期刊文献+
共找到6篇文章
< 1 >
每页显示 20 50 100
Energy Storage Systems Technologies, Evolution and Applications
1
作者 Olushola Aina 《Energy and Power Engineering》 2024年第2期97-119,共23页
Energy in its varied forms and applications has become the main driver of today’s modern society. However, recent changes in power demand and climatic changes (decarbonization policy) has awakened the need to rethink... Energy in its varied forms and applications has become the main driver of today’s modern society. However, recent changes in power demand and climatic changes (decarbonization policy) has awakened the need to rethink through the current energy generating and distribution system. This led to the exploration of other energy sources of which renewable energy (like thermal, solar and wind energy) is fast becoming an integral part of most energy system. However, this innovative and promising energy source is highly unreliable in maintaining a constant peak power that matches demand. Energy storage systems have thus been highlighted as a solution in managing such imbalances and maintaining the stability of supply. Energy storage technologies absorb and store energy, and release it on demand. This includes gravitational potential energy (pumped hydroelectric), chemical energy (batteries), kinetic energy (flywheels or compressed air), and energy in the form of electrical (capacitors) and magnetic fields. This paper provides a detailed and comprehensive overview of some of the state-of-the-art energy storage technologies, its evolution, classification, and comparison along with various area of applications. Also highlighted in this paper is a plethora of power electronic Interface technologies that plays a significant role in enabling optimum performance and utilization of energy storage systems in different areas of application. 展开更多
关键词 energy storage Systems Renewable energy Sources Power Electronic Interface (PEI) applications of energy storages
下载PDF
V_(2)CT_(x) MXene and its derivatives:synthesis and recent progress in electrochemical energy storage applications 被引量:10
2
作者 Zhao-Lin Tan Jing-Xuan Wei +4 位作者 Yang Liu Fakhr uz Zaman Wajid Rehman Lin-Rui Hou Chang-Zhou Yuan 《Rare Metals》 SCIE EI CAS CSCD 2022年第3期775-797,共23页
With the continuous development of two-dimensional (2D) transition metal carbides and nitrides(collectively referred to as MXene).Nowadays,more than 70 MXene materials have been discovered,and the number is still incr... With the continuous development of two-dimensional (2D) transition metal carbides and nitrides(collectively referred to as MXene).Nowadays,more than 70 MXene materials have been discovered,and the number is still increasing.Among them,the V_(2)CT_(x) MXene has attracted considerable attentions due to its outstanding physical and chemical properties.In this review,we mainly discussed the emerging V_(2)CT_(x) MXene and its derivative systems in various energy storage devices.Firstly,an introduction of the V-based MXene and its derivatives along with their synthetic methodologies is provided,then we summarize their applications in specific energy storage devices,such as metal (Li,Na,K,Mg,Zn and Al) ion batteries,lithium-sulfur batteries,supercapacitors and metal-ion capacitors.Finally,the main challenges and future perspectives existing in V-based MXene and its derivatives are reasonably put forward. 展开更多
关键词 MXene V_(2)CT_(x) Two-dimensional material DERIVATIVES Electrochemical energy storage applications
原文传递
Energy Storage and Multi-Source System for Reduction Energy Costs in the Consumer-Side
3
作者 Vinícius Cândido da Silva André Luiz Veiga Gimenes Miguel Edgar Morales Udaeta 《Journal of Power and Energy Engineering》 2021年第11期80-105,共26页
The objective of this work is to reduce energy costs for a consumer with multiple available energy resources and with an energy storage system. To achieve this, it is developed a methodology with a multi-criterio</... The objective of this work is to reduce energy costs for a consumer with multiple available energy resources and with an energy storage system. To achieve this, it is developed a methodology with a multi-criterio</span></span><span><span><span style="font-family:"">n</span></span></span><span><span><span style="font-family:""> analysis that considers the demand side, the real-time prices, and the availability of the energy resources. In other words, the developed methodology manages the multi-source system, allowing savings for a consumer. In addition to the presentation of the methodology, it is made an application in a case study. It is considered and modeled a real consumer that has three different energy resources, including energy storage by battery. The situation comprehends solar generation, diesel generator and the electrical power grid. There are simulations and </span></span></span><span><span><span style="font-family:"">the</span></span></span><span><span><span style="font-family:""> results comprehend the savings for this consumer, considering the methodology application. The main result is a reduction in energy costs by 33</span></span></span><span><span><span style="font-family:"">.</span></span></span><span><span><span style="font-family:"">3%, considering the situation without this methodology. For the purpose of indicating the use of the storage system, it is presented the battery’s state of charge along the simulation. Also, there is a verification of the methodology’s robustness, through another simulation, using theo</span></span></span><span><span><span style="font-family:"">ret</span></span></span><span><span><span style="font-family:"">ical data for the consumer. In this case, the consumer has energy storage system, solar generation, biogas generator and the electrical power grid. In this situation, there is a reduction in energy costs by 30</span></span></span><span><span><span style="font-family:"">.</span></span></span><span><span><span style="font-family:"">2%, considering the situation without this methodology. In conclusion, the results show that the developed methodology is effective. In the two case studies presented there </span></span></span><span><span><span style="font-family:"">are</span></span></span><span><span><span style="font-family:""> significant savings for the consumer. 展开更多
关键词 energy Resources energy storage applications Battery energy storage System Solar energy
下载PDF
2D Materials Boost Advanced Zn Anodes:Principles,Advances,and Challenges 被引量:1
4
作者 Songhe Zheng Wanyu Zhao +3 位作者 Jianping Chen Xiaoli Zhao Zhenghui Pan Xiaowei Yang 《Nano-Micro Letters》 SCIE EI CAS CSCD 2023年第4期1-22,共22页
Aqueous zinc-ion battery(ZIB)featuring with high safety,low cost,environmentally friendly,and high energy density is one of the most promising systems for large-scale energy storage application.Despite extensive resea... Aqueous zinc-ion battery(ZIB)featuring with high safety,low cost,environmentally friendly,and high energy density is one of the most promising systems for large-scale energy storage application.Despite extensive research progress made in developing high-performance cathodes,the Zn anode issues,such as Zn dendrites,corrosion,and hydrogen evolution,have been observed to shorten ZIB’s lifespan seriously,thus restricting their practical application.Engineering advanced Zn anodes based on two-dimensional(2D)materials are widely investigated to address these issues.With atomic thickness,2D materials possess ultrahigh specific surface area,much exposed active sites,superior mechanical strength and flexibility,and unique electrical properties,which confirm to be a promising alternative anode material for ZIBs.This review aims to boost rational design strategies of 2D materials for practical application of ZIB by combining the fundamental principle and research progress.Firstly,the fundamental principles of 2D materials against the drawbacks of Zn anode are introduced.Then,the designed strategies of several typical 2D materials for stable Zn anodes are comprehensively summarized.Finally,perspectives on the future development of advanced Zn anodes by taking advantage of these unique properties of 2D materials are proposed. 展开更多
关键词 Zinc-ion battery Large-scale energy storage application Zn anode LIFESPAN 2D materials
下载PDF
Challenges and progresses of energy storage technology and its application in power systems 被引量:29
5
作者 Liangzhong YAO Bo YANG +3 位作者 Hongfen CUI Jun ZHUANG Jilei YE Jinhua XUE 《Journal of Modern Power Systems and Clean Energy》 SCIE EI 2016年第4期519-528,共10页
As a flexible power source,energy storage has many potential applications in renewable energy generation grid integration,power transmission and distribution,distributed generation,micro grid and ancillary services su... As a flexible power source,energy storage has many potential applications in renewable energy generation grid integration,power transmission and distribution,distributed generation,micro grid and ancillary services such as frequency regulation,etc.In this paper,the latest energy storage technology profile is analyzed and summarized,in terms of technology maturity,efficiency,scale,lifespan,cost and applications,taking into consideration their impact on the whole power system,including generation,transmission,distribution and utilization.The application scenarios of energy storage technologies are reviewed and investigated,and global and Chinese potential markets for energy storage applications are described.The challenges of large-scale energy storage application in power systems are presented from the aspect of technical and economic considerations.Meanwhile the development prospect of global energy storage market is forecasted,and application prospect of energy storage is analyzed. 展开更多
关键词 Renewable energy energy storage technology energy storage application Power system
原文传递
Urea-assisted hydrothermal synthesis of MnMoO_(4)/MnCO_(3)hybrid electrochemical electrode and fabrication of high-performance asymmetric supercapacitor
6
作者 Mohan Reddy Pallavolu Arghya Narayan Banerjee +1 位作者 Ramesh Reddy Nallapureddy Sang W.Joo 《Journal of Materials Science & Technology》 SCIE EI CAS CSCD 2022年第1期332-344,共13页
Transition metal molybdates/carbonates and hybrid nanomaterials have attracted great attention in energy storage applications because of their enriched redox activity,good electronic conductivity,and stable crystallin... Transition metal molybdates/carbonates and hybrid nanomaterials have attracted great attention in energy storage applications because of their enriched redox activity,good electronic conductivity,and stable crystallinity.We synthesize a multicomponent MnMoO_(4)/MnCO_(3)hybrid by a one-step hydrothermal method with urea as the reaction fuel.By controlling only the urea concentration in the initial precursor solution,the MnMoO_(4)/MnCO_(3)molecular ratio is controlled effectively,which is found to have a profound effect on the electrochemical properties of the hybrid electrodes.The electrochemical measurements show that the specific capacitance of MnMoO_(4)/MnCO_(3)hybrid is 1311 F/g,the energy density of 116.8 Wh/kg,and power density of 383 W/kg at a current density of 1 A/g with 79%capacitance retention over 5000 cycles.The fabricated asymmetric supercapacitor device exhibits good energy storage performance,including the specific capacitance of 97 F/g along with the energy density of 26.5 Wh/kg and the power density of 657 W/kg at a current density of 1 A/g and good reversibility with capacitance retention of 85%after 2000 cycles and 70%over 5000 cycles.The increase in the energy density of 900%with a mere 60%decrement in the energy density indicates its potential superior applications in high-power devices. 展开更多
关键词 Asymmetric supercapacitors Hydrothermal synthesis MnMoO_(4)/MnCO_(3)hybrid energy storage applications
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部