The global shift toward next-generation energy systems is propelled by the urgent need to combat climate change and the dwindling supply of fossil fuels.This review explores the intricate challenges and opportunities ...The global shift toward next-generation energy systems is propelled by the urgent need to combat climate change and the dwindling supply of fossil fuels.This review explores the intricate challenges and opportunities for transitioning to sustainable renewable energy sources such as solar,wind,and hydrogen.This transition economically challenges traditional energy sectors while fostering new industries,promoting job growth,and sustainable economic development.The transition to renewable energy demands social equity,ensuring universal access to affordable energy,and considering community impact.The environmental benefits include a significant reduction in greenhouse gas emissions and a lesser ecological footprint.This study highlights the rapid growth of the global wind power market,which is projected to increase from$112.23 billion in 2022 to$278.43 billion by 2030,with a compound annual growth rate of 13.67%.In addition,the demand for hydrogen is expected to increase,significantly impacting the market with potential cost reductions and making it a critical renewable energy source owing to its affordability and zero emissions.By 2028,renewables are predicted to account for 42%of global electricity generation,with significant contributions from wind and solar photovoltaic(PV)technology,particularly in China,the European Union,the United States,and India.These developments signify a global commitment to diversifying energy sources,reducing emissions,and moving toward cleaner and more sustainable energy solutions.This review offers stakeholders the insights required to smoothly transition to sustainable energy,setting the stage for a resilient future.展开更多
The 28 nm process has a high cost-performance ratio and has gradually become the standard for the field of radiation-hardened devices.However,owing to the minimum physical gate length of only 35 nm,the physical area o...The 28 nm process has a high cost-performance ratio and has gradually become the standard for the field of radiation-hardened devices.However,owing to the minimum physical gate length of only 35 nm,the physical area of a standard 6T SRAM unit is approximately 0.16μm^(2),resulting in a significant enhancement of multi-cell charge-sharing effects.Multiple-cell upsets(MCUs)have become the primary physical mechanism behind single-event upsets(SEUs)in advanced nanometer node devices.The range of ionization track effects increases with higher ion energies,and spacecraft in orbit primarily experience SEUs caused by high-energy ions.However,ground accelerator experiments have mainly obtained low-energy ion irradiation data.Therefore,the impact of ion energy on the SEU cross section,charge collection mechanisms,and MCU patterns and quantities in advanced nanometer devices remains unclear.In this study,based on the experimental platform of the Heavy Ion Research Facility in Lanzhou,low-and high-energy heavy-ion beams were used to study the SEUs of 28 nm SRAM devices.The influence of ion energy on the charge collection processes of small-sensitive-volume devices,MCU patterns,and upset cross sections was obtained,and the applicable range of the inverse cosine law was clarified.The findings of this study are an important guide for the accurate evaluation of SEUs in advanced nanometer devices and for the development of radiation-hardening techniques.展开更多
Cells undergo metabolic reprogramming to adapt to changes in nutrient availability, cellular activity, and transitions in cell states. The balance between glycolysis and mitochondrial respiration is crucial for energy...Cells undergo metabolic reprogramming to adapt to changes in nutrient availability, cellular activity, and transitions in cell states. The balance between glycolysis and mitochondrial respiration is crucial for energy production, and metabolic reprogramming stipulates a shift in such balance to optimize both bioenergetic efficiency and anabolic requirements. Failure in switching bioenergetic dependence can lead to maladaptation and pathogenesis. While cellular degradation is known to recycle precursor molecules for anabolism, its potential role in regulating energy production remains less explored. The bioenergetic switch between glycolysis and mitochondrial respiration involves transcription factors and organelle homeostasis, which are both regulated by the cellular degradation pathways. A growing body of studies has demonstrated that both stem cells and differentiated cells exhibit bioenergetic switch upon perturbations of autophagic activity or endolysosomal processes. Here, we highlighted the current understanding of the interplay between degradation processes, specifically autophagy and endolysosomes, transcription factors, endolysosomal signaling, and mitochondrial homeostasis in shaping cellular bioenergetics. This review aims to summarize the relationship between degradation processes and bioenergetics, providing a foundation for future research to unveil deeper mechanistic insights into bioenergetic regulation.展开更多
Polymeric microwave actuators combining tissue-like softness with programmablemicrowave-responsive deformation hold great promise for mobile intelligentdevices and bionic soft robots. However, their application is cha...Polymeric microwave actuators combining tissue-like softness with programmablemicrowave-responsive deformation hold great promise for mobile intelligentdevices and bionic soft robots. However, their application is challenged by restricted electromagneticsensitivity and intricate sensing coupling. In this study, a sensitized polymericmicrowave actuator is fabricated by hybridizing a liquid crystal polymer with Ti3C2Tx(MXene). Compared to the initial counterpart, the hybrid polymer exhibits unique spacechargepolarization and interfacial polarization, resulting in significant improvements of230% in the dielectric loss factor and 830% in the apparent efficiency of electromagneticenergy harvest. The sensitized microwave actuation demonstrates as the shortenedresponse time of nearly 10 s, which is merely 13% of that for the initial shape memory polymer. Moreover, the ultra-low content of MXene (upto 0.15 wt%) benefits for maintaining the actuation potential of the hybrid polymer. An innovative self-powered sensing prototype that combinesdriving and piezoelectric polymers is developed, which generates real-time electric potential feedback (open-circuit potential of ~ 3 mV) duringactuation. The polarization-dominant energy conversion mechanism observed in the MXene-polymer hybrid structure furnishes a new approachfor developing efficient electromagnetic dissipative structures and shows potential for advancing polymeric electromagnetic intelligent devices.展开更多
One of the bottle-neck problems to the commercial development of supercritlcal water oxidation (SCWO) is high operation cost. In this study the condition to realize an energetically self-sufficient SCWO process is a...One of the bottle-neck problems to the commercial development of supercritlcal water oxidation (SCWO) is high operation cost. In this study the condition to realize an energetically self-sufficient SCWO process is analyzed. The reaction heat is recovered by means of Organic Rankine Circle. The process of SCWO for phenol is simulated with the Aspen Plus~ process simulator, and the results show that the influence of temperature on reaction heat is small at a constant pressure. It is reasonable to neglect the effect of temperature and to estimate the heat of reaction with average temperature when the temperature changes in a small range. The necessary condition to realize an energetically self-sufficient SCWO process is that the released energy is not less than consumed one. Whether a waste system with given chemical composition is energeticallyself-sufficient can be estimated by ^QR^QH 〉 W The thermodynamics analysis shows that energetically self-sufficient SCWO process with an Organic Rankine Cycle is a feasible technology for the recovery of SCWO reaction heat,and the energy balance point for phenol is 2wt%.展开更多
High temperature piezoelectric energy harvester(HTPEH)is an important solution to replace chemical battery to achieve independent power supply of HT wireless sensors.However,simultaneously excellent performances,inclu...High temperature piezoelectric energy harvester(HTPEH)is an important solution to replace chemical battery to achieve independent power supply of HT wireless sensors.However,simultaneously excellent performances,including high figure of merit(FOM),insulation resistivity(ρ)and depolarization temperature(Td)are indispensable but hard to achieve in lead-free piezoceramics,especially operating at 250°C has not been reported before.Herein,well-balanced performances are achieved in BiFeO3–BaTiO3 ceramics via innovative defect engineering with respect to delicate manganese doping.Due to the synergistic effect of enhancing electrostrictive coefficient by polarization configuration optimization,regulating iron ion oxidation state by high valence manganese ion and stabilizing domain orientation by defect dipole,comprehensive excellent electrical performances(Td=340°C,ρ250°C>10^(7)Ωcm and FOM_(250°C)=4905×10^(–15)m^(2)N^(−1))are realized at the solid solubility limit of manganese ions.The HT-PEHs assembled using the rationally designed piezoceramic can allow for fast charging of commercial electrolytic capacitor at 250°C with high energy conversion efficiency(η=11.43%).These characteristics demonstrate that defect engineering tailored BF-BT can satisfy high-end HT-PEHs requirements,paving a new way in developing selfpowered wireless sensors working in HT environments.展开更多
The deployment of multiple intelligent reflecting surfaces(IRSs)in blockage-prone millimeter wave(mmWave)communication networks have garnered considerable attention lately.Despite the remarkably low circuit power cons...The deployment of multiple intelligent reflecting surfaces(IRSs)in blockage-prone millimeter wave(mmWave)communication networks have garnered considerable attention lately.Despite the remarkably low circuit power consumption per IRS element,the aggregate energy consumption becomes substantial if all elements of an IRS are turned on given a considerable number of IRSs,resulting in lower overall energy efficiency(EE).To tackle this challenge,we propose a flexible and efficient approach that individually controls the status of each IRS element.Specifically,the network EE is maximized by jointly optimizing the associations of base stations(BSs)and user equipments(UEs),transmit beamforming,phase shifts of IRS elements,and the associations of individual IRS elements and UEs.The problem is efficiently addressed in two phases.First,the Gale-Shapley algorithm is applied for BS-UE association,followed by a block coordinate descent-based algorithm that iteratively solves the subproblems related to active beamforming,phase shifts,and element-UE associations.To reduce the tremendous dimensionality of optimization variables introduced by element-UE associations in large-scale IRS networks,we introduce an efficient algorithm to solve the associations between IRS elements and UEs.Numerical results show that the proposed elementwise control scheme improves EE by 34.24% compared to the network with IRS-all-on scheme.展开更多
In indoor environments,various batterypowered Internet of Things(IoT)devices,such as remote controllers and electronic tags on high-level shelves,require efficient energy management.However,manually monitoring remaini...In indoor environments,various batterypowered Internet of Things(IoT)devices,such as remote controllers and electronic tags on high-level shelves,require efficient energy management.However,manually monitoring remaining energy levels and battery replacement is both inadequate and costly.This paper introduces an energy management system for indoor IoT,which includes a mobile energy station(ES)for enabling on-demand wireless energy transfer(WET)in radio frequency(RF),some energy receivers(ERs),and a cloud server.By implementing a two-stage positioning system and embedding energy receivers into traditional IoT devices,we robustly manage their energy storage.The experimental results demonstrate that the energy receiver can harvest a minimum power of 58 mW.展开更多
The algebraic energy method (AEM) is applied to the study of molecular dissociation energy De for 11 heteronuclear diatomic electronic states: a^3∑+ state of NaK, X^2∑+ state of XeBr, X^2∑+ state of HgI, X^1...The algebraic energy method (AEM) is applied to the study of molecular dissociation energy De for 11 heteronuclear diatomic electronic states: a^3∑+ state of NaK, X^2∑+ state of XeBr, X^2∑+ state of HgI, X^1∑+ state of LiH, A3∏(1) state of IC1, X^1∑+ state of CsH, A(3∏1) and B0+(3∏) states of CIF, 21∏ state of KRb, X^1∑+ state of CO, and c^3∑+ state of NaK molecule. The results show that the values of De computed by using the AEM are satisfactorily accurate compared with experimental ones. The AEM can serve as an economic and useful tool to generate a reliable De within an allowed experimental error for the electronic states whose molecular dissociation energies are unavailable from the existing literature展开更多
Renewable energy sources, including bioenergy, are presently attracting considerable attention as possible substitutes for fossil fuels. Among the various sources of bioenergy, biomass can arguably play a significant ...Renewable energy sources, including bioenergy, are presently attracting considerable attention as possible substitutes for fossil fuels. Among the various sources of bioenergy, biomass can arguably play a significant role in the reduction of greenhouse gases and the provision of a stable energy supply. However, the use of fossil fuels continues in the production of bioenergy. Consequently, the overall extent to which biomass utilization for energy can reduce carbon dioxide emissions as a substitute for fossil fuels and whether this can improve the energy self-sufficiency rate remains largely unknown. This study responds to these questions using a case of a Japanese rural community using firewood for residential heating. The results showed that woody biomass utilization for energy is able to both reduce the dependence on fossil fuels and mitigate climate change. These findings offer new insights into the development of sustainability in rural communities.展开更多
A building integrated photovoltaic (PV) and fuel cell (FC) system is proposed for assessment of the energy self-sufficiency rate in a city in Japan. The electricity consumed in the building is mainly supplied by solar...A building integrated photovoltaic (PV) and fuel cell (FC) system is proposed for assessment of the energy self-sufficiency rate in a city in Japan. The electricity consumed in the building is mainly supplied by solar panels, while the gap between the energy demand and supply is solved by the FC that is powered by the H2 produced by water electrolysis with surplus power of PV. A desktop case study of using the proposed system in Tsu city which is located in central part of Japan, has been conducted. The results found that the self-sufficiency rates of PV system to electricity demand of households (RPV) during the daytime in April and July are higher than those in January and October. The results also reveal that the self-sufficiency rate of FC system to the electricity demand (RFC) is 15% - 38% for the day when the mean amount of horizontal solar radiation is obtained in January, April, July and October. In addition, it is found the optimum tilt angle of solar panel installed on the roof of the buildings should be 0 degree, i.e., placed horizontally.展开更多
In the present study,the modified Sverjensky-Molling equation,derived from a linear-free energy relationship,is used to predict the Gibbs free energies of formation of crystalline phases ofα-MOOH (with a goethite st...In the present study,the modified Sverjensky-Molling equation,derived from a linear-free energy relationship,is used to predict the Gibbs free energies of formation of crystalline phases ofα-MOOH (with a goethite structure)andα-M_2O_3(with a hematite structure)from the known thermodynamic properties of the corresponding aqueous trivalent cations(M^(3+)).The modified equation is expressed asΔG_(f,M_VX)~0=a_(M_VX)ΔG_(0,M^(3+))^(0)+b_(M_VX)+β_(M_VXγM^(3+)),where the coefficients a_(M_VX),b_(M_VX),andβ_(M_VX) characterize a particular structural family of M_VX(M is a trivalent cation[M^(3+)]and X represents the remainder of the composition of solid);γ^(3+)is the ionic radius of trivalent cations(M^(3+));ΔG_(f,M_VX)~0 is the standard Gibbs free energy of formation of M_vX;andΔG_(n,M^(3+))~0 is the non-solvation energy of trivalent cations(M^(3+)).By fitting the equation to the known experimental thermodynamic data,the coefficients for the goethite family(α-MOOH)are a_(M_VX)=0.8838,b_(M_VX)=-424.4431(kcal/mol),andβ_(M_VX)=115(kcal/ mol.(?)),while the coefficients for the hematite family(α-M_2O_3)are a_(M_VX)=1.7468,b_(M_VX)=-814.9573(kcal/ mol),andβ_(M_VX)=278(kcal/mol.(?)).The constrained relationship can be used to predict the standard Gibbs free energies of formation of crystalline phases and fictive phases(i.e.phases that are thermodynamically unstable and do not occur at standard conditions)within the isostructural families of goethite(α-MOOH)and hematite(α-M_2O_3)if the standard Gibbs free energies of formation of the trivalent cations are known.展开更多
Cytochrome P450s(CYPs)are ubiquitously found in all kingdoms of life,playing important role in various biosynthetic pathways as well as degradative pathways;accordingly find applications in a vast variety of areas fro...Cytochrome P450s(CYPs)are ubiquitously found in all kingdoms of life,playing important role in various biosynthetic pathways as well as degradative pathways;accordingly find applications in a vast variety of areas from organic synthesis and drug metabolite production to modification of biomaterials and bioremediation.Significantly,CYPs catalyze chemically challenging CAH and CAC activation reactions using a reactive high-valent iron-oxo intermediate generated upon dioxygen activation at their heme center,while the other oxygen atom is reduced to the level of water by electrons provided through a reductase partner protein.Self-sufficient CYPs,encoding their heme domain and reductase protein in a single polypeptide,facilitate increased catalytic efficiency and render a less complicated system to work with.The self-sufficient CYP enzyme from CYP102A family(CYP102A1,BM3)is among the earliest and most-investigated model enzymes for mechanistic and structural studies as well as for biotechnological applications.An increasing number of self-sufficient CYPs from the same CYP102 family and from other families have also been reported in last decade.In this review,we introduce chemistry and biology of CYPs,followed by an overview of the characteristics of self-sufficient CYPs and representative reactions.Enzyme engineering efforts leading to novel self-sufficient CYP variants that can catalyze synthetically useful natural and non-natural(nature-mimicking)reactions are highlighted.Lastly,the strategy and efforts that aim to circumvent the challenges for improved thermostability,regio-and enantioselectivity,and total turnover number;associated with practical use of self-sufficient CYPs are reviewed.展开更多
Background:The Compendium of Physical Activities was published in 1993 to improve the comparability of energy expenditure values assigned to self-reported physical activity(PA)across studies.The original version was u...Background:The Compendium of Physical Activities was published in 1993 to improve the comparability of energy expenditure values assigned to self-reported physical activity(PA)across studies.The original version was updated in 2000,and again in 2011,and has been widely used to support PA research,practice,and public health guidelines.Methods:This 2024 update was tailored for adults 19-59 years of age by removing data from those≥60 years.Using a systematic review and supplementary searches,we identified new activities and their associated measured metabolic equivalent(MET)values(using indirect calorimetry)published since 2011.We replaced estimated METs with measured values when possible.Results:We screened 32,173 abstracts and 1507 full-text papers and extracted 2356 PA energy expenditure values from 701 papers.We added303 new PAs and adjusted 176 existing MET values and descriptions to reflect the addition of new data and removal of METs for older adults.We added a Major Heading(Video Games).The 2024 Adult Compendium includes 1114 PAs(912 with measured and 202 with estimated values)across 22 Major Headings.Conclusion:This comprehensive update and refinement led to the creation of The 2024 Adult Compendium,which has utility across research,public health,education,and healthcare domains,as well as in the development of consumer health technologies.The new website with the complete lists of PAs and supporting resources is available at https://pacompendium.com.展开更多
Purpose:To describe the development of a Compendium for estimating the energy costs of activities in adults>60 years(OA Compendium).Methods:Physical activities(PAs)and their metabolic equivalent of task(MET)values ...Purpose:To describe the development of a Compendium for estimating the energy costs of activities in adults>60 years(OA Compendium).Methods:Physical activities(PAs)and their metabolic equivalent of task(MET)values were obtained from a systematic search of studies published in 4 sport and exercise databases(PubMed,Embase,SPORTDiscus(EBSCOhost),and Scopus)and a review of articles included in the 2011 Adult Compendium that measured PA in older adults.MET values were computed as the oxygen cost(VO_(2),mL/kg/min)during PA divided by 2.7 m L/kg/min(MET_(60+))to account for the lower resting metabolic rate in older adults.Results:We identified 68 articles and extracted energy expenditure data on 427 PAs.From these,we derived 99 unique Specific Activity codes with corresponding MET_(60+)values for older adults.We developed a website to present the OA Compendium MET_(60+)values:https://pacompendium.com.Conclusion:The OA Compendium uses data collected from adults>60 years for more accurate estimation of the energy cost of PAs in older adults.It is an accessible resource that will allow researchers,educators,and practitioners to find MET_(60+)values for older adults for use in PA research and practice.展开更多
This paper obtains accurate vibrational spectroscopic constants and full vibrational energy spectrum by the al- gebraic method (AM) for some electronic states of halogen diatomic molecules. Motivated by the recent s...This paper obtains accurate vibrational spectroscopic constants and full vibrational energy spectrum by the al- gebraic method (AM) for some electronic states of halogen diatomic molecules. Motivated by the recent success of obtaining the dissociation energies of Li2 molecule by using a new analytical formula, it further extends the formula to study the dissociation energies of halogen diatomic molecules. The results show that the AM spectrum and the theoretical dissociation energies agree well with RKR data and experimental data respectively.展开更多
Energy storage and conservation are receiving increased attention due to rising global energy demands.Therefore,the development of energy storage materials is crucial.Thermal energy storage(TES)systems based on phase ...Energy storage and conservation are receiving increased attention due to rising global energy demands.Therefore,the development of energy storage materials is crucial.Thermal energy storage(TES)systems based on phase change materials(PCMs)have increased in prominence over the past two decades,not only because of their outstanding heat storage capacities but also their superior thermal energy regulation capability.However,issues such as leakage and low thermal conductivity limit their applicability in a variety of settings.Carbon-based materials such as graphene and its derivatives can be utilized to surmount these obstacles.This study examines the recent advancements in graphene-based phase change composites(PCCs),where graphene-based nanostructures such as graphene,graphene oxide(GO),functionalized graphene/GO,and graphene aerogel(GA)are incorporated into PCMs to substantially enhance their shape stability and thermal conductivity that could be translated to better storage capacity,durability,and temperature response,thus boosting their attractiveness for TES systems.In addition,the applications of these graphene-based PCCs in various TES disciplines,such as energy conservation in buildings,solar utilization,and battery thermal management,are discussed and summarized.展开更多
Single-atom catalysts(SACs)have gained substantial attention because of their exceptional catalytic properties.However,the high surface energy limits their synthesis,thus creating significant challenges for further de...Single-atom catalysts(SACs)have gained substantial attention because of their exceptional catalytic properties.However,the high surface energy limits their synthesis,thus creating significant challenges for further development.In the last few years,metal–organic frameworks(MOFs)have received significant consideration as ideal candidates for synthesizing SACs due to their tailorable chemistry,tunable morphologies,high porosity,and chemical/thermal stability.From this perspective,this review thoroughly summarizes the previously reported methods and possible future approaches for constructing MOF-based(MOF-derived-supported and MOF-supported)SACs.Then,MOF-based SAC's identification techniques are briefly assessed to understand their coordination environments,local electronic structures,spatial distributions,and catalytic/electrochemical reaction mechanisms.This review systematically highlights several photocatalytic and electrocatalytic applications of MOF-based SACs for energy conversion and storage,including hydrogen evolution reactions,oxygen evolution reactions,O_(2)/CO_(2)/N_(2) reduction reactions,fuel cells,and rechargeable batteries.Some light is also shed on the future development of this highly exciting field by highlighting the advantages and limitations of MOF-based SACs.展开更多
The metal-organic framework(MOF)derived Ni–Co–C–N composite alloys(NiCCZ)were“embedded”inside the carbon cloth(CC)strands as opposed to the popular idea of growing them upward to realize ultrastable energy storag...The metal-organic framework(MOF)derived Ni–Co–C–N composite alloys(NiCCZ)were“embedded”inside the carbon cloth(CC)strands as opposed to the popular idea of growing them upward to realize ultrastable energy storage and conversion application.The NiCCZ was then oxygen functionalized,facilitating the next step of stoichiometric sulfur anion diffusion during hydrothermal sulfurization,generating a flower-like metal hydroxysulfide structure(NiCCZOS)with strong partial implantation inside CC.Thus obtained NiCCZOS shows an excellent capacity when tested as a supercapacitor electrode in a three-electrode configuration.Moreover,when paired with the biomass-derived nitrogen-rich activated carbon,the asymmetric supercapacitor device shows almost 100%capacity retention even after 45,000 charge–discharge cycles with remarkable energy density(59.4 Wh kg^(-1)/263.8μWh cm^(–2))owing to a uniquely designed cathode.Furthermore,the same electrode performed as an excellent bifunctional water-splitting electrocatalyst with an overpotential of 271 mV for oxygen evolution reaction(OER)and 168.4 mV for hydrogen evolution reaction(HER)at 10 mA cm−2 current density along with 30 h of unhinged chronopotentiometric stability performance for both HER and OER.Hence,a unique metal chalcogenide composite electrode/substrate configuration has been proposed as a highly stable electrode material for flexible energy storage and conversion applications.展开更多
Photoisomerization-induced phase change are important for co-harvesting the latent heat and isomerization energy of azobenzene molecules.Chemically optimizing heat output and energy delivery at alternating temperature...Photoisomerization-induced phase change are important for co-harvesting the latent heat and isomerization energy of azobenzene molecules.Chemically optimizing heat output and energy delivery at alternating temperatures are challenging because of the differences in crystallizability and isomerization.This article reports two series of asymmetrically alkyl-grafted azobenzene(Azo-g),with and without a methyl group,that have an optically triggered phase change.Three exothermic modes were designed to utilize crystallization enthalpy(△H_(c))and photothermal(isomerization)energy(△H_(p))at different temperatures determined by the crystallization.Azo-g has high heat output(275-303 J g^(-1))by synchronously releasing△H_(c)and△H_(p)over a wide temperature range(-79℃to 25℃).We fabricated a new distributed energy utilization and delivery system to realize a temperature increase of 6.6℃at a temperature of-8℃.The findings offer insight into selective utilization of latent heat and isomerization energy by molecular optimization of crystallization and isomerization processes.展开更多
文摘The global shift toward next-generation energy systems is propelled by the urgent need to combat climate change and the dwindling supply of fossil fuels.This review explores the intricate challenges and opportunities for transitioning to sustainable renewable energy sources such as solar,wind,and hydrogen.This transition economically challenges traditional energy sectors while fostering new industries,promoting job growth,and sustainable economic development.The transition to renewable energy demands social equity,ensuring universal access to affordable energy,and considering community impact.The environmental benefits include a significant reduction in greenhouse gas emissions and a lesser ecological footprint.This study highlights the rapid growth of the global wind power market,which is projected to increase from$112.23 billion in 2022 to$278.43 billion by 2030,with a compound annual growth rate of 13.67%.In addition,the demand for hydrogen is expected to increase,significantly impacting the market with potential cost reductions and making it a critical renewable energy source owing to its affordability and zero emissions.By 2028,renewables are predicted to account for 42%of global electricity generation,with significant contributions from wind and solar photovoltaic(PV)technology,particularly in China,the European Union,the United States,and India.These developments signify a global commitment to diversifying energy sources,reducing emissions,and moving toward cleaner and more sustainable energy solutions.This review offers stakeholders the insights required to smoothly transition to sustainable energy,setting the stage for a resilient future.
基金supported by the National Natural Science Foundation of China(Nos.12105341 and 12035019)the opening fund of Key Laboratory of Silicon Device and Technology,Chinese Academy of Sciences(No.KLSDTJJ2022-3).
文摘The 28 nm process has a high cost-performance ratio and has gradually become the standard for the field of radiation-hardened devices.However,owing to the minimum physical gate length of only 35 nm,the physical area of a standard 6T SRAM unit is approximately 0.16μm^(2),resulting in a significant enhancement of multi-cell charge-sharing effects.Multiple-cell upsets(MCUs)have become the primary physical mechanism behind single-event upsets(SEUs)in advanced nanometer node devices.The range of ionization track effects increases with higher ion energies,and spacecraft in orbit primarily experience SEUs caused by high-energy ions.However,ground accelerator experiments have mainly obtained low-energy ion irradiation data.Therefore,the impact of ion energy on the SEU cross section,charge collection mechanisms,and MCU patterns and quantities in advanced nanometer devices remains unclear.In this study,based on the experimental platform of the Heavy Ion Research Facility in Lanzhou,low-and high-energy heavy-ion beams were used to study the SEUs of 28 nm SRAM devices.The influence of ion energy on the charge collection processes of small-sensitive-volume devices,MCU patterns,and upset cross sections was obtained,and the applicable range of the inverse cosine law was clarified.The findings of this study are an important guide for the accurate evaluation of SEUs in advanced nanometer devices and for the development of radiation-hardening techniques.
文摘Cells undergo metabolic reprogramming to adapt to changes in nutrient availability, cellular activity, and transitions in cell states. The balance between glycolysis and mitochondrial respiration is crucial for energy production, and metabolic reprogramming stipulates a shift in such balance to optimize both bioenergetic efficiency and anabolic requirements. Failure in switching bioenergetic dependence can lead to maladaptation and pathogenesis. While cellular degradation is known to recycle precursor molecules for anabolism, its potential role in regulating energy production remains less explored. The bioenergetic switch between glycolysis and mitochondrial respiration involves transcription factors and organelle homeostasis, which are both regulated by the cellular degradation pathways. A growing body of studies has demonstrated that both stem cells and differentiated cells exhibit bioenergetic switch upon perturbations of autophagic activity or endolysosomal processes. Here, we highlighted the current understanding of the interplay between degradation processes, specifically autophagy and endolysosomes, transcription factors, endolysosomal signaling, and mitochondrial homeostasis in shaping cellular bioenergetics. This review aims to summarize the relationship between degradation processes and bioenergetics, providing a foundation for future research to unveil deeper mechanistic insights into bioenergetic regulation.
基金supported by the National Natural Science Foundation of China(No.52373280,52177014,51977009,52273257)。
文摘Polymeric microwave actuators combining tissue-like softness with programmablemicrowave-responsive deformation hold great promise for mobile intelligentdevices and bionic soft robots. However, their application is challenged by restricted electromagneticsensitivity and intricate sensing coupling. In this study, a sensitized polymericmicrowave actuator is fabricated by hybridizing a liquid crystal polymer with Ti3C2Tx(MXene). Compared to the initial counterpart, the hybrid polymer exhibits unique spacechargepolarization and interfacial polarization, resulting in significant improvements of230% in the dielectric loss factor and 830% in the apparent efficiency of electromagneticenergy harvest. The sensitized microwave actuation demonstrates as the shortenedresponse time of nearly 10 s, which is merely 13% of that for the initial shape memory polymer. Moreover, the ultra-low content of MXene (upto 0.15 wt%) benefits for maintaining the actuation potential of the hybrid polymer. An innovative self-powered sensing prototype that combinesdriving and piezoelectric polymers is developed, which generates real-time electric potential feedback (open-circuit potential of ~ 3 mV) duringactuation. The polarization-dominant energy conversion mechanism observed in the MXene-polymer hybrid structure furnishes a new approachfor developing efficient electromagnetic dissipative structures and shows potential for advancing polymeric electromagnetic intelligent devices.
文摘One of the bottle-neck problems to the commercial development of supercritlcal water oxidation (SCWO) is high operation cost. In this study the condition to realize an energetically self-sufficient SCWO process is analyzed. The reaction heat is recovered by means of Organic Rankine Circle. The process of SCWO for phenol is simulated with the Aspen Plus~ process simulator, and the results show that the influence of temperature on reaction heat is small at a constant pressure. It is reasonable to neglect the effect of temperature and to estimate the heat of reaction with average temperature when the temperature changes in a small range. The necessary condition to realize an energetically self-sufficient SCWO process is that the released energy is not less than consumed one. Whether a waste system with given chemical composition is energeticallyself-sufficient can be estimated by ^QR^QH 〉 W The thermodynamics analysis shows that energetically self-sufficient SCWO process with an Organic Rankine Cycle is a feasible technology for the recovery of SCWO reaction heat,and the energy balance point for phenol is 2wt%.
基金supported by the National Natural Science Foundation of China(Grant Nos.52272103 and 52072010)Beijing Natural Science Foundation(Grant Nos.2242029 and JL23004).
文摘High temperature piezoelectric energy harvester(HTPEH)is an important solution to replace chemical battery to achieve independent power supply of HT wireless sensors.However,simultaneously excellent performances,including high figure of merit(FOM),insulation resistivity(ρ)and depolarization temperature(Td)are indispensable but hard to achieve in lead-free piezoceramics,especially operating at 250°C has not been reported before.Herein,well-balanced performances are achieved in BiFeO3–BaTiO3 ceramics via innovative defect engineering with respect to delicate manganese doping.Due to the synergistic effect of enhancing electrostrictive coefficient by polarization configuration optimization,regulating iron ion oxidation state by high valence manganese ion and stabilizing domain orientation by defect dipole,comprehensive excellent electrical performances(Td=340°C,ρ250°C>10^(7)Ωcm and FOM_(250°C)=4905×10^(–15)m^(2)N^(−1))are realized at the solid solubility limit of manganese ions.The HT-PEHs assembled using the rationally designed piezoceramic can allow for fast charging of commercial electrolytic capacitor at 250°C with high energy conversion efficiency(η=11.43%).These characteristics demonstrate that defect engineering tailored BF-BT can satisfy high-end HT-PEHs requirements,paving a new way in developing selfpowered wireless sensors working in HT environments.
基金supported by the National Natural Science Foundation of China under grant U22A2003 and 62271515Shenzhen Science and Technology Program under grant ZDSYS20210623091807023supported by the National Natural Science Foundation of China under Grant 62301300.
文摘The deployment of multiple intelligent reflecting surfaces(IRSs)in blockage-prone millimeter wave(mmWave)communication networks have garnered considerable attention lately.Despite the remarkably low circuit power consumption per IRS element,the aggregate energy consumption becomes substantial if all elements of an IRS are turned on given a considerable number of IRSs,resulting in lower overall energy efficiency(EE).To tackle this challenge,we propose a flexible and efficient approach that individually controls the status of each IRS element.Specifically,the network EE is maximized by jointly optimizing the associations of base stations(BSs)and user equipments(UEs),transmit beamforming,phase shifts of IRS elements,and the associations of individual IRS elements and UEs.The problem is efficiently addressed in two phases.First,the Gale-Shapley algorithm is applied for BS-UE association,followed by a block coordinate descent-based algorithm that iteratively solves the subproblems related to active beamforming,phase shifts,and element-UE associations.To reduce the tremendous dimensionality of optimization variables introduced by element-UE associations in large-scale IRS networks,we introduce an efficient algorithm to solve the associations between IRS elements and UEs.Numerical results show that the proposed elementwise control scheme improves EE by 34.24% compared to the network with IRS-all-on scheme.
基金supported in part by the Natural Science Foundation of China(NSFC)under Grant 61971102in part by the Key Research and Development Program of Zhejiang Province under Grant 2022C01093.
文摘In indoor environments,various batterypowered Internet of Things(IoT)devices,such as remote controllers and electronic tags on high-level shelves,require efficient energy management.However,manually monitoring remaining energy levels and battery replacement is both inadequate and costly.This paper introduces an energy management system for indoor IoT,which includes a mobile energy station(ES)for enabling on-demand wireless energy transfer(WET)in radio frequency(RF),some energy receivers(ERs),and a cloud server.By implementing a two-stage positioning system and embedding energy receivers into traditional IoT devices,we robustly manage their energy storage.The experimental results demonstrate that the energy receiver can harvest a minimum power of 58 mW.
基金Project supported by the Science Foundation of China West Normal University (Grant No 05B016) and the Science Foundation of Sichuan province Educational Bureau of China (Grant No 2006A080).
文摘The algebraic energy method (AEM) is applied to the study of molecular dissociation energy De for 11 heteronuclear diatomic electronic states: a^3∑+ state of NaK, X^2∑+ state of XeBr, X^2∑+ state of HgI, X^1∑+ state of LiH, A3∏(1) state of IC1, X^1∑+ state of CsH, A(3∏1) and B0+(3∏) states of CIF, 21∏ state of KRb, X^1∑+ state of CO, and c^3∑+ state of NaK molecule. The results show that the values of De computed by using the AEM are satisfactorily accurate compared with experimental ones. The AEM can serve as an economic and useful tool to generate a reliable De within an allowed experimental error for the electronic states whose molecular dissociation energies are unavailable from the existing literature
文摘Renewable energy sources, including bioenergy, are presently attracting considerable attention as possible substitutes for fossil fuels. Among the various sources of bioenergy, biomass can arguably play a significant role in the reduction of greenhouse gases and the provision of a stable energy supply. However, the use of fossil fuels continues in the production of bioenergy. Consequently, the overall extent to which biomass utilization for energy can reduce carbon dioxide emissions as a substitute for fossil fuels and whether this can improve the energy self-sufficiency rate remains largely unknown. This study responds to these questions using a case of a Japanese rural community using firewood for residential heating. The results showed that woody biomass utilization for energy is able to both reduce the dependence on fossil fuels and mitigate climate change. These findings offer new insights into the development of sustainability in rural communities.
文摘A building integrated photovoltaic (PV) and fuel cell (FC) system is proposed for assessment of the energy self-sufficiency rate in a city in Japan. The electricity consumed in the building is mainly supplied by solar panels, while the gap between the energy demand and supply is solved by the FC that is powered by the H2 produced by water electrolysis with surplus power of PV. A desktop case study of using the proposed system in Tsu city which is located in central part of Japan, has been conducted. The results found that the self-sufficiency rates of PV system to electricity demand of households (RPV) during the daytime in April and July are higher than those in January and October. The results also reveal that the self-sufficiency rate of FC system to the electricity demand (RFC) is 15% - 38% for the day when the mean amount of horizontal solar radiation is obtained in January, April, July and October. In addition, it is found the optimum tilt angle of solar panel installed on the roof of the buildings should be 0 degree, i.e., placed horizontally.
基金supported by the NSFC(no 40473024 and 40343019)Project of the 11th and 10th Five-Year Research and Development of International Seabed(noDYXM-115-02-1-11,PY105-01-04-13 and DY 105-01-02-1)+2 种基金Project of Key Laboratory of Marginal Sea Geology,Guangzhou Institute of Geochemistry and South China Sea Institute of Oceanology,CAS(no MSGL08-01,MSGLCAS03-4)Specialized Research Fund for the Doctoral Program of Higher Education(no 20040558049)the Fundamental Research Funds for the Central Universities
文摘In the present study,the modified Sverjensky-Molling equation,derived from a linear-free energy relationship,is used to predict the Gibbs free energies of formation of crystalline phases ofα-MOOH (with a goethite structure)andα-M_2O_3(with a hematite structure)from the known thermodynamic properties of the corresponding aqueous trivalent cations(M^(3+)).The modified equation is expressed asΔG_(f,M_VX)~0=a_(M_VX)ΔG_(0,M^(3+))^(0)+b_(M_VX)+β_(M_VXγM^(3+)),where the coefficients a_(M_VX),b_(M_VX),andβ_(M_VX) characterize a particular structural family of M_VX(M is a trivalent cation[M^(3+)]and X represents the remainder of the composition of solid);γ^(3+)is the ionic radius of trivalent cations(M^(3+));ΔG_(f,M_VX)~0 is the standard Gibbs free energy of formation of M_vX;andΔG_(n,M^(3+))~0 is the non-solvation energy of trivalent cations(M^(3+)).By fitting the equation to the known experimental thermodynamic data,the coefficients for the goethite family(α-MOOH)are a_(M_VX)=0.8838,b_(M_VX)=-424.4431(kcal/mol),andβ_(M_VX)=115(kcal/ mol.(?)),while the coefficients for the hematite family(α-M_2O_3)are a_(M_VX)=1.7468,b_(M_VX)=-814.9573(kcal/ mol),andβ_(M_VX)=278(kcal/mol.(?)).The constrained relationship can be used to predict the standard Gibbs free energies of formation of crystalline phases and fictive phases(i.e.phases that are thermodynamically unstable and do not occur at standard conditions)within the isostructural families of goethite(α-MOOH)and hematite(α-M_2O_3)if the standard Gibbs free energies of formation of the trivalent cations are known.
基金Financial supports from Novo Nordisk Foundation(NNF16OC0021740)Aarhus Universitets Forskningsfond AUFFNOVA(AUFF-E-2015-FLS-9-12)Danmarks Frie Forskningsfond(DFF Technology and Production,0136-00206B)are greatly acknowledged.
文摘Cytochrome P450s(CYPs)are ubiquitously found in all kingdoms of life,playing important role in various biosynthetic pathways as well as degradative pathways;accordingly find applications in a vast variety of areas from organic synthesis and drug metabolite production to modification of biomaterials and bioremediation.Significantly,CYPs catalyze chemically challenging CAH and CAC activation reactions using a reactive high-valent iron-oxo intermediate generated upon dioxygen activation at their heme center,while the other oxygen atom is reduced to the level of water by electrons provided through a reductase partner protein.Self-sufficient CYPs,encoding their heme domain and reductase protein in a single polypeptide,facilitate increased catalytic efficiency and render a less complicated system to work with.The self-sufficient CYP enzyme from CYP102A family(CYP102A1,BM3)is among the earliest and most-investigated model enzymes for mechanistic and structural studies as well as for biotechnological applications.An increasing number of self-sufficient CYPs from the same CYP102 family and from other families have also been reported in last decade.In this review,we introduce chemistry and biology of CYPs,followed by an overview of the characteristics of self-sufficient CYPs and representative reactions.Enzyme engineering efforts leading to novel self-sufficient CYP variants that can catalyze synthetically useful natural and non-natural(nature-mimicking)reactions are highlighted.Lastly,the strategy and efforts that aim to circumvent the challenges for improved thermostability,regio-and enantioselectivity,and total turnover number;associated with practical use of self-sufficient CYPs are reviewed.
文摘Background:The Compendium of Physical Activities was published in 1993 to improve the comparability of energy expenditure values assigned to self-reported physical activity(PA)across studies.The original version was updated in 2000,and again in 2011,and has been widely used to support PA research,practice,and public health guidelines.Methods:This 2024 update was tailored for adults 19-59 years of age by removing data from those≥60 years.Using a systematic review and supplementary searches,we identified new activities and their associated measured metabolic equivalent(MET)values(using indirect calorimetry)published since 2011.We replaced estimated METs with measured values when possible.Results:We screened 32,173 abstracts and 1507 full-text papers and extracted 2356 PA energy expenditure values from 701 papers.We added303 new PAs and adjusted 176 existing MET values and descriptions to reflect the addition of new data and removal of METs for older adults.We added a Major Heading(Video Games).The 2024 Adult Compendium includes 1114 PAs(912 with measured and 202 with estimated values)across 22 Major Headings.Conclusion:This comprehensive update and refinement led to the creation of The 2024 Adult Compendium,which has utility across research,public health,education,and healthcare domains,as well as in the development of consumer health technologies.The new website with the complete lists of PAs and supporting resources is available at https://pacompendium.com.
文摘Purpose:To describe the development of a Compendium for estimating the energy costs of activities in adults>60 years(OA Compendium).Methods:Physical activities(PAs)and their metabolic equivalent of task(MET)values were obtained from a systematic search of studies published in 4 sport and exercise databases(PubMed,Embase,SPORTDiscus(EBSCOhost),and Scopus)and a review of articles included in the 2011 Adult Compendium that measured PA in older adults.MET values were computed as the oxygen cost(VO_(2),mL/kg/min)during PA divided by 2.7 m L/kg/min(MET_(60+))to account for the lower resting metabolic rate in older adults.Results:We identified 68 articles and extracted energy expenditure data on 427 PAs.From these,we derived 99 unique Specific Activity codes with corresponding MET_(60+)values for older adults.We developed a website to present the OA Compendium MET_(60+)values:https://pacompendium.com.Conclusion:The OA Compendium uses data collected from adults>60 years for more accurate estimation of the energy cost of PAs in older adults.It is an accessible resource that will allow researchers,educators,and practitioners to find MET_(60+)values for older adults for use in PA research and practice.
基金supported by the National Natural Science Foundation of China (Grant No. 51071131)the Science Foundation of Educational Bureau of Sichuan Province of China (Grant No. 09ZA124)
文摘This paper obtains accurate vibrational spectroscopic constants and full vibrational energy spectrum by the al- gebraic method (AM) for some electronic states of halogen diatomic molecules. Motivated by the recent success of obtaining the dissociation energies of Li2 molecule by using a new analytical formula, it further extends the formula to study the dissociation energies of halogen diatomic molecules. The results show that the AM spectrum and the theoretical dissociation energies agree well with RKR data and experimental data respectively.
基金the support from Grant No.2022VBA0023 funded by the Chinese Academy of Sciences President's International Fellowship Initiative.
文摘Energy storage and conservation are receiving increased attention due to rising global energy demands.Therefore,the development of energy storage materials is crucial.Thermal energy storage(TES)systems based on phase change materials(PCMs)have increased in prominence over the past two decades,not only because of their outstanding heat storage capacities but also their superior thermal energy regulation capability.However,issues such as leakage and low thermal conductivity limit their applicability in a variety of settings.Carbon-based materials such as graphene and its derivatives can be utilized to surmount these obstacles.This study examines the recent advancements in graphene-based phase change composites(PCCs),where graphene-based nanostructures such as graphene,graphene oxide(GO),functionalized graphene/GO,and graphene aerogel(GA)are incorporated into PCMs to substantially enhance their shape stability and thermal conductivity that could be translated to better storage capacity,durability,and temperature response,thus boosting their attractiveness for TES systems.In addition,the applications of these graphene-based PCCs in various TES disciplines,such as energy conservation in buildings,solar utilization,and battery thermal management,are discussed and summarized.
基金support from the Shenzhen Science and Technology Program(No.KQTD20190929173914967,ZDSYS20220527171401003,and JCYJ20200109110416441).
文摘Single-atom catalysts(SACs)have gained substantial attention because of their exceptional catalytic properties.However,the high surface energy limits their synthesis,thus creating significant challenges for further development.In the last few years,metal–organic frameworks(MOFs)have received significant consideration as ideal candidates for synthesizing SACs due to their tailorable chemistry,tunable morphologies,high porosity,and chemical/thermal stability.From this perspective,this review thoroughly summarizes the previously reported methods and possible future approaches for constructing MOF-based(MOF-derived-supported and MOF-supported)SACs.Then,MOF-based SAC's identification techniques are briefly assessed to understand their coordination environments,local electronic structures,spatial distributions,and catalytic/electrochemical reaction mechanisms.This review systematically highlights several photocatalytic and electrocatalytic applications of MOF-based SACs for energy conversion and storage,including hydrogen evolution reactions,oxygen evolution reactions,O_(2)/CO_(2)/N_(2) reduction reactions,fuel cells,and rechargeable batteries.Some light is also shed on the future development of this highly exciting field by highlighting the advantages and limitations of MOF-based SACs.
基金supported by the Basic Science Research Program through the National Research Foundation of Korea(NRF)grant funded by the Korean government(MSIT)(2021R1A4A2000934).
文摘The metal-organic framework(MOF)derived Ni–Co–C–N composite alloys(NiCCZ)were“embedded”inside the carbon cloth(CC)strands as opposed to the popular idea of growing them upward to realize ultrastable energy storage and conversion application.The NiCCZ was then oxygen functionalized,facilitating the next step of stoichiometric sulfur anion diffusion during hydrothermal sulfurization,generating a flower-like metal hydroxysulfide structure(NiCCZOS)with strong partial implantation inside CC.Thus obtained NiCCZOS shows an excellent capacity when tested as a supercapacitor electrode in a three-electrode configuration.Moreover,when paired with the biomass-derived nitrogen-rich activated carbon,the asymmetric supercapacitor device shows almost 100%capacity retention even after 45,000 charge–discharge cycles with remarkable energy density(59.4 Wh kg^(-1)/263.8μWh cm^(–2))owing to a uniquely designed cathode.Furthermore,the same electrode performed as an excellent bifunctional water-splitting electrocatalyst with an overpotential of 271 mV for oxygen evolution reaction(OER)and 168.4 mV for hydrogen evolution reaction(HER)at 10 mA cm−2 current density along with 30 h of unhinged chronopotentiometric stability performance for both HER and OER.Hence,a unique metal chalcogenide composite electrode/substrate configuration has been proposed as a highly stable electrode material for flexible energy storage and conversion applications.
基金financially supported by National Key R&D Program of China(No.2022YFB3805702)the State Key Program of National Natural Science Foundation of China(No.52130303)
文摘Photoisomerization-induced phase change are important for co-harvesting the latent heat and isomerization energy of azobenzene molecules.Chemically optimizing heat output and energy delivery at alternating temperatures are challenging because of the differences in crystallizability and isomerization.This article reports two series of asymmetrically alkyl-grafted azobenzene(Azo-g),with and without a methyl group,that have an optically triggered phase change.Three exothermic modes were designed to utilize crystallization enthalpy(△H_(c))and photothermal(isomerization)energy(△H_(p))at different temperatures determined by the crystallization.Azo-g has high heat output(275-303 J g^(-1))by synchronously releasing△H_(c)and△H_(p)over a wide temperature range(-79℃to 25℃).We fabricated a new distributed energy utilization and delivery system to realize a temperature increase of 6.6℃at a temperature of-8℃.The findings offer insight into selective utilization of latent heat and isomerization energy by molecular optimization of crystallization and isomerization processes.