It is pretty challenging and difficult to quantitatively evaluate the intensity of dynamic disasters in deep mining engineering.Based on the uniaxial loading-unloading experiments for five types of rocks,this paper in...It is pretty challenging and difficult to quantitatively evaluate the intensity of dynamic disasters in deep mining engineering.Based on the uniaxial loading-unloading experiments for five types of rocks,this paper investigated the energy evolution characteristics,and identified the damage and crack propagation thresholds.Also,the fragment size distributions of the rocks after failure were analyzed.The energy release rate(Ge)and energy dissipation rate(Gd)were then proposed to describe the change of energies per unit volume and per unit strain.Results demonstrated that the more brittle rocks had the shorter stage of unstable crack growth and the lower induced damage at crack damage thresholds.The evolution characteristics of the strain energy rates can be easily identified by the crack propagation thresholds.The failure intensity index(FId),which equals to the values of Ge/Gd at the failure point,was further put forth.It can account for the brittleness of the rocks,the intensity of rock failure as well as the degree of rock fragmentation.It was revealed that a higher FId corresponded to a lower fractal dimension and stronger dynamic failure.展开更多
Two types of experiments were designed and performed to evaluate the adhesive bond in metal foam composite sandwich structures. The tensile bond strength of face/core was determined through the flatwise tensile test ...Two types of experiments were designed and performed to evaluate the adhesive bond in metal foam composite sandwich structures. The tensile bond strength of face/core was determined through the flatwise tensile test (FWT). The test results show that the interfacial peel strength is lower than the interlaminar peel strength in FWT test. The mode I interracial fracture toughness (GIC) of sandwich structures containing a pre-crack on the upper face/core interface is determined by modified cracked sandwich beam (MCSB) experiment. It is found that the crack propagates unsynchronously on the two side of the specimen and the propagation of interfacial debonding always stays on the face/core interface during the MCSB tests. In order to simulate the failure of metal foam composite sandwich structures, a computational model based on the Tsai-Hill failure criterion and cohesive zone model is used. By comparing with experiment results, it can be concluded that the computational model can validly simulate the interracial failure of metal foam composite sandwich structures with reasonable accuracy.展开更多
In the fracture problems of hydrophilic elastic materials under coupling effects of heat conduction, moisture diffusion and mechanical deformation, the conventional J-integral is no longer path independent. The value ...In the fracture problems of hydrophilic elastic materials under coupling effects of heat conduction, moisture diffusion and mechanical deformation, the conventional J-integral is no longer path independent. The value of J is unequal to the energy release rate in hygrothermal coupling cases. In the present paper, we derived a general form of the energy release rate for hygrothermal fracture problems of the hydrophilic elastic materials on the basis of energy balance equation in cracked areas. By introducing the constitutive relations and the essential equations of irreversible thermodynamics, a specific expression of the energy release rate was obtained, and the expression can be reformmulated as path independent integrals, which is equivalent to the energy release rate of the fracture body. The path independence of the integrals is then verified numerically.展开更多
Foam-cored sandwich materials have been widely used in the civil engineering due to their advantages such as lightweight,high strength,and excellent anti-corrosion ability. However,the interfacial bonding strength of ...Foam-cored sandwich materials have been widely used in the civil engineering due to their advantages such as lightweight,high strength,and excellent anti-corrosion ability. However,the interfacial bonding strength of foamcored sandwich materials is weakened at elevated temperatures. In practice,the effect of high temperature cannot be ignored,because the composites and foams are sensitive to the change of temperature in the environment. In this study,a series of single-leg bending beams were tested at different temperatures to evaluate the influences of high temperatures on Mode Ⅰ/Ⅱ mixed interfacial fracture of foam core sandwich materials. The temperature was from29 ℃ to 90 ℃,covered the glass transition temperature of composites and foam core,respectively. The Mode Ⅰ/Ⅱ mixed interfacial crack prorogation and its corresponding interfacial strain energy release rate were summarized.展开更多
In this paper the plane elasticity problem for a functionally graded strip containing a crack is considered. It is assumed that the reciprocal of the shear modulus is a linear function of the thickness-coordinate, whi...In this paper the plane elasticity problem for a functionally graded strip containing a crack is considered. It is assumed that the reciprocal of the shear modulus is a linear function of the thickness-coordinate, while the Possion's ratio keeps constant. By utilizing the Fourier transformation technique and the transfer matrix method, the mixed boundary problem is reduced to a system of singular integral equations that are solved numerically. The influences of the geometric parameters and the graded parameter on the stress intensity factors and the strain energy release rate are investigated. The numerical results show that the graded parameters, the thickness of the strip and the crack size have significant effects on the stress intensity factors and the strain energy release rate.展开更多
Based on the analysis of the deformation in an infinite isotropic elastic matrix with an embedded elliptic crack under far field coupled tensile and shear stresses, the energy release rate and a mixed fracture criteri...Based on the analysis of the deformation in an infinite isotropic elastic matrix with an embedded elliptic crack under far field coupled tensile and shear stresses, the energy release rate and a mixed fracture criterion are obtained using an energy balance approach. The additional compliance tensor induced by a single opening elliptic microcrack in a representative volume element is derived, and the effect of microcracks with random orientations is analyzed with the Taylor's scheme by introducing an appropriate probability density function. A micromechanical damage model for rocks and concretes is obtained and is verified with experimental results.展开更多
Shear-sliding mode(mode Ⅱ)fracture of rocks is a vital failure form in deep underground engineering.To gain deep insight into the anisotropic shear fracture behaviors of a typical shale under high normal stress condi...Shear-sliding mode(mode Ⅱ)fracture of rocks is a vital failure form in deep underground engineering.To gain deep insight into the anisotropic shear fracture behaviors of a typical shale under high normal stress conditions,a series of direct shear tests were conducted on double-notched specimens in three typical bedding orientations(i.e.,the arrester,divider,short-transverse orientations)and under five normal stresses.The modeⅡfracture toughness(K_(Ⅱc))is found to exhibit a significant 3D anisotropy.The maximum K_(Ⅱc)is obtained in the divider orientation,followed by those in the arrester and short-transverse orientations.In contrast,the 3D anisotropy in the critical modeⅡenergy release rate(G_(Ⅱc))is not as significant as that in K_(Ⅱc),and G_(Ⅱc)in the arrester orientation is quite close to that in the divider orientation.The anisotropy in the prepeak input energy accumulated during shearing is found to be exactly consistent with that in G_(Ⅱc),which has not been noted before.Furthermore,the anisotropies in the modeⅡfracture resistances will,unexpectedly,not be weakened by the high normal stress.Owing to the layered structures,tensile cracks are involved during the modeⅡfracture process,resulting in the formation of rough fracture surfaces.展开更多
The fracture behavior of ferroelectrics has been intensively studied in recent decades, though currently a widely accepted fracture mechanism is still lacking. In this work, enlightened by previous experimental observ...The fracture behavior of ferroelectrics has been intensively studied in recent decades, though currently a widely accepted fracture mechanism is still lacking. In this work, enlightened by previous experimental observations that crack propagation in ferroelectrics is always accompanied by domain switching, we propose a micromechanical model in which both crack propagation and domain switching are controlled by energy-based criteria. Both electric energy and mechanical energy can induce domain switching, while only mechanical energy can drive crack propagation. Furthermore, constrained domain switching is considered in this model, leading to the gradient domain switching zone near the crack tip. Analysis results show that stress-induced ferroelastic switching always has a toughening effect as the mechanical energy release rate serves as the driving force for both fracture and domain switching. In comparison, the electric-field-induced switching may have either a toughening or detoughening effect. The proposed model can qualitatively agree with the existing experimental results.展开更多
Based on analysis of deformation in an infinite isotropic elastic matrix containing an embedded elliptic crack, subject to far field triaxial compressive stress, the energy release rate and a mixed fracture criterion ...Based on analysis of deformation in an infinite isotropic elastic matrix containing an embedded elliptic crack, subject to far field triaxial compressive stress, the energy release rate and a mixed fracture criterion are obtained by using an energy balance approach. The additional compliance tensor induced by a single closed elliptic microcrack in a representative volume element and its in-plane growth is derived. The additional compliance tensor induced by the kinked growth of the elliptic microcrack is also obtained. The effect of the microcracks, randomly distributed both in geometric characteristics and orientations, is analyzed with the Taylor's scheme by introducing an appropriate probability density function. A micromechanical damage model for rocks and concretes under triaxial compression is obtained and experimentally verified.展开更多
薄互层致密砂岩储层由于层间岩性差异、纵向非均质性强等原因,导致主裂缝难以垂向扩展,提高裂缝扩展速率可有效促进裂缝穿层扩展。为研究裂缝穿层断裂过程中的率效应机制,采用人工预制水泥-砂岩试件进行了三点弯断裂试验,通过数字图像...薄互层致密砂岩储层由于层间岩性差异、纵向非均质性强等原因,导致主裂缝难以垂向扩展,提高裂缝扩展速率可有效促进裂缝穿层扩展。为研究裂缝穿层断裂过程中的率效应机制,采用人工预制水泥-砂岩试件进行了三点弯断裂试验,通过数字图像法监测了裂缝扩展至层间接触界面处时的断裂过程区(fracture process zone,FPZ)发育特征;基于断裂动力学理论,提出了考虑率效应的裂缝扩展路径预测模型。研究结果表明:低速扩展时裂缝形态曲折,FPZ呈现短、宽的现象,高速扩展时裂缝平直,FPZ呈现长、窄的特点;FPZ存在离散性,且存在相互吸引的特点,裂缝从低弹性模量岩石向高弹性模量岩石低速扩展时层间接触界面处会提前产生高应变区,导致裂缝扩展至层间接触界面处时沿层扩展,高速扩展无此现象;岩石抗拉强度与裂缝穿越单元体的平均抗拉强度呈正相关关系,低扩展速率裂缝优先沿微缺陷扩展,导致岩石抗拉强度降低,高扩展速率裂缝优先沿自相似方向扩展,穿过大量高强度单元导致岩石抗拉强度增加;裂缝与层间接触界面夹角越大,裂缝越容易穿层扩展,裂缝与层间接触界面夹角为30°时,夹角影响效果最大,夹角超过30°时影响效果逐渐下降。研究结果对水力压裂参数优化、增加水力裂缝高度、提高薄互层致密砂岩油气产量具有重要意义。展开更多
In order to effectively describe the progressively intralaminar and interlam- inar damage for composite laminates, a three dimensional progressive damage model for composite laminates to be used for low-velocity impac...In order to effectively describe the progressively intralaminar and interlam- inar damage for composite laminates, a three dimensional progressive damage model for composite laminates to be used for low-velocity impact is presented. Being applied to three-dimensional (3D) solid elements and cohesive elements, the nonlinear damage model can be used to analyze the dynamic performance of composite structure and its failure be- havior. For the intralaminar damage, as a function of the energy release rate, the damage model in an exponential function can describe progressive development of the damage. For the interlaminar damage, the damage evolution is described by the framework of the continuum mechanics through cohesive elements. Coding the user subroutine VUMAT of the finite element software ABAQUS/Explicit, the model is applied to an example, i.e., carbon fiber reinforced epoxy composite laminates under low-velocity impact. It is shown that the prediction of damage and deformation agrees well with the experimental results.展开更多
An elastoplastic damage constitutive model to simulate nonlinear behavior of concrete is presented. Similar to traditional plastic theory, the irreversible deformation is modeled in effective stress space. In order to...An elastoplastic damage constitutive model to simulate nonlinear behavior of concrete is presented. Similar to traditional plastic theory, the irreversible deformation is modeled in effective stress space. In order to better describe different stiffness degradation mechanisms of concrete under tensile and compressive loading conditions, two damage variables, i.e., tension and compression are introduced, to quantitatively evaluate the degree of deterioration of concrete structure. The rate dependent behavior is taken into account, and this model is derived firmly in the framework of irreversible thermodynamics. Fully implicit backward-Euler algorithm is suggested to perform constitutive integration. Numerical results of the model accord well with the test results for specimens under uniaxial tension and compression, biaxial loading and triaxial loading. Failure processes of double-edge-notched (DEN) specimen are also simulated to further validate the proposed model.展开更多
This article demonstrates a novel approach for material nonlinear analysis.This analysis procedure eliminates tedious and lengthy step by step incremental and then iterative procedure adopted classically and gives dir...This article demonstrates a novel approach for material nonlinear analysis.This analysis procedure eliminates tedious and lengthy step by step incremental and then iterative procedure adopted classically and gives direct results in the linear as well as in nonlinear range of the material behavior.Use of elastic moduli is eliminated.Instead,stress and strain functions are used as the material input in the analysis procedure.These stress and strain functions are directly derived from the stress-strain behavior of the material by the method of curve fitting.This way,the whole stress-strain diagram is utilized in the analysis which naturally exposes the response of structure when loading is in nonlinear range of the material behavior.It is found that it is an excellent computational procedure adopted so far for material nonlinear analysis which gives very accurate results,easy to adopt and simple in calculations.The method eliminates all types of linearity assumptions in basic derivations of equations and hence,eliminates all types of possibility of errors in the analysis procedure as well.As it is required to know stress distribution in the structural body by proper modelling and structural idealization,the proposed analysis approach can be regarded as stress-based analysis procedure.Basic problems such as uniaxial problem,beam bending,and torsion problems are solved.It is found that approach is very suitable for solving the problems of fracture mechanics.Energy release rate for plate with center crack and double cantilever beam specimen is also evaluated.The approach solves the fracture problem with relative ease in strength of material style calculations.For all problems,results are compared with the classical displacement-based liner theory.展开更多
基金This work is financially supported by the fluidization mining for deep coal resources,China(No.3021802)the National Natural Science Foundation of China,China(Nos.51604260 and 51934007)Jiangsu Province Science Foundation for Youths,China(No.BK20180653).
文摘It is pretty challenging and difficult to quantitatively evaluate the intensity of dynamic disasters in deep mining engineering.Based on the uniaxial loading-unloading experiments for five types of rocks,this paper investigated the energy evolution characteristics,and identified the damage and crack propagation thresholds.Also,the fragment size distributions of the rocks after failure were analyzed.The energy release rate(Ge)and energy dissipation rate(Gd)were then proposed to describe the change of energies per unit volume and per unit strain.Results demonstrated that the more brittle rocks had the shorter stage of unstable crack growth and the lower induced damage at crack damage thresholds.The evolution characteristics of the strain energy rates can be easily identified by the crack propagation thresholds.The failure intensity index(FId),which equals to the values of Ge/Gd at the failure point,was further put forth.It can account for the brittleness of the rocks,the intensity of rock failure as well as the degree of rock fragmentation.It was revealed that a higher FId corresponded to a lower fractal dimension and stronger dynamic failure.
基金supported by the Major State Basic Research Development Program of China(973Program)under the contract No.2006CB601206
文摘Two types of experiments were designed and performed to evaluate the adhesive bond in metal foam composite sandwich structures. The tensile bond strength of face/core was determined through the flatwise tensile test (FWT). The test results show that the interfacial peel strength is lower than the interlaminar peel strength in FWT test. The mode I interracial fracture toughness (GIC) of sandwich structures containing a pre-crack on the upper face/core interface is determined by modified cracked sandwich beam (MCSB) experiment. It is found that the crack propagates unsynchronously on the two side of the specimen and the propagation of interfacial debonding always stays on the face/core interface during the MCSB tests. In order to simulate the failure of metal foam composite sandwich structures, a computational model based on the Tsai-Hill failure criterion and cohesive zone model is used. By comparing with experiment results, it can be concluded that the computational model can validly simulate the interracial failure of metal foam composite sandwich structures with reasonable accuracy.
基金The project supported by the Key Project of Chinese Ministry of Education (03145)the Science Fund of Southwest Jiaotong University
文摘In the fracture problems of hydrophilic elastic materials under coupling effects of heat conduction, moisture diffusion and mechanical deformation, the conventional J-integral is no longer path independent. The value of J is unequal to the energy release rate in hygrothermal coupling cases. In the present paper, we derived a general form of the energy release rate for hygrothermal fracture problems of the hydrophilic elastic materials on the basis of energy balance equation in cracked areas. By introducing the constitutive relations and the essential equations of irreversible thermodynamics, a specific expression of the energy release rate was obtained, and the expression can be reformmulated as path independent integrals, which is equivalent to the energy release rate of the fracture body. The path independence of the integrals is then verified numerically.
基金supported in part by the National Key Research and Development Program of China(No.2017YFC0703001)the National Natural Science Foundation of China(No. 51678297).
文摘Foam-cored sandwich materials have been widely used in the civil engineering due to their advantages such as lightweight,high strength,and excellent anti-corrosion ability. However,the interfacial bonding strength of foamcored sandwich materials is weakened at elevated temperatures. In practice,the effect of high temperature cannot be ignored,because the composites and foams are sensitive to the change of temperature in the environment. In this study,a series of single-leg bending beams were tested at different temperatures to evaluate the influences of high temperatures on Mode Ⅰ/Ⅱ mixed interfacial fracture of foam core sandwich materials. The temperature was from29 ℃ to 90 ℃,covered the glass transition temperature of composites and foam core,respectively. The Mode Ⅰ/Ⅱ mixed interfacial crack prorogation and its corresponding interfacial strain energy release rate were summarized.
基金Project supported by the National Natural Science Foundation of China (No. 10432030 and No. 10125209).
文摘In this paper the plane elasticity problem for a functionally graded strip containing a crack is considered. It is assumed that the reciprocal of the shear modulus is a linear function of the thickness-coordinate, while the Possion's ratio keeps constant. By utilizing the Fourier transformation technique and the transfer matrix method, the mixed boundary problem is reduced to a system of singular integral equations that are solved numerically. The influences of the geometric parameters and the graded parameter on the stress intensity factors and the strain energy release rate are investigated. The numerical results show that the graded parameters, the thickness of the strip and the crack size have significant effects on the stress intensity factors and the strain energy release rate.
基金the National Natural Science Foundation of China (Nos.E50725414 and E50621403).
文摘Based on the analysis of the deformation in an infinite isotropic elastic matrix with an embedded elliptic crack under far field coupled tensile and shear stresses, the energy release rate and a mixed fracture criterion are obtained using an energy balance approach. The additional compliance tensor induced by a single opening elliptic microcrack in a representative volume element is derived, and the effect of microcracks with random orientations is analyzed with the Taylor's scheme by introducing an appropriate probability density function. A micromechanical damage model for rocks and concretes is obtained and is verified with experimental results.
基金Project(12172240)supported by the National Natural Science Foundation of ChinaProject(2021YFH0030)supported by the Science&Technology Department of Sichuan Province,China。
文摘Shear-sliding mode(mode Ⅱ)fracture of rocks is a vital failure form in deep underground engineering.To gain deep insight into the anisotropic shear fracture behaviors of a typical shale under high normal stress conditions,a series of direct shear tests were conducted on double-notched specimens in three typical bedding orientations(i.e.,the arrester,divider,short-transverse orientations)and under five normal stresses.The modeⅡfracture toughness(K_(Ⅱc))is found to exhibit a significant 3D anisotropy.The maximum K_(Ⅱc)is obtained in the divider orientation,followed by those in the arrester and short-transverse orientations.In contrast,the 3D anisotropy in the critical modeⅡenergy release rate(G_(Ⅱc))is not as significant as that in K_(Ⅱc),and G_(Ⅱc)in the arrester orientation is quite close to that in the divider orientation.The anisotropy in the prepeak input energy accumulated during shearing is found to be exactly consistent with that in G_(Ⅱc),which has not been noted before.Furthermore,the anisotropies in the modeⅡfracture resistances will,unexpectedly,not be weakened by the high normal stress.Owing to the layered structures,tensile cracks are involved during the modeⅡfracture process,resulting in the formation of rough fracture surfaces.
基金supported by the National Natural Science Foundation of China (Grants 11422216, 11521202)
文摘The fracture behavior of ferroelectrics has been intensively studied in recent decades, though currently a widely accepted fracture mechanism is still lacking. In this work, enlightened by previous experimental observations that crack propagation in ferroelectrics is always accompanied by domain switching, we propose a micromechanical model in which both crack propagation and domain switching are controlled by energy-based criteria. Both electric energy and mechanical energy can induce domain switching, while only mechanical energy can drive crack propagation. Furthermore, constrained domain switching is considered in this model, leading to the gradient domain switching zone near the crack tip. Analysis results show that stress-induced ferroelastic switching always has a toughening effect as the mechanical energy release rate serves as the driving force for both fracture and domain switching. In comparison, the electric-field-induced switching may have either a toughening or detoughening effect. The proposed model can qualitatively agree with the existing experimental results.
基金supported by the National Natural Science Foundation of China (Nos. 10872220 and 50725414)Japan Society for the Promotion of Science JSPS (No. L08538)
文摘Based on analysis of deformation in an infinite isotropic elastic matrix containing an embedded elliptic crack, subject to far field triaxial compressive stress, the energy release rate and a mixed fracture criterion are obtained by using an energy balance approach. The additional compliance tensor induced by a single closed elliptic microcrack in a representative volume element and its in-plane growth is derived. The additional compliance tensor induced by the kinked growth of the elliptic microcrack is also obtained. The effect of the microcracks, randomly distributed both in geometric characteristics and orientations, is analyzed with the Taylor's scheme by introducing an appropriate probability density function. A micromechanical damage model for rocks and concretes under triaxial compression is obtained and experimentally verified.
文摘薄互层致密砂岩储层由于层间岩性差异、纵向非均质性强等原因,导致主裂缝难以垂向扩展,提高裂缝扩展速率可有效促进裂缝穿层扩展。为研究裂缝穿层断裂过程中的率效应机制,采用人工预制水泥-砂岩试件进行了三点弯断裂试验,通过数字图像法监测了裂缝扩展至层间接触界面处时的断裂过程区(fracture process zone,FPZ)发育特征;基于断裂动力学理论,提出了考虑率效应的裂缝扩展路径预测模型。研究结果表明:低速扩展时裂缝形态曲折,FPZ呈现短、宽的现象,高速扩展时裂缝平直,FPZ呈现长、窄的特点;FPZ存在离散性,且存在相互吸引的特点,裂缝从低弹性模量岩石向高弹性模量岩石低速扩展时层间接触界面处会提前产生高应变区,导致裂缝扩展至层间接触界面处时沿层扩展,高速扩展无此现象;岩石抗拉强度与裂缝穿越单元体的平均抗拉强度呈正相关关系,低扩展速率裂缝优先沿微缺陷扩展,导致岩石抗拉强度降低,高扩展速率裂缝优先沿自相似方向扩展,穿过大量高强度单元导致岩石抗拉强度增加;裂缝与层间接触界面夹角越大,裂缝越容易穿层扩展,裂缝与层间接触界面夹角为30°时,夹角影响效果最大,夹角超过30°时影响效果逐渐下降。研究结果对水力压裂参数优化、增加水力裂缝高度、提高薄互层致密砂岩油气产量具有重要意义。
基金supported by the National Natural Science Foundation of China(No.11072202)
文摘In order to effectively describe the progressively intralaminar and interlam- inar damage for composite laminates, a three dimensional progressive damage model for composite laminates to be used for low-velocity impact is presented. Being applied to three-dimensional (3D) solid elements and cohesive elements, the nonlinear damage model can be used to analyze the dynamic performance of composite structure and its failure be- havior. For the intralaminar damage, as a function of the energy release rate, the damage model in an exponential function can describe progressive development of the damage. For the interlaminar damage, the damage evolution is described by the framework of the continuum mechanics through cohesive elements. Coding the user subroutine VUMAT of the finite element software ABAQUS/Explicit, the model is applied to an example, i.e., carbon fiber reinforced epoxy composite laminates under low-velocity impact. It is shown that the prediction of damage and deformation agrees well with the experimental results.
基金supported by the National Natural Science Foundation of China(Grant No.90510018)the Education Department of Liaoning Province(Grant No.2006T019)
文摘An elastoplastic damage constitutive model to simulate nonlinear behavior of concrete is presented. Similar to traditional plastic theory, the irreversible deformation is modeled in effective stress space. In order to better describe different stiffness degradation mechanisms of concrete under tensile and compressive loading conditions, two damage variables, i.e., tension and compression are introduced, to quantitatively evaluate the degree of deterioration of concrete structure. The rate dependent behavior is taken into account, and this model is derived firmly in the framework of irreversible thermodynamics. Fully implicit backward-Euler algorithm is suggested to perform constitutive integration. Numerical results of the model accord well with the test results for specimens under uniaxial tension and compression, biaxial loading and triaxial loading. Failure processes of double-edge-notched (DEN) specimen are also simulated to further validate the proposed model.
文摘This article demonstrates a novel approach for material nonlinear analysis.This analysis procedure eliminates tedious and lengthy step by step incremental and then iterative procedure adopted classically and gives direct results in the linear as well as in nonlinear range of the material behavior.Use of elastic moduli is eliminated.Instead,stress and strain functions are used as the material input in the analysis procedure.These stress and strain functions are directly derived from the stress-strain behavior of the material by the method of curve fitting.This way,the whole stress-strain diagram is utilized in the analysis which naturally exposes the response of structure when loading is in nonlinear range of the material behavior.It is found that it is an excellent computational procedure adopted so far for material nonlinear analysis which gives very accurate results,easy to adopt and simple in calculations.The method eliminates all types of linearity assumptions in basic derivations of equations and hence,eliminates all types of possibility of errors in the analysis procedure as well.As it is required to know stress distribution in the structural body by proper modelling and structural idealization,the proposed analysis approach can be regarded as stress-based analysis procedure.Basic problems such as uniaxial problem,beam bending,and torsion problems are solved.It is found that approach is very suitable for solving the problems of fracture mechanics.Energy release rate for plate with center crack and double cantilever beam specimen is also evaluated.The approach solves the fracture problem with relative ease in strength of material style calculations.For all problems,results are compared with the classical displacement-based liner theory.