With the increasing demand for petroleum resources and environmental issues,new energy electric vehicles are increasingly being used.However,the large number of electric vehicles connected to the grid has brought new ...With the increasing demand for petroleum resources and environmental issues,new energy electric vehicles are increasingly being used.However,the large number of electric vehicles connected to the grid has brought new challenges to the operation of the grid.Firstly,A novel bidirectional interaction model is established based on modulation theory with nonlinear loads.Then,the electric energy measuring scheme of EVs for V2G is derived under the conditions of distorted power loads.The scheme is composed of fundamental electric energy,fundamental-distorted electric energy,distorted-fundamental electric energy and distorted electric energy.And the characteristics of each electric energy are analyzed.Finally,the correctness of the model and energy measurement method is verified by three simulation cases:the impact signals,the fluctuating signals,and the harmonic signals.展开更多
Today,ship development has concentrated on electrifying ships in commercial and military applications to improve efficiency,support highpower missile systems and reduce emissions.However,the electric propulsion of the...Today,ship development has concentrated on electrifying ships in commercial and military applications to improve efficiency,support highpower missile systems and reduce emissions.However,the electric propulsion of the shipboard system experiences torque fluctuation,thrust,and power due to the rotation of the propeller shaft and the motion of waves.In order tomeet these challenges,a new solution is needed.This paper explores hybrid energy management systems using the battery and ultracapacitor to control and optimize the electric propulsion system.The battery type and ultracapacitor are ZEBRA and MAXWELL,respectively.The 3-,4-and 5-blade propellers are considered to produce power and move rapidly.The loss factor has been reduced,and the sea states have been found through the Elephant Herding Optimization algorithm.The efficiency of the proposed system is greatly enhanced through torque,thrust and power.The model predictive controller control strategy is activated to reduce load torque and drive system Root Average Square(RMS)error.The implementations are conducted under the MATLAB platform.The values for torque,current,power,and error are measured and plotted.Finally,the performance of the proposed methodology is compared with other available algorithms such as BAT and Dragonfly(DF).The simulation results show that the results of the proposed method are superior to those of various techniques and algorithms such as BAT and Dragonfly.展开更多
Cognitive radio systems are helpful to access the unused spectrum using the popular technique, referred to as spectrum sensing. Spectrum sensing involves the detection of primary user (PU) signal using dynamic spectru...Cognitive radio systems are helpful to access the unused spectrum using the popular technique, referred to as spectrum sensing. Spectrum sensing involves the detection of primary user (PU) signal using dynamic spectrum access. Cooperative spectrum sensing takes advantage of the spatial diversity in multiple cognitive radio user networks to improve the sensing accuracy. Though the cooperative spectrum sensing schemes significantly improve the sensing accuracy, it requires the noise variance and channel state information which may lead to transmission overhead. To overcome the drawbacks in conventional cooperative spectrum sensing, this paper proposes a fuzzy system based cooperative spectrum sensing. Selection combining (SC) and maximum ratio combining (MRC) are used at fuzzy based fusion center to obtain the value of the sensing energy. These energy values are utilized in finding the presence of PU, results in improved sensing accuracy. In addition, an intelligent fuzzy fusion algorithm determines the PU presence without the channel state information based on multiple threshold values. Simulation results show that the proposed scheme outperforms the existing schemes in terms of sensing accuracy.展开更多
In accordance with a new compensation principle of discrete computations,the traditional meteo- rological global (pseudo-) spectral schemes of barotropic primitive equation (s) are transformed into perfect energy cons...In accordance with a new compensation principle of discrete computations,the traditional meteo- rological global (pseudo-) spectral schemes of barotropic primitive equation (s) are transformed into perfect energy conservative fidelity schemes,thus resolving the problems of both nonlinear computa- tional instability and incomplete energy conservation,and raising the computational efficiency of the traditional schemes. As the numerical tests of the new schemes demonstrate,in solving the problem of energy conser- vation in operational computations,the new schemes can eliminate the (nonlinear) computational in- stability and,to some extent even the (nonlinear) computational diverging as found in the traditional schemes,Further contrasts between new and traditional schemes also indicate that,in discrete opera- tional computations,the new scheme in the case of nondivergence is capable of prolonging the valid in- tegral time of the corresponding traditional scheme,and eliminating certain kind of systematical com- putational“climate drift”,meanwhile increasing its computational accuracy and reducing its amount of computation.The working principle of this paper is also applicable to the problem concerning baroclin- ic primitive equations.展开更多
A high resolution, nonhydrostatic, three dimensional diagnostic PBL model over small scale concave terrain was established in this paper. A two dimensional prognostic model was developed based on the diagnostic mo...A high resolution, nonhydrostatic, three dimensional diagnostic PBL model over small scale concave terrain was established in this paper. A two dimensional prognostic model was developed based on the diagnostic model. The hydrostatic approximation was abandoned and the simple energy ( E e ) closure scheme was used in both models. Using the two models, characteristics of PBL structure and its evolution were fully studied. The main characteristic of the PBL is the circulation, and it fairly affects the distribution of the pollutant in the pit.展开更多
In this paper, we present an efficient energy stable scheme to solve a phase field model incorporating contact line condition. Instead of the usually used Cahn-Hilliard type phase equation, we adopt the Allen-Cahn typ...In this paper, we present an efficient energy stable scheme to solve a phase field model incorporating contact line condition. Instead of the usually used Cahn-Hilliard type phase equation, we adopt the Allen-Cahn type phase field model with the static contact line boundary condition that coupled with incompressible Navier-Stokes equations with Navier boundary condition. The projection method is used to deal with the Navier-Stokes equa- tions and an auxiliary function is introduced for the non-convex Ginzburg-Landau bulk potential. We show that the scheme is linear, decoupled and energy stable. Moreover, we prove that fully discrete scheme is also energy stable. An efficient finite element spatial discretization method is implemented to verify the accuracy and efficiency of proposed schemes. Numerical results show that the proposed scheme is very efficient and accurate.展开更多
Microgrids are being developed as a building block for future smart grid system.Key issues for the control and operation of microgrid include integration technologies and energy management schemes.This paper presents ...Microgrids are being developed as a building block for future smart grid system.Key issues for the control and operation of microgrid include integration technologies and energy management schemes.This paper presents an overview of grid integration and energy management strategies of microgrids.It covers a review of power electronics interface topologies for different types of distributed generation(DG)units in a microgrid,a discussion of energy management strategies,as well as the DG interfacing converter control schemes.Considering the intermittent nature of many renewable energy based DG units,the ancillary services of DGs using the available interfacing converter rating are also discussed in the paper.展开更多
In this paper,two formulation theorems of time-difference fidelity schemes for general quadratic and cubic physical conservation laws are respectively constructed and proved,with earlier major conserving time-discreti...In this paper,two formulation theorems of time-difference fidelity schemes for general quadratic and cubic physical conservation laws are respectively constructed and proved,with earlier major conserving time-discretized schemes given as special cases.These two theorems can provide new mathematical basis for solving basic formulation problems of more types of conservative time- discrete fidelity schemes,and even for formulating conservative temporal-spatial discrete fidelity schemes by combining existing instantly conserving space-discretized schemes.Besides.the two theorems can also solve two large categories of problems about linear and nonlinear computational instability. The traditional global spectral-vertical finite-difference semi-implicit model for baroclinic primitive equations is currently used in many countries in the world for operational weather forecast and numerical simulations of general circulation.The present work,however,based on Theorem 2 formulated in this paper,develops and realizes a high-order total energy conserving semi-implicit time-difference fidelity scheme for global spectral-vertical finite-difference model of baroclinic primitive equations.Prior to this,such a basic formulation problem remains unsolved for long,whether in terms of theory or practice.The total energy conserving semi-implicit scheme formulated here is applicable to real data long-term numerical integration. The experiment of thirteen FGGE data 30-day numerical integration indicates that the new type of total energy conserving semi-implicit fidelity scheme can surely modify the systematic deviation of energy and mass conserving of the traditional scheme.It should be particularly noted that,under the experiment conditions of the present work,the systematic errors induced by the violation of physical laws of conservation in the time-discretized process regarding the traditional scheme designs(called type Z errors for short)can contribute up to one-third of the total systematic root-mean-square(RMS)error at the end of second week of the integration and exceed one half of the total amount four weeks afterwards.In contrast,by realizing a total energy conserving semi-implicit fidelity scheme and thereby eliminating corresponding type Z errors, roughly an average of one-fourth of the RMS errors in the traditional forecast cases can be reduced at the end of second week of the integration,and averagely more than one-third reduced at integral time of four weeks afterwards.In addition,experiment results also reveal that,in a sense,the effects of type Z errors are no less great than that of the real topographic forcing of the model.The prospects of the new type of total energy conserving fidelity schemes are very encouraging.展开更多
Here we focus on the numerical simulation of the phase separation about macromolecule microsphere composite (MMC) hydrogel. The model is based on time-dependent Ginzburg- Landau (TDGL) equation with the reticular ...Here we focus on the numerical simulation of the phase separation about macromolecule microsphere composite (MMC) hydrogel. The model is based on time-dependent Ginzburg- Landau (TDGL) equation with the reticular free energy. An unconditionally energy stable difference scheme is proposed based on the convex splitting of the corresponding energy functional. In the numerical experiments, we observe that simulating the whole process of the phase separation requires a considerably long time. We also notice that the total free energy changes significantly in initial stage and varies slightly in the following time. Based on these properties, we apply the adaptive time stepping strategy to improve the computational efficiency. It is found that the application of time step adaptivity can not only resolve the dynamical changes of the solution accurately but also significantly save CPU time for the long time simulation.展开更多
Once a column in building is removed due to gas explosion,vehicle impact,terrorist attack,earthquake or any natural disaster,the loading supported by removed column transfers to neighboring structural elements.If thes...Once a column in building is removed due to gas explosion,vehicle impact,terrorist attack,earthquake or any natural disaster,the loading supported by removed column transfers to neighboring structural elements.If these elements are unable to resist the supplementary loading,they continue to fail,which leads to progressive collapse of building.In this paper,an efficient strategy to model and simulate the progressive collapse of multi-story reinforced concrete structure under sudden column removal is presented.The strategy is subdivided into several connected steps including failure mechanism creation,MBS dynamic analysis and dynamic contact simulation,the latter is solved by using conserving/decaying scheme to handle the stiff nonlinear dynamic equations.The effect of gravity loads,structure-ground contact,and structure-structure contact are accounted for as well.The main novelty in this study consists in the introduction of failure function,and the proper manner to control the mechanism creation of a frame until its total failure.Moreover,this contribution pertains to a very thorough investigation of progressive collapse of the structure under sudden column removal.The proposed methodology is applied to a six-story frame,and many different progressive collapse scenarios are investigated.The results ilustrate the efficiency of the proposed strategy.展开更多
基金This work is supported by China Postdoctoral Science Foundation(2021M690798)Guizhou Province Science and Technology Plan Project(No.[2021]General 085)+1 种基金National Natural Science Foundation of China(No.61603034)the Fundamental Research Funds for the Central Universities(Nos.FRF-BD-19-002A,FRF-DF-20-14).
文摘With the increasing demand for petroleum resources and environmental issues,new energy electric vehicles are increasingly being used.However,the large number of electric vehicles connected to the grid has brought new challenges to the operation of the grid.Firstly,A novel bidirectional interaction model is established based on modulation theory with nonlinear loads.Then,the electric energy measuring scheme of EVs for V2G is derived under the conditions of distorted power loads.The scheme is composed of fundamental electric energy,fundamental-distorted electric energy,distorted-fundamental electric energy and distorted electric energy.And the characteristics of each electric energy are analyzed.Finally,the correctness of the model and energy measurement method is verified by three simulation cases:the impact signals,the fluctuating signals,and the harmonic signals.
文摘Today,ship development has concentrated on electrifying ships in commercial and military applications to improve efficiency,support highpower missile systems and reduce emissions.However,the electric propulsion of the shipboard system experiences torque fluctuation,thrust,and power due to the rotation of the propeller shaft and the motion of waves.In order tomeet these challenges,a new solution is needed.This paper explores hybrid energy management systems using the battery and ultracapacitor to control and optimize the electric propulsion system.The battery type and ultracapacitor are ZEBRA and MAXWELL,respectively.The 3-,4-and 5-blade propellers are considered to produce power and move rapidly.The loss factor has been reduced,and the sea states have been found through the Elephant Herding Optimization algorithm.The efficiency of the proposed system is greatly enhanced through torque,thrust and power.The model predictive controller control strategy is activated to reduce load torque and drive system Root Average Square(RMS)error.The implementations are conducted under the MATLAB platform.The values for torque,current,power,and error are measured and plotted.Finally,the performance of the proposed methodology is compared with other available algorithms such as BAT and Dragonfly(DF).The simulation results show that the results of the proposed method are superior to those of various techniques and algorithms such as BAT and Dragonfly.
文摘Cognitive radio systems are helpful to access the unused spectrum using the popular technique, referred to as spectrum sensing. Spectrum sensing involves the detection of primary user (PU) signal using dynamic spectrum access. Cooperative spectrum sensing takes advantage of the spatial diversity in multiple cognitive radio user networks to improve the sensing accuracy. Though the cooperative spectrum sensing schemes significantly improve the sensing accuracy, it requires the noise variance and channel state information which may lead to transmission overhead. To overcome the drawbacks in conventional cooperative spectrum sensing, this paper proposes a fuzzy system based cooperative spectrum sensing. Selection combining (SC) and maximum ratio combining (MRC) are used at fuzzy based fusion center to obtain the value of the sensing energy. These energy values are utilized in finding the presence of PU, results in improved sensing accuracy. In addition, an intelligent fuzzy fusion algorithm determines the PU presence without the channel state information based on multiple threshold values. Simulation results show that the proposed scheme outperforms the existing schemes in terms of sensing accuracy.
基金Sponsored partly by Priority-Scientific-Projects for China's 7th and 8th Five-Year Plana Priority Project of the Director's Foundation of the Institute of Atmospheric PhysicsChinese Academy of Sciences.
文摘In accordance with a new compensation principle of discrete computations,the traditional meteo- rological global (pseudo-) spectral schemes of barotropic primitive equation (s) are transformed into perfect energy conservative fidelity schemes,thus resolving the problems of both nonlinear computa- tional instability and incomplete energy conservation,and raising the computational efficiency of the traditional schemes. As the numerical tests of the new schemes demonstrate,in solving the problem of energy conser- vation in operational computations,the new schemes can eliminate the (nonlinear) computational in- stability and,to some extent even the (nonlinear) computational diverging as found in the traditional schemes,Further contrasts between new and traditional schemes also indicate that,in discrete opera- tional computations,the new scheme in the case of nondivergence is capable of prolonging the valid in- tegral time of the corresponding traditional scheme,and eliminating certain kind of systematical com- putational“climate drift”,meanwhile increasing its computational accuracy and reducing its amount of computation.The working principle of this paper is also applicable to the problem concerning baroclin- ic primitive equations.
文摘A high resolution, nonhydrostatic, three dimensional diagnostic PBL model over small scale concave terrain was established in this paper. A two dimensional prognostic model was developed based on the diagnostic model. The hydrostatic approximation was abandoned and the simple energy ( E e ) closure scheme was used in both models. Using the two models, characteristics of PBL structure and its evolution were fully studied. The main characteristic of the PBL is the circulation, and it fairly affects the distribution of the pollutant in the pit.
基金R. Chen is partially supported by the Fundamental Research Funds for Central Universities 24820182018RC25-500418780 and by the China Postdoctoral Science Foundation grant No. 2016M591122. X. Yang is partially supported by NSF DMS-1200487, NSF DMS-1418898, AFOSR FA9550-12-1-0178. H. Zhang is partially supported by NSFC/RGC Joint Research Scheme No. 11261160486, NSFC grant No. 11471046, 11571045.
文摘In this paper, we present an efficient energy stable scheme to solve a phase field model incorporating contact line condition. Instead of the usually used Cahn-Hilliard type phase equation, we adopt the Allen-Cahn type phase field model with the static contact line boundary condition that coupled with incompressible Navier-Stokes equations with Navier boundary condition. The projection method is used to deal with the Navier-Stokes equa- tions and an auxiliary function is introduced for the non-convex Ginzburg-Landau bulk potential. We show that the scheme is linear, decoupled and energy stable. Moreover, we prove that fully discrete scheme is also energy stable. An efficient finite element spatial discretization method is implemented to verify the accuracy and efficiency of proposed schemes. Numerical results show that the proposed scheme is very efficient and accurate.
文摘Microgrids are being developed as a building block for future smart grid system.Key issues for the control and operation of microgrid include integration technologies and energy management schemes.This paper presents an overview of grid integration and energy management strategies of microgrids.It covers a review of power electronics interface topologies for different types of distributed generation(DG)units in a microgrid,a discussion of energy management strategies,as well as the DG interfacing converter control schemes.Considering the intermittent nature of many renewable energy based DG units,the ancillary services of DGs using the available interfacing converter rating are also discussed in the paper.
基金The work is supported by the National Natural Science Foundation of China(49675267).
文摘In this paper,two formulation theorems of time-difference fidelity schemes for general quadratic and cubic physical conservation laws are respectively constructed and proved,with earlier major conserving time-discretized schemes given as special cases.These two theorems can provide new mathematical basis for solving basic formulation problems of more types of conservative time- discrete fidelity schemes,and even for formulating conservative temporal-spatial discrete fidelity schemes by combining existing instantly conserving space-discretized schemes.Besides.the two theorems can also solve two large categories of problems about linear and nonlinear computational instability. The traditional global spectral-vertical finite-difference semi-implicit model for baroclinic primitive equations is currently used in many countries in the world for operational weather forecast and numerical simulations of general circulation.The present work,however,based on Theorem 2 formulated in this paper,develops and realizes a high-order total energy conserving semi-implicit time-difference fidelity scheme for global spectral-vertical finite-difference model of baroclinic primitive equations.Prior to this,such a basic formulation problem remains unsolved for long,whether in terms of theory or practice.The total energy conserving semi-implicit scheme formulated here is applicable to real data long-term numerical integration. The experiment of thirteen FGGE data 30-day numerical integration indicates that the new type of total energy conserving semi-implicit fidelity scheme can surely modify the systematic deviation of energy and mass conserving of the traditional scheme.It should be particularly noted that,under the experiment conditions of the present work,the systematic errors induced by the violation of physical laws of conservation in the time-discretized process regarding the traditional scheme designs(called type Z errors for short)can contribute up to one-third of the total systematic root-mean-square(RMS)error at the end of second week of the integration and exceed one half of the total amount four weeks afterwards.In contrast,by realizing a total energy conserving semi-implicit fidelity scheme and thereby eliminating corresponding type Z errors, roughly an average of one-fourth of the RMS errors in the traditional forecast cases can be reduced at the end of second week of the integration,and averagely more than one-third reduced at integral time of four weeks afterwards.In addition,experiment results also reveal that,in a sense,the effects of type Z errors are no less great than that of the real topographic forcing of the model.The prospects of the new type of total energy conserving fidelity schemes are very encouraging.
文摘Here we focus on the numerical simulation of the phase separation about macromolecule microsphere composite (MMC) hydrogel. The model is based on time-dependent Ginzburg- Landau (TDGL) equation with the reticular free energy. An unconditionally energy stable difference scheme is proposed based on the convex splitting of the corresponding energy functional. In the numerical experiments, we observe that simulating the whole process of the phase separation requires a considerably long time. We also notice that the total free energy changes significantly in initial stage and varies slightly in the following time. Based on these properties, we apply the adaptive time stepping strategy to improve the computational efficiency. It is found that the application of time step adaptivity can not only resolve the dynamical changes of the solution accurately but also significantly save CPU time for the long time simulation.
文摘Once a column in building is removed due to gas explosion,vehicle impact,terrorist attack,earthquake or any natural disaster,the loading supported by removed column transfers to neighboring structural elements.If these elements are unable to resist the supplementary loading,they continue to fail,which leads to progressive collapse of building.In this paper,an efficient strategy to model and simulate the progressive collapse of multi-story reinforced concrete structure under sudden column removal is presented.The strategy is subdivided into several connected steps including failure mechanism creation,MBS dynamic analysis and dynamic contact simulation,the latter is solved by using conserving/decaying scheme to handle the stiff nonlinear dynamic equations.The effect of gravity loads,structure-ground contact,and structure-structure contact are accounted for as well.The main novelty in this study consists in the introduction of failure function,and the proper manner to control the mechanism creation of a frame until its total failure.Moreover,this contribution pertains to a very thorough investigation of progressive collapse of the structure under sudden column removal.The proposed methodology is applied to a six-story frame,and many different progressive collapse scenarios are investigated.The results ilustrate the efficiency of the proposed strategy.