Based on the six months data set of ARGO-YBJ experiment with analog read-out and its Monte Carlo simulation, we study the difference between different primaries induced showers by using the space-time information of t...Based on the six months data set of ARGO-YBJ experiment with analog read-out and its Monte Carlo simulation, we study the difference between different primaries induced showers by using the space-time information of the charged particles in Extensive Air Showers. With five parameters which can efficiently pick out primary proton induced showers as inputs of an artificial neural network, the proton Spectrum from 100 TeV to 10 PeV can be obtained.展开更多
The energy spectrum of cosmic Hydrogen and Helium nuclei has been measured below the so-called "knee" by using a hybrid experiment with a wide field-of-view Cherenkov telescope and the Resistive Plate Chamber (RPC...The energy spectrum of cosmic Hydrogen and Helium nuclei has been measured below the so-called "knee" by using a hybrid experiment with a wide field-of-view Cherenkov telescope and the Resistive Plate Chamber (RPC) array of the ARGO-YBJ experiment at 4300 m above sea level. The Hydrogen and Helium nuclei have been well separated from other cosmic ray components by using a multi-parameter technique. A highly uniform energy resolution of about 25% is achieved throughout the whole energy range (100-700 TeV). The observed energy spectrum is compatible with a single power law with index γ=-2.63±0.06.展开更多
The knee phenomenon of the cosmic ray spectrum, which plays an important role in studying the acceleration mechanism of cosmic rays, is still an unsolved mystery. We try to reconcile the knee spectra measured by ARGO-...The knee phenomenon of the cosmic ray spectrum, which plays an important role in studying the acceleration mechanism of cosmic rays, is still an unsolved mystery. We try to reconcile the knee spectra measured by ARGO-YBJ and Tibet-III. A simple broken power-law model fails to explain the experimental data. Therefore a modified broken power-law model with non-linear acceleration effects is adopted, which can describe the sharp knee structure. This model predicts that heavy elements dominate at the knee.展开更多
The Large High Altitude Air Shower Observatory(LHAASO) is a composite cosmic ray observatory consisting of three detector arrays: kilometer square array(KM2 A), which includes the electromagnetic detector array and mu...The Large High Altitude Air Shower Observatory(LHAASO) is a composite cosmic ray observatory consisting of three detector arrays: kilometer square array(KM2 A), which includes the electromagnetic detector array and muon detector array, water Cherenkov detector array(WCDA) and wide field-of-view Cherenkov telescope array(WFCTA). One of the main scientific objectives of LHAASO is to precisely measure the cosmic rays energy spectrum of individual components from 10^14 eV to 10^18 eV. The hybrid observation will be employed by the LHAASO experiment, in which the lateral and longitudinal distributions of extensive air shower can be observed simultaneously. Thus, many kinds of parameters can be used for primary nuclei identification. In this paper, high purity cosmic ray simulation samples of the light nuclei component are obtained using multi-variable analysis. The apertures of 1/4 LHAASO array for pure proton and mixed proton and helium(H&He) samples are 900 m^2 Sr and1800 m^2 Sr, respectively. Prospect of obtaining proton and H&He spectra from 100 TeV to 4 PeV is discussed.展开更多
基金National Natural Science Foundation of China (10120130794)
文摘Based on the six months data set of ARGO-YBJ experiment with analog read-out and its Monte Carlo simulation, we study the difference between different primaries induced showers by using the space-time information of the charged particles in Extensive Air Showers. With five parameters which can efficiently pick out primary proton induced showers as inputs of an artificial neural network, the proton Spectrum from 100 TeV to 10 PeV can be obtained.
基金Supported by NSFC(10975145,11075170)Knowledge Innovation Fund(H85451D0U2)of IHEP+2 种基金Chinese Ministry of Science and Technology,Chinese Academy of Science,Key Laboratory of Particle Astrophysics,CASin Italy by the Istituto Nazionale di Fisica Nucleare(INFN)Ministero dell’Istruzione,dell’Università e della Ricerca(MIUR)
文摘The energy spectrum of cosmic Hydrogen and Helium nuclei has been measured below the so-called "knee" by using a hybrid experiment with a wide field-of-view Cherenkov telescope and the Resistive Plate Chamber (RPC) array of the ARGO-YBJ experiment at 4300 m above sea level. The Hydrogen and Helium nuclei have been well separated from other cosmic ray components by using a multi-parameter technique. A highly uniform energy resolution of about 25% is achieved throughout the whole energy range (100-700 TeV). The observed energy spectrum is compatible with a single power law with index γ=-2.63±0.06.
文摘The knee phenomenon of the cosmic ray spectrum, which plays an important role in studying the acceleration mechanism of cosmic rays, is still an unsolved mystery. We try to reconcile the knee spectra measured by ARGO-YBJ and Tibet-III. A simple broken power-law model fails to explain the experimental data. Therefore a modified broken power-law model with non-linear acceleration effects is adopted, which can describe the sharp knee structure. This model predicts that heavy elements dominate at the knee.
基金Supported by the National Key R&D Program of China(2018YFA0404201,2018YFA0404202)the Key Laboratory of Particle Astrophysics,Institute of High Energy Physics,CAS(Y5113D005C)National Natural Science Foundation(NSFC)(11563004,11775248)
文摘The Large High Altitude Air Shower Observatory(LHAASO) is a composite cosmic ray observatory consisting of three detector arrays: kilometer square array(KM2 A), which includes the electromagnetic detector array and muon detector array, water Cherenkov detector array(WCDA) and wide field-of-view Cherenkov telescope array(WFCTA). One of the main scientific objectives of LHAASO is to precisely measure the cosmic rays energy spectrum of individual components from 10^14 eV to 10^18 eV. The hybrid observation will be employed by the LHAASO experiment, in which the lateral and longitudinal distributions of extensive air shower can be observed simultaneously. Thus, many kinds of parameters can be used for primary nuclei identification. In this paper, high purity cosmic ray simulation samples of the light nuclei component are obtained using multi-variable analysis. The apertures of 1/4 LHAASO array for pure proton and mixed proton and helium(H&He) samples are 900 m^2 Sr and1800 m^2 Sr, respectively. Prospect of obtaining proton and H&He spectra from 100 TeV to 4 PeV is discussed.