Accurate prediction of server load is important to cloud systems for improving the resource utilization, reducing the energy consumption and guaranteeing the quality of service(QoS).This paper analyzes the features of...Accurate prediction of server load is important to cloud systems for improving the resource utilization, reducing the energy consumption and guaranteeing the quality of service(QoS).This paper analyzes the features of cloud server load and the advantages and disadvantages of typical server load prediction algorithms, integrates the cloud model(CM) and the Markov chain(MC) together to realize a new CM-MC algorithm, and then proposes a new server load prediction algorithm based on CM-MC for cloud systems. The algorithm utilizes the historical data sample training method of the cloud model, and utilizes the Markov prediction theory to obtain the membership degree vector, based on which the weighted sum of the predicted values is used for the cloud model. The experiments show that the proposed prediction algorithm has higher prediction accuracy than other typical server load prediction algorithms, especially if the data has significant volatility. The proposed server load prediction algorithm based on CM-MC is suitable for cloud systems, and can help to reduce the energy consumption of cloud data centers.展开更多
The development of Global Energy Interconnection(GEI)is essential for supporting a wide range of basic data resources.The Global Energy Interconnection Development and Cooperation Organization has established a compre...The development of Global Energy Interconnection(GEI)is essential for supporting a wide range of basic data resources.The Global Energy Interconnection Development and Cooperation Organization has established a comprehensive data center covering six major systems.However,methods for accurately describing and scientifically evaluating the credibility of the massive amount of GEI data remain underdeveloped.To address this lack of such methods,a GEI data credibility quantitative evaluation model is proposed here.An evaluation indicator system is established to evaluate data credibility from multiple perspectives and ensure the comprehensiveness and impartiality of evaluation results.The Cloud Model abandons the hard division of comments to ensure objectivity and accuracy in evaluation results.To evaluate the suitability of the proposed method,a case analysis is conducted,wherein the proposed method demonstrates sufficient validity and feasibility.展开更多
综合能源系统(integrated energy system,IES)作为能源转型中的重要环节已得到越来越多国家的广泛关注。构建一套匹配中国国情的综合能源系统评价体系和评价方法不仅能够为综合能源系统规划后评价打下基础,以此对规划方案进行优劣排序;...综合能源系统(integrated energy system,IES)作为能源转型中的重要环节已得到越来越多国家的广泛关注。构建一套匹配中国国情的综合能源系统评价体系和评价方法不仅能够为综合能源系统规划后评价打下基础,以此对规划方案进行优劣排序;还能够提高综合能源系统项目的管理水平,在制定统一、完整的综合能源系统综合评价标准时提供参考。为此,首先结合园区IES基本特征以及运行特性,构建包含经济性、可靠性、环保性以及智能友好性4个方面的综合评价指标体系;然后为解决IES在运行中的不确定性问题,对基于传统云物元模型的综合评价体系提出云熵优化,即考虑不同评价者对模糊性的可接受程度;为解决单一赋权方法可能导致的评价结果过于主观或过于客观的问题,选择基于最小鉴别信息原理将决策实验室法与熵权法相结合的综合赋权法,并采用变权法进一步完善综合评价指标;最后通过算例分析,验证所提综合评价体系的科学正确性。展开更多
电能替代是在终端能源消费环节,使用电能替代燃煤、燃油的能源消费方式,对推动能源消费革命,减少大气污染意义重大。为评估各区域电能替代潜力,从社会经济水平、能源消费结构、环保约束、经济性、配套支持5个方面构建了中国区域电能替...电能替代是在终端能源消费环节,使用电能替代燃煤、燃油的能源消费方式,对推动能源消费革命,减少大气污染意义重大。为评估各区域电能替代潜力,从社会经济水平、能源消费结构、环保约束、经济性、配套支持5个方面构建了中国区域电能替代潜力评估指标体系,并采用云模型和熵权法相组合的方法来确定各指标的权重,同时,使用联系度优化的TOPSIS(technique for order preference by similarity toan ideal solution)法对各区域的电能替代潜力进行评估。最后应用此指标体系和评估方法对国网管辖区内的25个区域的电能替代潜力进行了评估排名,并在对评估结果进行分析的基础上提出了相应的电能替代推广策略。展开更多
基金supported by the National Natural Science Foundation of China(61472192 61772286)+3 种基金the National Key Research and Development Program of China(2018YFB1003700)the Scientific and Technological Support Project(Society)of Jiangsu Province(BE2016776)the "333" Project of Jiangsu Province(BRA2017228 BRA2017401)
文摘Accurate prediction of server load is important to cloud systems for improving the resource utilization, reducing the energy consumption and guaranteeing the quality of service(QoS).This paper analyzes the features of cloud server load and the advantages and disadvantages of typical server load prediction algorithms, integrates the cloud model(CM) and the Markov chain(MC) together to realize a new CM-MC algorithm, and then proposes a new server load prediction algorithm based on CM-MC for cloud systems. The algorithm utilizes the historical data sample training method of the cloud model, and utilizes the Markov prediction theory to obtain the membership degree vector, based on which the weighted sum of the predicted values is used for the cloud model. The experiments show that the proposed prediction algorithm has higher prediction accuracy than other typical server load prediction algorithms, especially if the data has significant volatility. The proposed server load prediction algorithm based on CM-MC is suitable for cloud systems, and can help to reduce the energy consumption of cloud data centers.
基金supported by the State Grid Science and Technology Project (No. 52450018000H)
文摘The development of Global Energy Interconnection(GEI)is essential for supporting a wide range of basic data resources.The Global Energy Interconnection Development and Cooperation Organization has established a comprehensive data center covering six major systems.However,methods for accurately describing and scientifically evaluating the credibility of the massive amount of GEI data remain underdeveloped.To address this lack of such methods,a GEI data credibility quantitative evaluation model is proposed here.An evaluation indicator system is established to evaluate data credibility from multiple perspectives and ensure the comprehensiveness and impartiality of evaluation results.The Cloud Model abandons the hard division of comments to ensure objectivity and accuracy in evaluation results.To evaluate the suitability of the proposed method,a case analysis is conducted,wherein the proposed method demonstrates sufficient validity and feasibility.
文摘综合能源系统(integrated energy system,IES)作为能源转型中的重要环节已得到越来越多国家的广泛关注。构建一套匹配中国国情的综合能源系统评价体系和评价方法不仅能够为综合能源系统规划后评价打下基础,以此对规划方案进行优劣排序;还能够提高综合能源系统项目的管理水平,在制定统一、完整的综合能源系统综合评价标准时提供参考。为此,首先结合园区IES基本特征以及运行特性,构建包含经济性、可靠性、环保性以及智能友好性4个方面的综合评价指标体系;然后为解决IES在运行中的不确定性问题,对基于传统云物元模型的综合评价体系提出云熵优化,即考虑不同评价者对模糊性的可接受程度;为解决单一赋权方法可能导致的评价结果过于主观或过于客观的问题,选择基于最小鉴别信息原理将决策实验室法与熵权法相结合的综合赋权法,并采用变权法进一步完善综合评价指标;最后通过算例分析,验证所提综合评价体系的科学正确性。
文摘电能替代是在终端能源消费环节,使用电能替代燃煤、燃油的能源消费方式,对推动能源消费革命,减少大气污染意义重大。为评估各区域电能替代潜力,从社会经济水平、能源消费结构、环保约束、经济性、配套支持5个方面构建了中国区域电能替代潜力评估指标体系,并采用云模型和熵权法相组合的方法来确定各指标的权重,同时,使用联系度优化的TOPSIS(technique for order preference by similarity toan ideal solution)法对各区域的电能替代潜力进行评估。最后应用此指标体系和评估方法对国网管辖区内的25个区域的电能替代潜力进行了评估排名,并在对评估结果进行分析的基础上提出了相应的电能替代推广策略。