency, E2E delay and throughput, respectively. 展开更多
关键词 WSN Back-Pressure Routing Protocols entropy of Residual energy energy Efficiency
下载PDF
Robot’s Emotion Decision by Energy and Entropy Concepts
15
作者 Won-hyong LEE Myung-jin CHUNG 《Journal of Measurement Science and Instrumentation》 CAS 2010年第4期368-371,共4页
This study is to introduce concepts of energy and entropy to describe a robot's emoton decisien. It chooses the dimensional approach based on factors of pleasure and arousal for the merit of the interpolation between... This study is to introduce concepts of energy and entropy to describe a robot's emoton decisien. It chooses the dimensional approach based on factors of pleasure and arousal for the merit of the interpolation between enotions. Especially, Circumplex model which has also two axes: pleasure and arousal is used. Besides, the model indicates how emotions are distributed in the two-dimensional plane. Then by the definition of psychodynamicsthe energy states (mental energy and physical energy) are matched to pleasure and arousal respectively that are the basis of Circumplex model. The mental energy is updated by the result of Prospect theory which measures the value of gain and loss as pleasure factor. And the physical energy is updated by the result of hedonic scaling which measures levels of arousal from pleasure computed by Prospect theory, and the result of intensity of stimuli. Then the energy states are fed by entropy. The feedback loop by entropy satisfies the 2nd law of thermodynamics. The energy states generated by stimuli and fed by entropy take a position in the plane of Circumplex model. Then distances between the current position and other emotions are cornputed to get a level of each emotion, proportional to the inverse of the distance. 展开更多
关键词 robot's emotion emotion generation emotion decision energy and entropy
下载PDF
Entropy Production and Fractal Dimensions in Heavy Ion Nuclear Reaction at Intermediate Energies
16
作者 Wenxia Wang Yiyan Zhao Yongzhong Xing 《Journal of Applied Mathematics and Physics》 2022年第8期2527-2537,共11页
The characteristics of the nonlinear dynamics in the Heavy Ion Collision (HIC) at intermediate energies have been studied by evaluating the productions of the Generalized Entropy (GE) and the Multifragmentation Entrop... The characteristics of the nonlinear dynamics in the Heavy Ion Collision (HIC) at intermediate energies have been studied by evaluating the productions of the Generalized Entropy (GE) and the Multifragmentation Entropy (ME) as well as the features of the information and fractal dimensions within the Isospin Quantum Molecular Dynamical Model compensated by the lattice methods. Results demonstrate from various views that the existence of deterministic chaos in the dynamical process of reaction. 展开更多
关键词 entropy Production Fractal Dimensions Chaotic Behavior Heavy Ion Nuclear Collision Intermediate energy
下载PDF
Classification of Power Quality Disturbances Using Wavelet Packet Energy Entropy and LS-SVM
17
作者 Ming Zhang Kaicheng Li Yisheng Hu 《Energy and Power Engineering》 2010年第3期154-160,共7页
The power quality (PQ) signals are traditionally analyzed in the time-domain by skilled engineers. However, PQ disturbances may not always be obvious in the original time-domain signal. Fourier analysis transforms sig... The power quality (PQ) signals are traditionally analyzed in the time-domain by skilled engineers. However, PQ disturbances may not always be obvious in the original time-domain signal. Fourier analysis transforms signals into frequency domain, but has the disadvantage that time characteristics will become unobvious. Wavelet analysis, which provides both time and frequency information, can overcome this limitation. In this paper, there were two stages in analyzing PQ signals: feature extraction and disturbances classification. To extract features from PQ signals, wavelet packet transform (WPT) was first applied and feature vectors were constructed from wavelet packet log-energy entropy of different nodes. Least square support vector machines (LS-SVM) was applied to these feature vectors to classify PQ disturbances. Simulation results show that the proposed method possesses high recognition rate, so it is suitable to the monitoring and classifying system for PQ disturbances. 展开更多
关键词 Power Quality (PQ) WAVELET PACKET Transform (WPT) WAVELET PACKET Log-energy entropy Least SQUARE Support Vector Machines (LS-SVM)
下载PDF
考虑最小平均包络熵负荷分解的最优Bagging集成超短期多元负荷预测 被引量:1
18
作者 姜飞 林政阳 +3 位作者 王文烨 王小明 奚振乾 郭祺 《中国电机工程学报》 EI CSCD 北大核心 2024年第5期1777-1788,I0009,共13页
多元负荷预测技术是保证综合能源系统(integrated energy system,IES)供需平衡与稳定运行的关键基石。但具有强随机性与波动性的IES负荷加剧了超短期多元负荷准确预测的难度。为此,提出考虑最小平均包络熵负荷分解的最优Bagging集成超... 多元负荷预测技术是保证综合能源系统(integrated energy system,IES)供需平衡与稳定运行的关键基石。但具有强随机性与波动性的IES负荷加剧了超短期多元负荷准确预测的难度。为此,提出考虑最小平均包络熵负荷分解的最优Bagging集成超短期多元负荷预测方法。构建基于最小平均包络熵的变分模态分解参数优化模型,将IES多元负荷分解为本征模态分量集合;基于统一信息系数法筛选多元负荷预测的日历、气象与负荷强相关特征;结合负荷本征模态分量集合、日历规则、气象环境与负荷数据,构建Bagging集成超短期多元负荷预测模型,并建立基于平均绝对百分比误差与决定系数的集成策略优化模型,进而得到最优集成策略与最终预测结果。以美国亚利桑那州立大学坦佩校区IES为对象展开仿真验证,结果表明,所提方法的电、热、冷负荷预测平均绝对百分比误差分别为1.9486%、2.0585%、2.5331%,相比其他预测方法具有更高准确率。 展开更多
关键词 多元负荷预测 综合能源系统 集成学习 海洋捕食者算法 包络熵
下载PDF
考虑风电机组故障电压穿越特性的连锁故障关键线路辨识 被引量:1
19
作者 徐箭 贺中豪 +3 位作者 廖思阳 邹曜坤 孙元章 杨军 《电力系统自动化》 EI CSCD 北大核心 2024年第2期82-94,共13页
新能源的接入提高了电网连锁故障发生的概率,给故障传播中关键线路的辨识增加了难度。为此,建立了考虑风电机组故障电压穿越特性和线路可靠性的连锁故障仿真模型,从线路失负荷严重程度、失负荷不均匀性和结构脆弱性3个角度建立了线路综... 新能源的接入提高了电网连锁故障发生的概率,给故障传播中关键线路的辨识增加了难度。为此,建立了考虑风电机组故障电压穿越特性和线路可靠性的连锁故障仿真模型,从线路失负荷严重程度、失负荷不均匀性和结构脆弱性3个角度建立了线路综合风险指标评价集。基于状态故障网络计及线路失负荷程度和线路失负荷不均匀性,分别定义了失负荷风险指标和不均匀风险指标;基于电气介数提出了考虑分布式新能源接入的脆弱结构指标;同时,考虑电网的网络结构和状态转移特性,采用模糊熵权法定义综合风险指标,以衡量线路开断的综合影响。通过IEEE 39节点和IEEE 118节点系统算例验证所提方法用于关键线路辨识的有效性,且针对关键线路的缓解措施能显著降低大停电风险。 展开更多
关键词 连锁故障 新能源 风电机组 故障电压穿越 电气介数 模糊熵权法
下载PDF
基于熵产理论的多级液力透平能量耗散机理分析 被引量:1
20
作者 王晓晖 蒋虎忠 +2 位作者 苗森春 白小榜 祁炳 《农业机械学报》 EI CAS CSCD 北大核心 2024年第3期162-172,共11页
液力透平作为一种液体余压能回收装置,在小水电建设和能量回收领域得到广泛应用,但其内部能量损失特性不清。以两级径流式液力透平为研究对象,基于熵产理论和Omega涡识别准则分析了各过流部件内能量耗散机理。结果表明:速度脉动和壁面... 液力透平作为一种液体余压能回收装置,在小水电建设和能量回收领域得到广泛应用,但其内部能量损失特性不清。以两级径流式液力透平为研究对象,基于熵产理论和Omega涡识别准则分析了各过流部件内能量耗散机理。结果表明:速度脉动和壁面效应是能量损失的主要来源,设计工况下二者总占比为98.03%。叶轮和导叶是透平内能量耗散的主要区域;小流量工况,叶轮损失占比较高;大流量工况下,导叶损失占比较高。叶轮内的能量损失源于叶片前缘分离涡、吸力面回流涡以及叶片尾缘涡等不稳定流动现象,而相对液流角与叶片进口安放角的不匹配是导致叶轮内产生不稳定流动的根本原因;在导叶和导叶Ⅱ-反导叶中,不同流量下导致其能量耗散的因素基本保持一致,叶片前缘失速涡和流动分离等劣态流动引起的动量交换是导致能量损失的主要原因。环形吸水室内流动的非对称性导致导叶Ⅰ各流道内熵产率分布不均匀,而导叶Ⅱ-反导叶通过正导叶的整流减小了冲击效应,各流道内熵产率分布均匀且高熵区较小。 展开更多
关键词 多级液力透平 熵产理论 Omega涡识别准则 能量耗散 熵产率
下载PDF
上一页 1 2 83 下一页 到第
使用帮助 返回顶部