Peer-to-peer(P2P)spectrum sharing and energy trading are promising solutions to locally satisfy spectrum and energy demands in power Internet of Things(IoT).However,implementation of largescale P2P spectrum sharing an...Peer-to-peer(P2P)spectrum sharing and energy trading are promising solutions to locally satisfy spectrum and energy demands in power Internet of Things(IoT).However,implementation of largescale P2P spectrum sharing and energy trading confronts security and privacy challenges.In this paper,we exploit consortium blockchain and Directed Acyclic Graph(DAG)to propose a new secure and distributed spectrum sharing and energy trading framework in power IoT,named spectrum-energy chain,where a set of local aggregators(LAGs)cooperatively confirm the identity of the power devices by utilizing consortium blockchain,so as to form a main chain.Then,the local power devices verify spectrum and energy micro-transactions simultaneously but asynchronously to form local spectrum tangle and local energy tangle,respectively.Moreover,an iterative double auction based micro transactions scheme is designed to solve the spectrum and energy pricing and the amount of shared spectrum and energy among power devices.Security analysis and numerical results illustrate that the developed spectrum-energy chain and the designed iterative double auction based microtransactions scheme are secure and efficient for spectrum sharing and energy trading in power IoT.展开更多
Given the“double carbon”objective and the drive toward low-carbon power,investigating the integration and interaction within the carbon-electricity market can enhance renewable energy utilization and facilitate ener...Given the“double carbon”objective and the drive toward low-carbon power,investigating the integration and interaction within the carbon-electricity market can enhance renewable energy utilization and facilitate energy conservation and emission reduction endeavors.However,further research is necessary to explore operational optimization methods for establishing a regional energy system using Power-to-Hydrogen(P2H)technology,focusing on participating in combined carbon-electricity market transactions.This study introduces an innovative Electro-Hydrogen Regional Energy System(EHRES)in this context.This system integrates renewable energy sources,a P2H system,cogeneration units,and energy storage devices.The core purpose of this integration is to optimize renewable energy utilization and minimize carbon emissions.This study aims to formulate an optimal operational strategy for EHRES,enabling its dynamic engagement in carbon-electricity market transactions.The initial phase entails establishing the technological framework of the electricity-hydrogen coupling system integrated with P2H.Subsequently,an analysis is conducted to examine the operational mode of EHRES as it participates in carbon-electricity market transactions.Additionally,the system scheduling model includes a stepped carbon trading price mechanism,considering the combined heat and power generation characteristics of the Hydrogen Fuel Cell(HFC).This facilitates the establishment of an optimal operational model for EHRES,aiming to minimize the overall operating cost.The simulation example illustrates that the coordinated operation of EHRES in carbon-electricity market transactions holds the potential to improve renewable energy utilization and reduce the overall system cost.This result carries significant implications for attaining advantages in both low-carbon and economic aspects.展开更多
Wind-photovoltaic(PV)-hydrogen-storage multi-agent energy systems are expected to play an important role in promoting renewable power utilization and decarbonization.In this study,a coordinated operation method was pr...Wind-photovoltaic(PV)-hydrogen-storage multi-agent energy systems are expected to play an important role in promoting renewable power utilization and decarbonization.In this study,a coordinated operation method was proposed for a wind-PVhydrogen-storage multi-agent energy system.First,a coordinated operation model was formulated for each agent considering peer-to-peer power trading.Second,a coordinated operation interactive framework for a multi-agent energy system was proposed based on the theory of the alternating direction method of multipliers.Third,a distributed interactive algorithm was proposed to protect the privacy of each agent and solve coordinated operation strategies.Finally,the effectiveness of the proposed coordinated operation method was tested on multi-agent energy systems with different structures,and the operational revenues of the wind power,PV,hydrogen,and energy storage agents of the proposed coordinated operation model were improved by approximately 59.19%,233.28%,16.75%,and 145.56%,respectively,compared with the independent operation model.展开更多
作为城市能耗的主体,智能楼宇低碳高效运行对实现“双碳”目标有着重要意义。为了增强楼宇经济性并提升楼宇能源共享和分布式能源消纳,提出了一种考虑楼宇特性、电能交易的楼宇群分布式优化调度模型。在楼宇优化层面,建立了以经济性和...作为城市能耗的主体,智能楼宇低碳高效运行对实现“双碳”目标有着重要意义。为了增强楼宇经济性并提升楼宇能源共享和分布式能源消纳,提出了一种考虑楼宇特性、电能交易的楼宇群分布式优化调度模型。在楼宇优化层面,建立了以经济性和温度舒适性需求为目标的楼宇多目标运行优化模型;在楼宇群能源共享层面,建立了端对端(peer to peer,P2P)楼宇交易市场,并提出了结合楼宇优化结果和市场风险的新型连续双向拍卖交易机制。通过将市场交易结果反馈至各楼宇优化层面,实现楼宇运行的迭代优化和楼宇群内能源的互动共享,利用鲁棒优化检验该模型在各类不确定场景中的有效性。仿真结果表明,在多场景中,所提的楼宇群分布式优化调度模型均能在优化楼宇经济性的同时,提升楼宇群能源互补和分布式能源消纳的能力。展开更多
Battery energy storage systems(BESSs)serve a crucial role in balancing energy fluctuations and reducing carbon emissions in net-zero power systems.However,the efficiency and cost performance have remained significant ...Battery energy storage systems(BESSs)serve a crucial role in balancing energy fluctuations and reducing carbon emissions in net-zero power systems.However,the efficiency and cost performance have remained significant challenges,which hinders the widespread adoption and development of BESSs.To address these challenges,this paper proposes a real-time energy management scheme that considers the involvement of prosumers to support net-zero power systems.The scheme is based on two shared energy storage models,referred to as energy storage sale model and power line lease model.The energy storage sale model balances real-time power deviations by energy interaction with the goal of minimizing system costs while generating revenue for shared energy storage providers(ESPs).Additionally,power line lease model supports peer-to-peer(P2P)power trading among prosumers through the power lines laid by ESPs to connect each prosumer.This model allows ESP to earn profits from the use of power lines while balancing power deviations and better consuming renewable energy.Experimental results validate the effectiveness of the proposed scheme,ensuring stable power supply for net-zero power systems and providing benefits for both the ESP and prosumers.展开更多
Following the unprecedented generation of renewable energy,Energy Storage Systems(ESSs)have become essential for facilitating renewable consumption and maintaining reliability in energy networks.However,providing an i...Following the unprecedented generation of renewable energy,Energy Storage Systems(ESSs)have become essential for facilitating renewable consumption and maintaining reliability in energy networks.However,providing an individual ESS to a single customer is still a luxury.Thus,this paper aims to investigate whether the Shared-ESS can assist energy savings for multiple users through Peer-to-Peer(P2P)trading.Moreover,with the increasing number of market participants in the integrated energy system(IES),a benefit allocation scheme is necessary,ensuring reasonable benefits for every user in the network.Using the multiplayer cooperative game model,the nucleolus and the Shapley value methods are adopted to evaluate the benefit allocation between multiple users.Numerical analyses based on multiple micro-energy grids are performed,so as to assess the performance of the Shared-ESS and the proposed benefit allocation scheme.The results show that the micro-energy grid cluster can save as much as 38.15%of the total energy cost with Shared-ESS being equipped.The following conclusions can be drawn:the Shared-ESS can significantly reduce the operating costs of the micro-energy grid operator,promote the consumption of renewable energy,and play the role of peak-shaving and valley-filling during different energy usage periods.In addition,it is reflected that the multiplayer cooperative game model is effective in revealing the interaction between the micro-energy grids,which makes the distribution results more reasonable.展开更多
Utility maximization is a major priority of prosumers participating in peer-to-peer energy trading and sharing(P2P-ETS).However,as more distributed energy resources integrate into the distribution network,the impact o...Utility maximization is a major priority of prosumers participating in peer-to-peer energy trading and sharing(P2P-ETS).However,as more distributed energy resources integrate into the distribution network,the impact of the communication link becomes significant.We present a multi-commodity formulation that allows the dual-optimization of energy and communication resources in P2P-ETS.On one hand,the proposed algorithm minimizes the cost of energy generation and communication delay.On the other hand,it also maximizes the global utility of prosumers with fair resource allocation.We evaluate the algorithm in a variety of realistic conditions including a time-varying communication network with signal delay signal loss.The results show that the convergence is achieved in a fewer number of time steps than the previously proposed algorithms.It is further observed that the entities with a higher willingness to trade the energy acquire more satisfactions than others.展开更多
储充换一体站(storage-charging-swapping integrated station,SCSIS)与综合能源楼宇(integrated energy buildings,IEB)结合将是未来多能建筑的重要形式之一。针对其协同运行展开研究,提出了一种SCSIS协同多IEB的低碳经济调度方法。首...储充换一体站(storage-charging-swapping integrated station,SCSIS)与综合能源楼宇(integrated energy buildings,IEB)结合将是未来多能建筑的重要形式之一。针对其协同运行展开研究,提出了一种SCSIS协同多IEB的低碳经济调度方法。首先,构建了SCSIS与多IEB组成的电能共享协同运行架构。其次,基于阶梯型碳交易机制在电能共享模式下建立了多主体协同的低碳经济调度模型。再次,为了最大化主体利益,以纳什谈判理论为依据,采用交替方向乘子法(alternating direction method of multipliers,ADMM)对电能共享价格进行求解。最后,通过算例对所提调度模型的可行性与有效性进行探讨。算例结果表明,通过引入电能共享与阶梯型碳交易机制,使得系统在兼顾经济性的前提下有效降低了碳排放,且证明ADMM对电能共享价格的求解具有较好的收敛性。展开更多
电-热-气-冷多能联供型微网对实现能源可持续发展具有重要的应用价值。针对多能联供系统碳排放量较高和负荷模型预测不准确问题,提出了一种基于滚动优化的电-热-气-冷系统多时间尺度低碳运行策略。首先,建立电-热-气-冷系统设备模型。其...电-热-气-冷多能联供型微网对实现能源可持续发展具有重要的应用价值。针对多能联供系统碳排放量较高和负荷模型预测不准确问题,提出了一种基于滚动优化的电-热-气-冷系统多时间尺度低碳运行策略。首先,建立电-热-气-冷系统设备模型。其次,构建日前与日内两阶段模型,在日前调度阶段引入含赏罚因数的碳交易机制,通过将卷积神经网络(convolutional neural networks,CNN)与双向长短期记忆网络(bi-directional long short term memory,Bi-LSTM)进行结合对风光功率进行预测,并以运行成本最低为目标进行优化。之后,建立日内多时间尺度的优化调度模型,以调度成本最低为目标进行求解。最后,以某市综合能源系统为研究对象进行分析。结果表明,所提出的方法能够有效减少碳排放,提高负荷模型预测的准确度的同时实现多能联供系统的低碳经济运行。展开更多
基金supported by the National Key R&D Program of China(2020YFB1807801,2020YFB1807800)in part by Project Supported by Engineering Research Center of Mobile Communications,Ministry of Education(cqupt-mct-202003)+2 种基金in part by Key Lab of Information Network Security,Ministry of Public Security under Grant C19603in part by National Natural Science Foundation of China(Grant No.61901067 and 61901013)in part by Chongqing Municipal Natural Science Foundation(Grant No.cstc2020jcyj-msxmX0339).
文摘Peer-to-peer(P2P)spectrum sharing and energy trading are promising solutions to locally satisfy spectrum and energy demands in power Internet of Things(IoT).However,implementation of largescale P2P spectrum sharing and energy trading confronts security and privacy challenges.In this paper,we exploit consortium blockchain and Directed Acyclic Graph(DAG)to propose a new secure and distributed spectrum sharing and energy trading framework in power IoT,named spectrum-energy chain,where a set of local aggregators(LAGs)cooperatively confirm the identity of the power devices by utilizing consortium blockchain,so as to form a main chain.Then,the local power devices verify spectrum and energy micro-transactions simultaneously but asynchronously to form local spectrum tangle and local energy tangle,respectively.Moreover,an iterative double auction based micro transactions scheme is designed to solve the spectrum and energy pricing and the amount of shared spectrum and energy among power devices.Security analysis and numerical results illustrate that the developed spectrum-energy chain and the designed iterative double auction based microtransactions scheme are secure and efficient for spectrum sharing and energy trading in power IoT.
基金supported financially by InnerMongoliaKey Lab of Electrical Power Conversion,Transmission,and Control under Grant IMEECTC2022001the S&TMajor Project of Inner Mongolia Autonomous Region in China(2021ZD0040).
文摘Given the“double carbon”objective and the drive toward low-carbon power,investigating the integration and interaction within the carbon-electricity market can enhance renewable energy utilization and facilitate energy conservation and emission reduction endeavors.However,further research is necessary to explore operational optimization methods for establishing a regional energy system using Power-to-Hydrogen(P2H)technology,focusing on participating in combined carbon-electricity market transactions.This study introduces an innovative Electro-Hydrogen Regional Energy System(EHRES)in this context.This system integrates renewable energy sources,a P2H system,cogeneration units,and energy storage devices.The core purpose of this integration is to optimize renewable energy utilization and minimize carbon emissions.This study aims to formulate an optimal operational strategy for EHRES,enabling its dynamic engagement in carbon-electricity market transactions.The initial phase entails establishing the technological framework of the electricity-hydrogen coupling system integrated with P2H.Subsequently,an analysis is conducted to examine the operational mode of EHRES as it participates in carbon-electricity market transactions.Additionally,the system scheduling model includes a stepped carbon trading price mechanism,considering the combined heat and power generation characteristics of the Hydrogen Fuel Cell(HFC).This facilitates the establishment of an optimal operational model for EHRES,aiming to minimize the overall operating cost.The simulation example illustrates that the coordinated operation of EHRES in carbon-electricity market transactions holds the potential to improve renewable energy utilization and reduce the overall system cost.This result carries significant implications for attaining advantages in both low-carbon and economic aspects.
基金supported by the Key Research and Development Program of Jiangsu Provincial Department of Science and Technology(BE2020081).
文摘Wind-photovoltaic(PV)-hydrogen-storage multi-agent energy systems are expected to play an important role in promoting renewable power utilization and decarbonization.In this study,a coordinated operation method was proposed for a wind-PVhydrogen-storage multi-agent energy system.First,a coordinated operation model was formulated for each agent considering peer-to-peer power trading.Second,a coordinated operation interactive framework for a multi-agent energy system was proposed based on the theory of the alternating direction method of multipliers.Third,a distributed interactive algorithm was proposed to protect the privacy of each agent and solve coordinated operation strategies.Finally,the effectiveness of the proposed coordinated operation method was tested on multi-agent energy systems with different structures,and the operational revenues of the wind power,PV,hydrogen,and energy storage agents of the proposed coordinated operation model were improved by approximately 59.19%,233.28%,16.75%,and 145.56%,respectively,compared with the independent operation model.
文摘作为城市能耗的主体,智能楼宇低碳高效运行对实现“双碳”目标有着重要意义。为了增强楼宇经济性并提升楼宇能源共享和分布式能源消纳,提出了一种考虑楼宇特性、电能交易的楼宇群分布式优化调度模型。在楼宇优化层面,建立了以经济性和温度舒适性需求为目标的楼宇多目标运行优化模型;在楼宇群能源共享层面,建立了端对端(peer to peer,P2P)楼宇交易市场,并提出了结合楼宇优化结果和市场风险的新型连续双向拍卖交易机制。通过将市场交易结果反馈至各楼宇优化层面,实现楼宇运行的迭代优化和楼宇群内能源的互动共享,利用鲁棒优化检验该模型在各类不确定场景中的有效性。仿真结果表明,在多场景中,所提的楼宇群分布式优化调度模型均能在优化楼宇经济性的同时,提升楼宇群能源互补和分布式能源消纳的能力。
基金supported in part by the National Key Research and Development Program of China(No.2018YFA0702200)the National Natural Science Foundation of China(No.52377079)the Liaoning Revitalization Talents Program(No.XLYC2007181)。
文摘Battery energy storage systems(BESSs)serve a crucial role in balancing energy fluctuations and reducing carbon emissions in net-zero power systems.However,the efficiency and cost performance have remained significant challenges,which hinders the widespread adoption and development of BESSs.To address these challenges,this paper proposes a real-time energy management scheme that considers the involvement of prosumers to support net-zero power systems.The scheme is based on two shared energy storage models,referred to as energy storage sale model and power line lease model.The energy storage sale model balances real-time power deviations by energy interaction with the goal of minimizing system costs while generating revenue for shared energy storage providers(ESPs).Additionally,power line lease model supports peer-to-peer(P2P)power trading among prosumers through the power lines laid by ESPs to connect each prosumer.This model allows ESP to earn profits from the use of power lines while balancing power deviations and better consuming renewable energy.Experimental results validate the effectiveness of the proposed scheme,ensuring stable power supply for net-zero power systems and providing benefits for both the ESP and prosumers.
基金This work was supported by the Science and Technology Project of State Grid Corporation of China“Research on Key Technologies of Multi-energy Flow Simulation and Energy Management of Integrated Energy System”under the grant number 5400-201999493A-0-0-00,2019.09-2021.12。
文摘Following the unprecedented generation of renewable energy,Energy Storage Systems(ESSs)have become essential for facilitating renewable consumption and maintaining reliability in energy networks.However,providing an individual ESS to a single customer is still a luxury.Thus,this paper aims to investigate whether the Shared-ESS can assist energy savings for multiple users through Peer-to-Peer(P2P)trading.Moreover,with the increasing number of market participants in the integrated energy system(IES),a benefit allocation scheme is necessary,ensuring reasonable benefits for every user in the network.Using the multiplayer cooperative game model,the nucleolus and the Shapley value methods are adopted to evaluate the benefit allocation between multiple users.Numerical analyses based on multiple micro-energy grids are performed,so as to assess the performance of the Shared-ESS and the proposed benefit allocation scheme.The results show that the micro-energy grid cluster can save as much as 38.15%of the total energy cost with Shared-ESS being equipped.The following conclusions can be drawn:the Shared-ESS can significantly reduce the operating costs of the micro-energy grid operator,promote the consumption of renewable energy,and play the role of peak-shaving and valley-filling during different energy usage periods.In addition,it is reflected that the multiplayer cooperative game model is effective in revealing the interaction between the micro-energy grids,which makes the distribution results more reasonable.
基金This work was supported in part by the Peer-to-peer Energy Trading and Sharing-3M(multi-times,multi-scales,multi-qualities)project funded by EPSRC(No.EP/N03466X/1)in part,by ENERGY-IQ,a UK-Canada Power Forward Smart Grid Demonstrator project funded by The Department for Business,Energy and Industrial Strategy(BEIS)(No.7454460).
文摘Utility maximization is a major priority of prosumers participating in peer-to-peer energy trading and sharing(P2P-ETS).However,as more distributed energy resources integrate into the distribution network,the impact of the communication link becomes significant.We present a multi-commodity formulation that allows the dual-optimization of energy and communication resources in P2P-ETS.On one hand,the proposed algorithm minimizes the cost of energy generation and communication delay.On the other hand,it also maximizes the global utility of prosumers with fair resource allocation.We evaluate the algorithm in a variety of realistic conditions including a time-varying communication network with signal delay signal loss.The results show that the convergence is achieved in a fewer number of time steps than the previously proposed algorithms.It is further observed that the entities with a higher willingness to trade the energy acquire more satisfactions than others.
文摘储充换一体站(storage-charging-swapping integrated station,SCSIS)与综合能源楼宇(integrated energy buildings,IEB)结合将是未来多能建筑的重要形式之一。针对其协同运行展开研究,提出了一种SCSIS协同多IEB的低碳经济调度方法。首先,构建了SCSIS与多IEB组成的电能共享协同运行架构。其次,基于阶梯型碳交易机制在电能共享模式下建立了多主体协同的低碳经济调度模型。再次,为了最大化主体利益,以纳什谈判理论为依据,采用交替方向乘子法(alternating direction method of multipliers,ADMM)对电能共享价格进行求解。最后,通过算例对所提调度模型的可行性与有效性进行探讨。算例结果表明,通过引入电能共享与阶梯型碳交易机制,使得系统在兼顾经济性的前提下有效降低了碳排放,且证明ADMM对电能共享价格的求解具有较好的收敛性。
文摘电-热-气-冷多能联供型微网对实现能源可持续发展具有重要的应用价值。针对多能联供系统碳排放量较高和负荷模型预测不准确问题,提出了一种基于滚动优化的电-热-气-冷系统多时间尺度低碳运行策略。首先,建立电-热-气-冷系统设备模型。其次,构建日前与日内两阶段模型,在日前调度阶段引入含赏罚因数的碳交易机制,通过将卷积神经网络(convolutional neural networks,CNN)与双向长短期记忆网络(bi-directional long short term memory,Bi-LSTM)进行结合对风光功率进行预测,并以运行成本最低为目标进行优化。之后,建立日内多时间尺度的优化调度模型,以调度成本最低为目标进行求解。最后,以某市综合能源系统为研究对象进行分析。结果表明,所提出的方法能够有效减少碳排放,提高负荷模型预测的准确度的同时实现多能联供系统的低碳经济运行。