Ammonia(NH_(3))is an irreplaceable chemical that has been widely demanded to keep the sustainable development of modern society.However,its industrial production consumes a huge amount of energy and releases extraordi...Ammonia(NH_(3))is an irreplaceable chemical that has been widely demanded to keep the sustainable development of modern society.However,its industrial production consumes a huge amount of energy and releases extraordinary greenhouse gases(GHGs),leading to various environmental issues.Achieving the green production of ammonia is a great challenge,which has been extensively pursued in the last decade.In this review,the most promising strategy,electrochemical nitrate reduction reaction(e-NO_(3)RR),is comprehensively investigated to give a complete understanding of its development and mechanism and provide guidance for future directions.However,owing to the complex reactions and limited selectivity,a comprehensive understanding of the mechanisms is crucial to further development and commercialization.Moreover,NO_(3)^(-)RR is a promising strategy for simultaneous water treatment and NH_(3)production.A detailed overview of the recent progress in NO_(3)^(-)RR for NH_(3)production with nontransition and transition metal based electrocatalysts is summarized.In addition,critical advanced techniques,future challenges,and prospects are discussed to guide future research on transition metal-based catalysts for commercial NH_(3)synthesis by NO_(3)^(-)reduction.展开更多
China has achieved economic growth while great carbon emissions reduction in recent years. Amid China's effort to reduce emissions, the Five-Year Plans have guided and motivated local and foreign forces from the gove...China has achieved economic growth while great carbon emissions reduction in recent years. Amid China's effort to reduce emissions, the Five-Year Plans have guided and motivated local and foreign forces from the government, industries, and society to work together. This paper showed that a mediumehigh economic growth gate, industry structure adjustment, and energy structure adjustment, which are guaranteed under the Five-Year Plan, all contribute to energy saving in China. The economy entered a stable growing phase during the 12 th Five-Year Plan, while the economic growth rate declined to 7.8% from 11.2% in the 11 th Five-Year Plan. Simultaneously, the CO2 emissions growth rate declined from8.32%(2009-2012 mean) to 1.82%(2012-2014 mean). Industrial structure adjustment canceled out nearly one-third of the CO2 emissions caused by economic growth. Under the 13 th Five-Year Plan, China will continue its energy saving efforts on the green development path, with greener quotas, a stricter implementation process, and more key projects.展开更多
Based on the annual production data collected by the Statistic Center of the Ministry of Railways of the People's Republic of China, we calculated the energy saving and direct emission reductions of CO2, soot, SO2, C...Based on the annual production data collected by the Statistic Center of the Ministry of Railways of the People's Republic of China, we calculated the energy saving and direct emission reductions of CO2, soot, SO2, CO, NOx and CnHm of electrified railways, and analyzed their dynamic characteristics during the period of 1975 2007. The results show that during this period, the annual mean values of energy saving is 1.23×10^6 tce, and direct emission reduction of CO2, soot, SO2, CO, NOx and CnHm are 4.267×10^6 t, 20.5×10^3 t, 3.0×10^3 t, 9.6×10^3 t, 67.9×10^3 t, and 6.9×10^3 t per year, respectively. The annual average increasing rates of energy saving is 139×10^3 tce, and direct emission reduction of CO2, soot, SO2, CO, NOx and CnHm are 483×10^3 t, 2.3×10^3 t, 0.34×10^3 t, 1.1×10^3 t, 7.7 ×10^3 t and 0.78×10^3 t per year, respectively. The electrified railways have played an important role in decreasing the energy consumption and air pollutant emissions of China's railway system. The results of this study could provide some reference knowledge for future reductions of energy consumption and waste gas emission in China's railway transportation.展开更多
With the startup and execution of new socialistic countryside construction in Heilongjiang Province,the transition from castoff to resource is strengthened in the countryside,aiming at neat appearance of the countrysi...With the startup and execution of new socialistic countryside construction in Heilongjiang Province,the transition from castoff to resource is strengthened in the countryside,aiming at neat appearance of the countryside,clean production and saving energy.People produce biogas and provide the countryside with new energy by means of turning livestock's dejection into resources,composting of the plant and animal's leavings in the courtyard and even in the factory.It is helpful for the countryside to conserve the energy and reduce emission of the waste.And it also plays an important role in protecting the eco-environment,beautifying homestead and developing the ecological agriculture and so on.The liquid and solid residue in the biogas production can be reused as fertilizer for crops or food for animals after pretreatment,which is propitious to accelerate the development of the circular economy in Heilongjiang Province.展开更多
This paper analyzes the main problems of Sinopec Beijing Yanshan Petrochemical Co.,Ltd.,such as decentralized steam system layout,many types of fuels,obvious increase in fuel cost,low operation efficiency of turbine a...This paper analyzes the main problems of Sinopec Beijing Yanshan Petrochemical Co.,Ltd.,such as decentralized steam system layout,many types of fuels,obvious increase in fuel cost,low operation efficiency of turbine and boiler and high self consumption loss,and puts forward and implements optimization and improvement measures such as pressure raising transformation of natural gas system,adjustment of energy consumption structure,reduction of energy consumption cost,improvement of steam production quality and equipment efficiency.The results showed that compared with the fuel consumption in 2018,the consumption of coal coke was reduced by 550000 t,the consumption of natural gas was increased by 170000 t,and the total consumption of fuel gas and fuel oil was increased by 50000 t,equivalent to 246000 t of standard coal;the purchased electricity was increased by about 5×10^(8) kW·h.Green power trading and 14.76 MW distributed photovoltaic projects were carried out.According to the calculation of 1400-1600 h annual power generation in class II photovoltaic areas and the emission factor of North China regional power grid baseline,the annual emission reduction was about 55000 t CO_(2) in 2021.After the above transformation,the goal of zero-coking is achieved;the steam consumption of units is reduced by 21.5%,the steam production of boilers is reduced by 24.9%,and the annual emission reduction is about 760000 t CO_(2),which has achieved good results.展开更多
This paper describes two case studies: 1) a cogeneration system of a hospital and 2) a heat pump system installed in an aquarium that uses seawater for latent heat storage. The cogeneration system is an autonomous sys...This paper describes two case studies: 1) a cogeneration system of a hospital and 2) a heat pump system installed in an aquarium that uses seawater for latent heat storage. The cogeneration system is an autonomous system that combines the generation of electrical, heating, and cooling energies in a hospital. Cogeneration systems can provide simultaneous heating and cooling. No technical obstacles were identified for implementing the cogeneration system. The average ratio between electric and thermal loads in the hospital was suitable for the cogeneration system operation. An analysis performed for a non-optimized cogeneration system predicted large potential for energy savings and CO2 reduction. The heat pump system using a low-temperature unutilized heat source is introduced on a heat source load responsive heat pump system, which combines a load variation responsive heat pump utilizing seawater with a latent heat-storage system (ice and water slurry), using nighttime electric power to level the electric power load. The experimental coefficient of performance (COP) of the proposed heat exchanger from the heat pump system, assisted by using seawater as latent heat storage for cooling, is discussed in detail.展开更多
The renewable energy will play significant role in the world primary energy consumption in the future. Geothermal energy is immense with 5 000 EJ/a of technical potential, and geothermal heat pumps (GHPs) are one of t...The renewable energy will play significant role in the world primary energy consumption in the future. Geothermal energy is immense with 5 000 EJ/a of technical potential, and geothermal heat pumps (GHPs) are one of the fastest growing applications of renewable energy in the world with annual increases of 10 % and much faster in China. With high coefficient of performance (COP) up to 6, GHPs make efficiency of primary energy more than 240 % with assumed a 40 % of electricity generation efficiency, which means energy savings and CO2 emission reduction. In this paper,the geothermal resources and its utilization are talked about, and GHPs technology was introduced. Due to its high efficiency, there will be energy savings by using GHPs. There is also CO2 emission reduction because of using geothermal heat pumps, which is analyzed in the end.展开更多
The electricity consumption in commercial places like universities has tremendously increased recently. Modern and advanced energy efficient appliances are highly needed to substitute the conventional ones. Energy sav...The electricity consumption in commercial places like universities has tremendously increased recently. Modern and advanced energy efficient appliances are highly needed to substitute the conventional ones. Energy saving is of great important instead of its wastage, as utilizing the energy efficiently reduces the cost of energy. Energy consumption varies for commercial building due to several factors such as electrical appliance usage, electrical appliance type, management, etc. Due to the advancement in technology, there are new emergence appliances that are of high efficiency and have less energy consumption. A case study is conducted on selected five tutorial rooms, level 4 buildings in the Faculty of Electrical Engineering 19 A, Universiti Teknologi Malaysia. The paper proposes new emergence equipments with high efficiency and less power consumption to replace the existing ones. A survey is conducted on the number of electrical appliances used for each of the tutorial rooms, time table for each tutorial room and the Tenaga Nasional Berhad pricing and tariff are taken into consideration in the analysis of the energy consumption and the cost of energy. This paper aims at reducing the amount of energy consumption by replacing the existing electrical equipments with high efficient electrical equipments;it also tends to reduce the cost of energy paid to the utility. By observing the results, it shows that the proposed efficient electrical equipments are more efficient, less power consumption and less cost compared to the existing electrical equipments.展开更多
This paper presents the development status of thermal and nuclear power industries in China in recent years. It makes a comparison between the two industries from the aspects of reliability, economics, energy saving a...This paper presents the development status of thermal and nuclear power industries in China in recent years. It makes a comparison between the two industries from the aspects of reliability, economics, energy saving and pollutant reduction, by which the effects of expanding nuclear power on pollution control, resources conservation and eff icient energy use are evaluated, and several points of view are summarized.展开更多
Based on the research of wind power development policies, this paper put forward the reform directions to improve the disadvantages of the policies. The wind power’s grid integration status quo is introduced, and the...Based on the research of wind power development policies, this paper put forward the reform directions to improve the disadvantages of the policies. The wind power’s grid integration status quo is introduced, and the bottle neck of grid integration is analyzed. By the study on the economic benefits of wind power integration in China’s present stage, the results indicate that the wind power industry is in good condition of profits and the profits are higher with the increase of the wind resources in the areas. Through expanding the difference of the power purchase prices in different resource areas, it is beneficial for the nationwide harmonious development of wind power. At last, the present and future benefits of the energy conservation and emission reduction from wind power integration are estimated, which shows that the environmental benefits of "wind-thermal exchange" will be more and more outstanding along with the expansion of the scale of wind power.展开更多
It's been proved by theory and practice that taxation policy is one of the important means of realizing energy saving and emission reduction. The green taxation system in the Western countries has got better effec...It's been proved by theory and practice that taxation policy is one of the important means of realizing energy saving and emission reduction. The green taxation system in the Western countries has got better effects in energy saving and environmental protection. In the recent years, China has in succession released some taxation policies promoting energy saving and emission reduction, but still has a huge gap to meet the real needs of energy saving and emission reduction. By analyzing China's status quo of the polices of energy saving and emission reduction and drawing upon experiences of the developed countries about green taxation, this paper presents how to perfect ideas of China's energy saving and emission reduction taxation policies: adjusting taxes relevant to green taxation in the current taxation system, such as resource tax, consumer tax, and so on; collecting new environmental tax; perfecting the preferential taxation policies for the energy saving and environmental protection industries.展开更多
This study provides an overview of the production and classification of metallurgical slag and its impact on energy-saving and emission reduction in the metallurgical industry and an analysis of the impact of key fact...This study provides an overview of the production and classification of metallurgical slag and its impact on energy-saving and emission reduction in the metallurgical industry and an analysis of the impact of key factors on slag processing technology, including a brief account of blast furnace(BF) slag processing and applications with a focus on the steel slag disposal processes and the features of some typical processes. In view of the characteristics of the basic oxygen furnace (BOF) slag and the technical difficulties faced by the traditional processes,it describes the principle,features and technical advantages of the Baosteel short-flow (BSSF) steel slag treatment process developed by Baosteel. The thinking and outlook on the direction of the development of the metallurgical slag processing process are stated.展开更多
Current energy conservation and emissions reduction strategies in iron and steel industry were reviewed. Since foundry industry is one of the major source of energy consumption and pollution emission (especially CO 2 ...Current energy conservation and emissions reduction strategies in iron and steel industry were reviewed. Since foundry industry is one of the major source of energy consumption and pollution emission (especially CO 2 ), issues concerning energy-saving and emission-reduction have been raised by governments and the industry. Specialists from around the world carried out multidimensional analyses and evaluation on the potentials in energy conservation and emissions reduction in iron and steel industry, and proposed various kinds of analyzing models. The primary measures mainly focus on the targeted policies formulation and also on clean and highefficient technologies development. The differences and similarities in energy conservation and emission reduction in foundry industry between China and other countries were discussed, while, the future development trend was also pointed out.展开更多
In the era of modern high performance computing, GPUs have been considered an excellent accelerator for general purpose data-intensive parallel applications. To achieve application speedup from GPUs, many of performan...In the era of modern high performance computing, GPUs have been considered an excellent accelerator for general purpose data-intensive parallel applications. To achieve application speedup from GPUs, many of performance-oriented optimization techniques have been proposed. However, in order to satisfy the recent trend of power and energy consumptions, power/energy-aware optimization of GPUs needs to be investigated with detailed analysis in addition to the performance-oriented optimization. In this work, in order to explore the impact of various optimization strategies on GPU performance, power and energy consumptions, we evaluate performance and power/energy consumption of a well-known application running on different commercial GPU devices with the different optimization strategies. In particular, in order to see the more generalized performance and power consumption patterns of GPU based accelerations, our evaluations are performed with three different Nvdia GPU generations(Fermi, Kepler and Maxwell architectures), various core clock frequencies and memory clock frequencies. We analyze how a GPU kernel execution is affected by optimization and what GPU architectural factors have much impact on its performance and power/energy consumption. This paper also categorizes which optimization technique primarily improves which metric(i.e., performance, power or energy efficiency). Furthermore, voltage frequency scaling(VFS) is also applied to examine the effect of changing a clock frequency on these metrics. In general, our work shows that effective GPU optimization strategies can improve the application performance significantly without increasing power and energy consumption.展开更多
Facing increasing passenger and cargo transport demand and limited re-source in the 13th Five-Year period, how to make a breakthrough and substantial progress has become a key issue on planning and the Top-level Desig...Facing increasing passenger and cargo transport demand and limited re-source in the 13th Five-Year period, how to make a breakthrough and substantial progress has become a key issue on planning and the Top-level Design. In this paper we judged and analyzed the current development and potential demand of the energy saving and emission reduction in Beijing traffic industry. Through application of energy and emission prediction model which based on the vehicle activity data, the development goals of “one drop, double control, and triple upgrade” have been put forward. In order to achieve the goal, “5 + 1” development strategies should be implemented, and we also proposed the thinking and recommendations on sustainable development of transportation.展开更多
This study is conducted to investigate the function of paddy fields for flood reduction under different water saving irrigation techniques. A daily water balance component data including rainfall, percolation, and ove...This study is conducted to investigate the function of paddy fields for flood reduction under different water saving irrigation techniques. A daily water balance component data including rainfall, percolation, and overflow through the paddy field levee were collected from experimental paddy rice fields during rainy season cultivation. Results show that paddy field was very effective in flood reduction. More than 40% of rainfall could be stored in the paddy fields. However, the effectiveness of paddy fields in flood reduction was highly depends on the WSI technique used. Semi dry cultivation technique was the most effective one in terms of flood reduction. It retained the rainfall up to 55.7% (365 mm) of the total rainfall (636 mm) without reducing the yield. In terms of flood volume reduction, the alternate wetting and drying performed similarly with traditional continuous flooding, i.e., 37.2% and 40.8%, respectively.展开更多
With the fast development of the application of magnesium based alloys,the demand for primary magnesium is increasing dramatically all over the world.The Pidgeon process is the most widely used process for producing m...With the fast development of the application of magnesium based alloys,the demand for primary magnesium is increasing dramatically all over the world.The Pidgeon process is the most widely used process for producing magnesium in China,but suffers from problems such as high energy,resource consumption and environmental pollution.While the process of vacuum carbothermal reduction to produce magnesium(VCTRM)has attracted more and more attention as its advantages,but it has not been well-practiced in industrial applications and there also is no comprehensive and quantitative analysis of this process.This study quantified the flows of resource and energy for the Pidgeon process and the VCTRM process,then compared and analyzed these two processes with each other from three aspects.The VCTRM process results in 63.14%and 69.16%lower of non-renewable mineral resources and energy consumptions when compared to the Pidgeon process,respectively.Moreover,the low energy consumption(2.675 tce vs.8.681 tce)and material to magnesium ratio(2.953:1 vs.6.429:1)of the VCTRM process,which lead to lower greenhouse gas(GHG)emissions(8.777 t vs.26.337 t)and solid waste generation(0.522 t vs.5.465 t)with a decrease of 66.67%and 90.45%,respectively.Results indicate that the VCTRM process is a more environmentally friendly process for magnesium production with high efficiency but low cost and low pollution,and it shows a good potential to be industrialized in the future after solving the bottleneck problem of the reverse reaction.展开更多
Electrochemical carbon dioxide reduction reaction(CO_(2)RR)involves a variety of intermediates with highly correlated reaction and ad-desorption energies,hindering optimization of the catalytic activity.For example,in...Electrochemical carbon dioxide reduction reaction(CO_(2)RR)involves a variety of intermediates with highly correlated reaction and ad-desorption energies,hindering optimization of the catalytic activity.For example,increasing the binding of the*COOH to the active site will generally increase the*CO desorption energy.Breaking this relationship may be expected to dramatically improve the intrinsic activity of CO_(2)RR,but remains an unsolved challenge.Herein,we addressed this conundrum by constructing a unique atomic dispersed hetero-pair consisting of Mo-Fe di-atoms anchored on N-doped carbon carrier.This system shows an unprecedented CO_(2)RR intrinsic activity with TOF of 3336 h−1,high selectivity toward CO production,Faradaic efficiency of 95.96%at−0.60 V and excellent stability.Theoretical calculations show that the Mo-Fe diatomic sites increased the*COOH intermediate adsorption energy by bridging adsorption of*COOH intermediates.At the same time,d-d orbital coupling in the Mo-Fe di-atom results in electron delocalization and facilitates desorption of*CO intermediates.Thus,the undesirable correlation between these steps is broken.This work provides a promising approach,specifically the use of di-atoms,for breaking unfavorable relationships based on understanding of the catalytic mechanisms at the atomic scale.展开更多
The use of energy conservation emission reduction policies to promote industrial restructuring and upgrading and thus facilitate energy conservation and emission reduction is one of the 10 important strategies of envi...The use of energy conservation emission reduction policies to promote industrial restructuring and upgrading and thus facilitate energy conservation and emission reduction is one of the 10 important strategies of environmental management in China. The use of energy conservation emission reduction policies to promote industrial restructuring and upgrading and thus facilitate energy conservation and emission reduction is one of the important strategies of environmental management in China. Based on the systematic collection of 1,195 energy conservation emission reduction policies, we discuss the influence of individual measure and measure synergy of energy conservation and emission reduction policies respectively. The results show that the energy conservation and emission reduction policies have a significant effect on the overall promotion of industrial upgrading. The financial measures and guidance measures have a positive impact;the financial measures and guidance measures have significantly positive effect; however, the administrative measures, fiscal tax measures, and other economic measures do the opposite; the positive effect of the synergy of guidance measures and financial measures is greater than the negative effect of considering only the synergy of fiscal tax measures and other economic measures, and significantly greater than the negative effect of the synergy of administrative measures, fiscal tax measures, and other economic measures. We should strengthen and emphasize the use of the measure that has positive effect on industrial structure restructuring and upgrading individually and synergistically.展开更多
Based on a Life Cycle Assessment model, the effect of the whole life cycle of excessive commodity packaging on the environment was analyzed by eBalance Evaluation LCA software from production through circulation. The ...Based on a Life Cycle Assessment model, the effect of the whole life cycle of excessive commodity packaging on the environment was analyzed by eBalance Evaluation LCA software from production through circulation. The cost evaluation system and environment impact model of its three main processes, that is, material production, product machining and waste manufacturing, were established to identify the main environmental impact corresponding indicators and the influence on energy conservation and emissions reduction of excessive packaging life cycle. And packaging of moon-cakes was taken as an example to analyze the difference between the ordinary packaging and excessive packaging of moon-cakes in terms of life cycle assessment and costs analysis. Meanwhile some measures are put forward to conserve energy and reduce emissions.展开更多
基金supported by the National Natural Science Foundation of China(Grant Nos.22050410268,22176131)Shenzhen Basic Research General Project(JCYJ20210324095205015,JCYJ20220818095601002)。
文摘Ammonia(NH_(3))is an irreplaceable chemical that has been widely demanded to keep the sustainable development of modern society.However,its industrial production consumes a huge amount of energy and releases extraordinary greenhouse gases(GHGs),leading to various environmental issues.Achieving the green production of ammonia is a great challenge,which has been extensively pursued in the last decade.In this review,the most promising strategy,electrochemical nitrate reduction reaction(e-NO_(3)RR),is comprehensively investigated to give a complete understanding of its development and mechanism and provide guidance for future directions.However,owing to the complex reactions and limited selectivity,a comprehensive understanding of the mechanisms is crucial to further development and commercialization.Moreover,NO_(3)^(-)RR is a promising strategy for simultaneous water treatment and NH_(3)production.A detailed overview of the recent progress in NO_(3)^(-)RR for NH_(3)production with nontransition and transition metal based electrocatalysts is summarized.In addition,critical advanced techniques,future challenges,and prospects are discussed to guide future research on transition metal-based catalysts for commercial NH_(3)synthesis by NO_(3)^(-)reduction.
基金supported by the "study of Green space management system and protection" of mechanism Economic Development Research Center of State Forestry Administration (ZDWT-2014-3)
文摘China has achieved economic growth while great carbon emissions reduction in recent years. Amid China's effort to reduce emissions, the Five-Year Plans have guided and motivated local and foreign forces from the government, industries, and society to work together. This paper showed that a mediumehigh economic growth gate, industry structure adjustment, and energy structure adjustment, which are guaranteed under the Five-Year Plan, all contribute to energy saving in China. The economy entered a stable growing phase during the 12 th Five-Year Plan, while the economic growth rate declined to 7.8% from 11.2% in the 11 th Five-Year Plan. Simultaneously, the CO2 emissions growth rate declined from8.32%(2009-2012 mean) to 1.82%(2012-2014 mean). Industrial structure adjustment canceled out nearly one-third of the CO2 emissions caused by economic growth. Under the 13 th Five-Year Plan, China will continue its energy saving efforts on the green development path, with greener quotas, a stricter implementation process, and more key projects.
基金supported by Climate Change Special Project of China Meteorological Administration(No CCSF2011-14)
文摘Based on the annual production data collected by the Statistic Center of the Ministry of Railways of the People's Republic of China, we calculated the energy saving and direct emission reductions of CO2, soot, SO2, CO, NOx and CnHm of electrified railways, and analyzed their dynamic characteristics during the period of 1975 2007. The results show that during this period, the annual mean values of energy saving is 1.23×10^6 tce, and direct emission reduction of CO2, soot, SO2, CO, NOx and CnHm are 4.267×10^6 t, 20.5×10^3 t, 3.0×10^3 t, 9.6×10^3 t, 67.9×10^3 t, and 6.9×10^3 t per year, respectively. The annual average increasing rates of energy saving is 139×10^3 tce, and direct emission reduction of CO2, soot, SO2, CO, NOx and CnHm are 483×10^3 t, 2.3×10^3 t, 0.34×10^3 t, 1.1×10^3 t, 7.7 ×10^3 t and 0.78×10^3 t per year, respectively. The electrified railways have played an important role in decreasing the energy consumption and air pollutant emissions of China's railway system. The results of this study could provide some reference knowledge for future reductions of energy consumption and waste gas emission in China's railway transportation.
基金Supported by Foundation of Heilongjiang Province Educational Committee (11551056)Scientific Fund of Heilongjiang Province for Youth (QC2009C40)+1 种基金Fund of Harbin City Innovative Talent (2009RFQXN096)Heilongjiang Province Postdoctoral Science Foundation
文摘With the startup and execution of new socialistic countryside construction in Heilongjiang Province,the transition from castoff to resource is strengthened in the countryside,aiming at neat appearance of the countryside,clean production and saving energy.People produce biogas and provide the countryside with new energy by means of turning livestock's dejection into resources,composting of the plant and animal's leavings in the courtyard and even in the factory.It is helpful for the countryside to conserve the energy and reduce emission of the waste.And it also plays an important role in protecting the eco-environment,beautifying homestead and developing the ecological agriculture and so on.The liquid and solid residue in the biogas production can be reused as fertilizer for crops or food for animals after pretreatment,which is propitious to accelerate the development of the circular economy in Heilongjiang Province.
文摘This paper analyzes the main problems of Sinopec Beijing Yanshan Petrochemical Co.,Ltd.,such as decentralized steam system layout,many types of fuels,obvious increase in fuel cost,low operation efficiency of turbine and boiler and high self consumption loss,and puts forward and implements optimization and improvement measures such as pressure raising transformation of natural gas system,adjustment of energy consumption structure,reduction of energy consumption cost,improvement of steam production quality and equipment efficiency.The results showed that compared with the fuel consumption in 2018,the consumption of coal coke was reduced by 550000 t,the consumption of natural gas was increased by 170000 t,and the total consumption of fuel gas and fuel oil was increased by 50000 t,equivalent to 246000 t of standard coal;the purchased electricity was increased by about 5×10^(8) kW·h.Green power trading and 14.76 MW distributed photovoltaic projects were carried out.According to the calculation of 1400-1600 h annual power generation in class II photovoltaic areas and the emission factor of North China regional power grid baseline,the annual emission reduction was about 55000 t CO_(2) in 2021.After the above transformation,the goal of zero-coking is achieved;the steam consumption of units is reduced by 21.5%,the steam production of boilers is reduced by 24.9%,and the annual emission reduction is about 760000 t CO_(2),which has achieved good results.
文摘This paper describes two case studies: 1) a cogeneration system of a hospital and 2) a heat pump system installed in an aquarium that uses seawater for latent heat storage. The cogeneration system is an autonomous system that combines the generation of electrical, heating, and cooling energies in a hospital. Cogeneration systems can provide simultaneous heating and cooling. No technical obstacles were identified for implementing the cogeneration system. The average ratio between electric and thermal loads in the hospital was suitable for the cogeneration system operation. An analysis performed for a non-optimized cogeneration system predicted large potential for energy savings and CO2 reduction. The heat pump system using a low-temperature unutilized heat source is introduced on a heat source load responsive heat pump system, which combines a load variation responsive heat pump utilizing seawater with a latent heat-storage system (ice and water slurry), using nighttime electric power to level the electric power load. The experimental coefficient of performance (COP) of the proposed heat exchanger from the heat pump system, assisted by using seawater as latent heat storage for cooling, is discussed in detail.
文摘The renewable energy will play significant role in the world primary energy consumption in the future. Geothermal energy is immense with 5 000 EJ/a of technical potential, and geothermal heat pumps (GHPs) are one of the fastest growing applications of renewable energy in the world with annual increases of 10 % and much faster in China. With high coefficient of performance (COP) up to 6, GHPs make efficiency of primary energy more than 240 % with assumed a 40 % of electricity generation efficiency, which means energy savings and CO2 emission reduction. In this paper,the geothermal resources and its utilization are talked about, and GHPs technology was introduced. Due to its high efficiency, there will be energy savings by using GHPs. There is also CO2 emission reduction because of using geothermal heat pumps, which is analyzed in the end.
文摘The electricity consumption in commercial places like universities has tremendously increased recently. Modern and advanced energy efficient appliances are highly needed to substitute the conventional ones. Energy saving is of great important instead of its wastage, as utilizing the energy efficiently reduces the cost of energy. Energy consumption varies for commercial building due to several factors such as electrical appliance usage, electrical appliance type, management, etc. Due to the advancement in technology, there are new emergence appliances that are of high efficiency and have less energy consumption. A case study is conducted on selected five tutorial rooms, level 4 buildings in the Faculty of Electrical Engineering 19 A, Universiti Teknologi Malaysia. The paper proposes new emergence equipments with high efficiency and less power consumption to replace the existing ones. A survey is conducted on the number of electrical appliances used for each of the tutorial rooms, time table for each tutorial room and the Tenaga Nasional Berhad pricing and tariff are taken into consideration in the analysis of the energy consumption and the cost of energy. This paper aims at reducing the amount of energy consumption by replacing the existing electrical equipments with high efficient electrical equipments;it also tends to reduce the cost of energy paid to the utility. By observing the results, it shows that the proposed efficient electrical equipments are more efficient, less power consumption and less cost compared to the existing electrical equipments.
文摘This paper presents the development status of thermal and nuclear power industries in China in recent years. It makes a comparison between the two industries from the aspects of reliability, economics, energy saving and pollutant reduction, by which the effects of expanding nuclear power on pollution control, resources conservation and eff icient energy use are evaluated, and several points of view are summarized.
文摘Based on the research of wind power development policies, this paper put forward the reform directions to improve the disadvantages of the policies. The wind power’s grid integration status quo is introduced, and the bottle neck of grid integration is analyzed. By the study on the economic benefits of wind power integration in China’s present stage, the results indicate that the wind power industry is in good condition of profits and the profits are higher with the increase of the wind resources in the areas. Through expanding the difference of the power purchase prices in different resource areas, it is beneficial for the nationwide harmonious development of wind power. At last, the present and future benefits of the energy conservation and emission reduction from wind power integration are estimated, which shows that the environmental benefits of "wind-thermal exchange" will be more and more outstanding along with the expansion of the scale of wind power.
基金supported by the Key Research Project of Shandong Social Science Planning(Grant No. 07JDB071)
文摘It's been proved by theory and practice that taxation policy is one of the important means of realizing energy saving and emission reduction. The green taxation system in the Western countries has got better effects in energy saving and environmental protection. In the recent years, China has in succession released some taxation policies promoting energy saving and emission reduction, but still has a huge gap to meet the real needs of energy saving and emission reduction. By analyzing China's status quo of the polices of energy saving and emission reduction and drawing upon experiences of the developed countries about green taxation, this paper presents how to perfect ideas of China's energy saving and emission reduction taxation policies: adjusting taxes relevant to green taxation in the current taxation system, such as resource tax, consumer tax, and so on; collecting new environmental tax; perfecting the preferential taxation policies for the energy saving and environmental protection industries.
文摘This study provides an overview of the production and classification of metallurgical slag and its impact on energy-saving and emission reduction in the metallurgical industry and an analysis of the impact of key factors on slag processing technology, including a brief account of blast furnace(BF) slag processing and applications with a focus on the steel slag disposal processes and the features of some typical processes. In view of the characteristics of the basic oxygen furnace (BOF) slag and the technical difficulties faced by the traditional processes,it describes the principle,features and technical advantages of the Baosteel short-flow (BSSF) steel slag treatment process developed by Baosteel. The thinking and outlook on the direction of the development of the metallurgical slag processing process are stated.
基金supported by Guangdong Major Science and Technology Specific Project, grant number2008A080800022
文摘Current energy conservation and emissions reduction strategies in iron and steel industry were reviewed. Since foundry industry is one of the major source of energy consumption and pollution emission (especially CO 2 ), issues concerning energy-saving and emission-reduction have been raised by governments and the industry. Specialists from around the world carried out multidimensional analyses and evaluation on the potentials in energy conservation and emissions reduction in iron and steel industry, and proposed various kinds of analyzing models. The primary measures mainly focus on the targeted policies formulation and also on clean and highefficient technologies development. The differences and similarities in energy conservation and emission reduction in foundry industry between China and other countries were discussed, while, the future development trend was also pointed out.
基金supported by Basic Science Research Program through the National Research Foundation(2015R1D1A3A01019869),Korea
文摘In the era of modern high performance computing, GPUs have been considered an excellent accelerator for general purpose data-intensive parallel applications. To achieve application speedup from GPUs, many of performance-oriented optimization techniques have been proposed. However, in order to satisfy the recent trend of power and energy consumptions, power/energy-aware optimization of GPUs needs to be investigated with detailed analysis in addition to the performance-oriented optimization. In this work, in order to explore the impact of various optimization strategies on GPU performance, power and energy consumptions, we evaluate performance and power/energy consumption of a well-known application running on different commercial GPU devices with the different optimization strategies. In particular, in order to see the more generalized performance and power consumption patterns of GPU based accelerations, our evaluations are performed with three different Nvdia GPU generations(Fermi, Kepler and Maxwell architectures), various core clock frequencies and memory clock frequencies. We analyze how a GPU kernel execution is affected by optimization and what GPU architectural factors have much impact on its performance and power/energy consumption. This paper also categorizes which optimization technique primarily improves which metric(i.e., performance, power or energy efficiency). Furthermore, voltage frequency scaling(VFS) is also applied to examine the effect of changing a clock frequency on these metrics. In general, our work shows that effective GPU optimization strategies can improve the application performance significantly without increasing power and energy consumption.
文摘Facing increasing passenger and cargo transport demand and limited re-source in the 13th Five-Year period, how to make a breakthrough and substantial progress has become a key issue on planning and the Top-level Design. In this paper we judged and analyzed the current development and potential demand of the energy saving and emission reduction in Beijing traffic industry. Through application of energy and emission prediction model which based on the vehicle activity data, the development goals of “one drop, double control, and triple upgrade” have been put forward. In order to achieve the goal, “5 + 1” development strategies should be implemented, and we also proposed the thinking and recommendations on sustainable development of transportation.
文摘This study is conducted to investigate the function of paddy fields for flood reduction under different water saving irrigation techniques. A daily water balance component data including rainfall, percolation, and overflow through the paddy field levee were collected from experimental paddy rice fields during rainy season cultivation. Results show that paddy field was very effective in flood reduction. More than 40% of rainfall could be stored in the paddy fields. However, the effectiveness of paddy fields in flood reduction was highly depends on the WSI technique used. Semi dry cultivation technique was the most effective one in terms of flood reduction. It retained the rainfall up to 55.7% (365 mm) of the total rainfall (636 mm) without reducing the yield. In terms of flood volume reduction, the alternate wetting and drying performed similarly with traditional continuous flooding, i.e., 37.2% and 40.8%, respectively.
基金the Yunnan Ten Thousand Talents Plan Industrial Technology Champion Project Foundation of China(No.YNWR-CYJS-2018-015)Basic Research Project of Yunnan Province(No.2019FB080).
文摘With the fast development of the application of magnesium based alloys,the demand for primary magnesium is increasing dramatically all over the world.The Pidgeon process is the most widely used process for producing magnesium in China,but suffers from problems such as high energy,resource consumption and environmental pollution.While the process of vacuum carbothermal reduction to produce magnesium(VCTRM)has attracted more and more attention as its advantages,but it has not been well-practiced in industrial applications and there also is no comprehensive and quantitative analysis of this process.This study quantified the flows of resource and energy for the Pidgeon process and the VCTRM process,then compared and analyzed these two processes with each other from three aspects.The VCTRM process results in 63.14%and 69.16%lower of non-renewable mineral resources and energy consumptions when compared to the Pidgeon process,respectively.Moreover,the low energy consumption(2.675 tce vs.8.681 tce)and material to magnesium ratio(2.953:1 vs.6.429:1)of the VCTRM process,which lead to lower greenhouse gas(GHG)emissions(8.777 t vs.26.337 t)and solid waste generation(0.522 t vs.5.465 t)with a decrease of 66.67%and 90.45%,respectively.Results indicate that the VCTRM process is a more environmentally friendly process for magnesium production with high efficiency but low cost and low pollution,and it shows a good potential to be industrialized in the future after solving the bottleneck problem of the reverse reaction.
基金the National Natural Science Foundation of China(22279044,12034002,and 22202080)the Project for Self-Innovation Capability Construction of Jilin Province Development and Reform Commission(2021C026)+1 种基金Jilin Province Science and Technology Development Program(20210301009GX)the Fundamental Research Funds for the Central Universities.
文摘Electrochemical carbon dioxide reduction reaction(CO_(2)RR)involves a variety of intermediates with highly correlated reaction and ad-desorption energies,hindering optimization of the catalytic activity.For example,increasing the binding of the*COOH to the active site will generally increase the*CO desorption energy.Breaking this relationship may be expected to dramatically improve the intrinsic activity of CO_(2)RR,but remains an unsolved challenge.Herein,we addressed this conundrum by constructing a unique atomic dispersed hetero-pair consisting of Mo-Fe di-atoms anchored on N-doped carbon carrier.This system shows an unprecedented CO_(2)RR intrinsic activity with TOF of 3336 h−1,high selectivity toward CO production,Faradaic efficiency of 95.96%at−0.60 V and excellent stability.Theoretical calculations show that the Mo-Fe diatomic sites increased the*COOH intermediate adsorption energy by bridging adsorption of*COOH intermediates.At the same time,d-d orbital coupling in the Mo-Fe di-atom results in electron delocalization and facilitates desorption of*CO intermediates.Thus,the undesirable correlation between these steps is broken.This work provides a promising approach,specifically the use of di-atoms,for breaking unfavorable relationships based on understanding of the catalytic mechanisms at the atomic scale.
文摘The use of energy conservation emission reduction policies to promote industrial restructuring and upgrading and thus facilitate energy conservation and emission reduction is one of the 10 important strategies of environmental management in China. The use of energy conservation emission reduction policies to promote industrial restructuring and upgrading and thus facilitate energy conservation and emission reduction is one of the important strategies of environmental management in China. Based on the systematic collection of 1,195 energy conservation emission reduction policies, we discuss the influence of individual measure and measure synergy of energy conservation and emission reduction policies respectively. The results show that the energy conservation and emission reduction policies have a significant effect on the overall promotion of industrial upgrading. The financial measures and guidance measures have a positive impact;the financial measures and guidance measures have significantly positive effect; however, the administrative measures, fiscal tax measures, and other economic measures do the opposite; the positive effect of the synergy of guidance measures and financial measures is greater than the negative effect of considering only the synergy of fiscal tax measures and other economic measures, and significantly greater than the negative effect of the synergy of administrative measures, fiscal tax measures, and other economic measures. We should strengthen and emphasize the use of the measure that has positive effect on industrial structure restructuring and upgrading individually and synergistically.
文摘Based on a Life Cycle Assessment model, the effect of the whole life cycle of excessive commodity packaging on the environment was analyzed by eBalance Evaluation LCA software from production through circulation. The cost evaluation system and environment impact model of its three main processes, that is, material production, product machining and waste manufacturing, were established to identify the main environmental impact corresponding indicators and the influence on energy conservation and emissions reduction of excessive packaging life cycle. And packaging of moon-cakes was taken as an example to analyze the difference between the ordinary packaging and excessive packaging of moon-cakes in terms of life cycle assessment and costs analysis. Meanwhile some measures are put forward to conserve energy and reduce emissions.