期刊文献+
共找到3,025篇文章
< 1 2 152 >
每页显示 20 50 100
Hyphae-mediated bioassembly of carbon fibers derivatives for advanced battery energy storage
1
作者 Lei Huang Zhong Qiu +10 位作者 Ping Liu Xinhui Xia Feng Cao Xinping He Chen Wang Wangjun Wan Yongqi Zhang Yang Xia Wenkui Zhang Minghua Chen Jiancang Zhou 《Carbon Energy》 SCIE EI CAS CSCD 2024年第6期140-150,共11页
Ingenious design and fabrication of advanced carbon-based sulfur cathodes are extremely important to the development of high-energy lithium-sulfur batteries,which hold promise as the next-generation power source.Herei... Ingenious design and fabrication of advanced carbon-based sulfur cathodes are extremely important to the development of high-energy lithium-sulfur batteries,which hold promise as the next-generation power source.Herein,for the first time,we report a novel versatile hyphae-mediated biological assembly technology to achieve scale production of hyphae carbon fibers(HCFs)derivatives,in which different components including carbon,metal compounds,and semiconductors can be homogeneously assembled with HCFs to form composite networks.The mechanism of biological adsorption assembly is also proposed.As a representative,reduced graphene oxides(rGOs)decorated with hollow carbon spheres(HCSs)successfully co-assemble with HCFs to form HCSs@rGOs/HCFs hosts for sulfur cathodes.In this unique architecture,not only large accommodation space for sulfur but also restrained volume expansion and fast charge transport paths are realized.Meanwhile,multiscale physical barriers plus chemisorption sites are simultaneously established to anchor soluble lithium polysulfides.Accordingly,the designed HCSs@rGOs/HCFs-S cathodes deliver a high capacity(1189 mA h g^(-1)at 0.1 C)and good high-rate capability(686 mA h g^(-1)at 5 C).Our work provides a new approach for the preparation of high-performance carbon-based electrodes for energy storage devices. 展开更多
关键词 bioassembly carbon fibers energy storage graphene lithium-sulfur batteries
下载PDF
A novel improvement strategy and a comprehensive mechanism insight for α-MnO_(2) energy storage in rechargeable aqueous zinc-ion batteries
2
作者 Fan Xiankai Xiang Kaixiong +4 位作者 Zhou Wei Deng Weina Zhu Hai Chen Liang Chen Han 《Carbon Energy》 SCIE EI CAS CSCD 2024年第9期93-108,共16页
Aqueous zinc-ion batteries have been regarded as the most potential candidate to substitute lithium-ion batteries.However,many serious challenges such as suppressing zinc dendrite growth and undesirable reactions,and ... Aqueous zinc-ion batteries have been regarded as the most potential candidate to substitute lithium-ion batteries.However,many serious challenges such as suppressing zinc dendrite growth and undesirable reactions,and achieving fully accepted mechanism also have not been solved.Herein,the commensal composite microspheres withα-MnO_(2) nano-wires and carbon nanotubes were achieved and could effectively suppress ZnSO_(4)·3Zn(OH)_(2)·nH_(2)O rampant crystallization.The electrode assembled with the microspheres delivered a high initial capacity at a current density of 0.05 A g^(-1) and maintained a significantly prominent capacity retention of 88%over 2500 cycles.Furthermore,a novel energy-storage mechanism,in which multivalent manganese oxides play a synergistic effect,was comprehen-sively investigated by the quantitative and qualitative analysis for ZnSO_(4)·3Zn(OH)_(2)·nH_(2)O.The capacity contribution of multivalent manganese oxides and the crystal structure dissection in the transformed processes were completely identified.Therefore,our research could provide a novel strategy for designing improved electrode structure and a comprehensive understanding of the energy storage mechanism of α-MnO_(2) cathodes. 展开更多
关键词 α-MnO_(2) aqueous zinc-ion batteries carbon nanotubes composite microspheres energy storage mechanism
下载PDF
The Correlation between the Power Quality Indicators and Entropy Production Characteristics of Wind Power+Energy Storage Systems
3
作者 Caifeng Wen Boxin Zhang +3 位作者 Yuanjun Dai Wenxin Wang Wanbing Xie Qian Du 《Energy Engineering》 EI 2024年第10期2961-2979,共19页
Power quality improvements help guide and solve the problems of inefficient energy production and unstable power output in wind power systems.The purpose of this paper is mainly to explore the influence of different e... Power quality improvements help guide and solve the problems of inefficient energy production and unstable power output in wind power systems.The purpose of this paper is mainly to explore the influence of different energy storage batteries on various power quality indicators by adding different energy storage devices to the simulated wind power system,and to explore the correlation between systementropy generation and various indicators,so as to provide a theoretical basis for directly improving power quality by reducing loss.A steady-state experiment was performed by replacing the wind wheel with an electric motor,and the output power qualities of the wind power systemwith andwithout energy storagewere compared and analyzed.Moreover,the improvement effect of different energy storage devices on various indicatorswas obtained.Then,based on the entropy theory,the loss of the internal components of the wind power system generator is simulated and explored by Ansys software.Through the analysis of power quality evaluation indicators,such as current harmonic distortion rate,frequency deviation rate,and voltage fluctuation,the correlation between entropy production and each evaluation indicator was explored to investigate effective methods to improve power quality by reducing entropy production.The results showed that the current harmonic distortion rate,voltage fluctuation,voltage deviation,and system entropy production are positively correlated in the tests and that the power factor is negatively correlated with system entropy production.In the frequency range,the frequency deviationwas not significantly correlated with the systementropy production. 展开更多
关键词 Wind power system entropy production system losses power quality indexes battery energy storage
下载PDF
An Investigation of Battery Energy Storage Aided Wind-Coal Integrated Energy System 被引量:1
4
作者 Enhui Sun Jiahao Shi +3 位作者 Lei Zhang Hongfu Ji Qian Zhang Yongyi Li 《Energy Engineering》 EI 2023年第7期1583-1602,共20页
This paper studies the feasibility of a supply-side wind-coal integrated energy system.Based on grid-side data,the load regulation model of coal-fired power and the wind-coal integrated energy system model are establi... This paper studies the feasibility of a supply-side wind-coal integrated energy system.Based on grid-side data,the load regulation model of coal-fired power and the wind-coal integrated energy system model are established.According to the simulation results,the reasons why the wind-coal combined power supply is difficult to meet the grid-side demand are revealedthrough scenario analysis.Basedon thewind-coal combinedoperation,a wind-coalstorage integrated energy system was proposed by adding lithium-iron phosphate battery energy storage system(LIPBESS)to adjust the load of the system.According to the four load adjustment scenarios of grid-side instructions of the wind-coal system,the difficulty of load adjustment in each scenario is analyzed.Based on the priority degree of LIPBESS charge/discharge in four scenarios at different time periods,the operation mode of two charges and two discharges per day was developed.Based on the independent operation level of coal-fired power,after the addition of LIPBESS(5.5 MWh),the average qualified rate of multi-power operation in March and June reached the level of independent operation of coal-fired power,while the average qualified rate of the remaining months was only 5.4%different from that of independent operation of coal-fired power.Compared with the wind storage mode,the energy storage capacity and investment cost of wind-coal-storage integrated energy system are reduced by 54.2%and 53.7%,respectively. 展开更多
关键词 Wind power lithium-iron phosphate battery energy storage system coal-fired power integrated energy system
下载PDF
A Two-Layer Fuzzy Control Strategy for the Participation of Energy Storage Battery Systems in Grid Frequency Regulation 被引量:1
5
作者 Wei Chen Na Sun +2 位作者 Zhicheng Ma Wenfei Liu Haiying Dong 《Energy Engineering》 EI 2023年第6期1445-1464,共20页
To address the frequency fluctuation problem caused by the power dynamic imbalance between the power system and the loadwhen a large number of newenergy sources are connected to the grid,a two-layer fuzzy control stra... To address the frequency fluctuation problem caused by the power dynamic imbalance between the power system and the loadwhen a large number of newenergy sources are connected to the grid,a two-layer fuzzy control strategy is proposed for the participation of the energy storage battery system in FM.Firstly,considering the coordination of FM units responding to automatic power generation control commands,a comprehensive allocation strategy of two signals under automatic power generation control commands is proposed to give full play to the advantages of two FM signals while enabling better coordination of two FM units responding to FM commands;secondly,based on the grid FM demand and battery FM capability,a double-layer fuzzy control strategy is proposed for FM units responding to automatic power generation control commands in a coordinated manner under dual-signal allocation mode to precisely allocate the power output depth of FM units,which can control the fluctuation of frequency deviation within a smaller range at a faster speed while maintaining the battery charge state;finally,the proposed Finally,the proposed control strategy is simulated and verified inMatlab/Simulink.The results show that the proposed control strategy can control the frequency deviation within a smaller range in a shorter time,better stabilize the fluctuation of the battery charge level,and improve the utilization of the FM unit. 展开更多
关键词 battery energy storage secondary FM signal distribution mode charge state two-layer fuzzy control
下载PDF
Photoinduced Cu^(+)/Cu^(2+)interconversion for enhancing energy conversion and storage performances of CuO based Li-ion battery
6
作者 Qiuman Zhang Meng Wei +7 位作者 Qianwen Dong Qiongzhi Gao Xin Cai Shengsen Zhang Teng Yuan Feng Peng Yueping Fang Siyuan Yang 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2023年第4期83-91,共9页
Pursuing appropriate photo-active Li-ion storage materials and understanding their basic energy storage/conversion principle are pretty crucial for the rapidly developing photoassisted Li-ion batteries(PA-LIBs).Copper... Pursuing appropriate photo-active Li-ion storage materials and understanding their basic energy storage/conversion principle are pretty crucial for the rapidly developing photoassisted Li-ion batteries(PA-LIBs).Copper oxide(CuO)is one of the most popular candidates in both LIBs and photocatalysis.While CuO based PA-LIBs have never been reported yet.Herein,one-dimensional(1D)CuO nanowire arrays in situ grown on a three-dimensional(3D)copper foam support were employed as dualfunctional photoanode for both‘solar-to-electricity’and‘electricity-to-chemical’energy conversion in the PA-LIBs.It is found that light energy can be indeed stored and converted into electrical energy through the assembled CuO based PA-LIBs.Without external power source,the photo conversion efficiency of CuO based photocell reaches about 0.34%.Impressively,at a high current density of 4000 m A g^(-1),photoassisted discharge and charge specific capacity of CuO based PA-LIBs respectively receive 64.01%and 60.35%enhancement compared with the net electric charging and discharging process.Mechanism investigation reveals that photogenerated charges from CuO promote the interconversion between Cu^(2+)and Cu^(+)during the discharging/charging process,thus forcing the lithium storage reaction more completely and increasing the specific capacity of the PA-LIBs.This work can provide a general principle for the development of other high-efficient semiconductor-based PA-LIBs. 展开更多
关键词 Li-ion batteries energy conversion and storage Photo rechargeable Electrochemistry Copper oxide
下载PDF
Methylene blue intercalated vanadium oxide with synergistic energy storage mechanism for highly efficient aqueous zinc ion batteries
7
作者 Yunxiao Tong Ying Zang +8 位作者 Senda Su Yinggui Zhang Junzhuo Fang Yongqing Yang Xiaoman Li Xiang Wu Fuming Chen Jianhua Hou Min Luo 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2023年第2期269-279,I0007,共12页
With the rise of aqueous multivalent rechargeable batteries,inorganic-organic hybrid cathodes have attracted more and more attention due to the complement of each other’s advantages.Herein,a strategy of designing hyb... With the rise of aqueous multivalent rechargeable batteries,inorganic-organic hybrid cathodes have attracted more and more attention due to the complement of each other’s advantages.Herein,a strategy of designing hybrid cathode is adopted for high efficient aqueous zinc-ion batteries(AZIBs).Methylene blue(MB)intercalated vanadium oxide(HVO-MB)was synthesized through sol-gel and ion exchange method.Compared with other organic-inorganic intercalation cathode,not only can the MB intercalation enlarge the HVO interlayer spacing to improve ion mobility,but also provide coordination reactions with the Zn^(2+)to enhance the intrinsic electrochemical reaction kinetics of the hybrid electrode.As a key component for the cathode of AZIBs,HVO-MB contributes a specific capacity of 418 mA h g^(-1) at 0.1 A g^(-1),high rate capability(243 mA h g^(-1) at 5 A g^(-1))and extraordinary stability(88%of capacity retention after 2000cycles at a high current density of 5 A g^(-1))in 3 M Zn(CF_(3)SO_(3))_(2) aqueous electrolyte.The electrochemical kinetics reveals HVO-MB characterized with large pseudocapacitance charge storage behavior due to the fast ion migration provided by the coordination reaction and expanded interlayer distance.Furthermore,a mixed energy storage mechanism involving Zn^(2+)insertion and coordination reaction is confirmed by various ex-situ characterization.Thus,this work opens up a new path for constructing the high performance cathode of AZIBs through organic-inorganic hybridization. 展开更多
关键词 Synergistic energy storage mechanism Aqueous zinc-ion batteries Vanadium oxides Pre-intercalation strategy Methylene blue
下载PDF
ZnO-Embedded Expanded Graphite Composite Anodes with Controlled Charge Storage Mechanism Enabling Operation of Lithium-Ion Batteries at Ultra-Low Temperatures
8
作者 Kun Ryu Michael J.Lee +1 位作者 Kyungbin Lee Seung Woo Lee 《Energy & Environmental Materials》 SCIE EI CAS CSCD 2023年第4期31-39,共9页
As lithium(Li)-ion batteries expand their applications,operating over a wide temperature range becomes increasingly important.However,the lowtemperature performance of conventional graphite anodes is severely hampered... As lithium(Li)-ion batteries expand their applications,operating over a wide temperature range becomes increasingly important.However,the lowtemperature performance of conventional graphite anodes is severely hampered by the poor diffusion kinetics of Li ions(Li^(+)).Here,zinc oxide(ZnO) nanoparticles are incorporated into the expanded graphite to improve Li^(+)diffusion kinetics,resulting in a significant improvement in lowtemperature performance.The ZnO-embedded expanded graphite anodes are investigated with different amounts of ZnO to establish the structurecharge storage mechanism-performance relationship with a focus on lowtemperature applications.Electrochemical analysis reveals that the ZnOembedded expanded graphite anode with nano-sized ZnO maintains a large portion of the diffusion-controlled charge storage mechanism at an ultra-low temperature of-50℃ Due to this significantly enhanced Li^(+)diffusion rate,a full cell with the ZnO-embedded expanded graphite anode and a LiNi_(0.88)Co_(0.09)Al_(0.03)O_(2)cathode delivers high capacities of 176 mAh g^(-1)at20℃ and 86 mAh g^(-1)at-50℃ at a high rate of 1 C.The outstanding low-temperature performance of the composite anode by improving the Li^(+)diffusion kinetics provides important scientific insights into the fundamental design principles of anodes for low-temperature Li-ion battery operation. 展开更多
关键词 diffusive and capacitive charge storages expanded graphite composites anode lithium-ion battery low-temperature operation transition metal oxide
下载PDF
Evaluation of the Performance of Lithium-Ion Accumulators for Photovoltaic Energy Storage
9
作者 Toussaint Tilado Guingane Dominique Bonkoungou +4 位作者 Eric Korsaga Dieudonné Simpore Soumaila Ouedraogo Zacharie Koalaga François Zougmore 《Energy and Power Engineering》 2023年第12期517-526,共10页
In a context of climate change exacerbated by the increasing scarcity of fossil fuels, renewable energies, in particular photovoltaic solar energy, offer a promising alternative. Solar energy is non-polluting, globall... In a context of climate change exacerbated by the increasing scarcity of fossil fuels, renewable energies, in particular photovoltaic solar energy, offer a promising alternative. Solar energy is non-polluting, globally available and the most widely distributed resource on Earth. However, the intermittency of this energy source considerably limits its expansion. To solve this problem, storage techniques are being used, in particular, electrochemical storage using lithium-ion batteries. In this article, we will evaluate the performance of lithium-ion batteries when integrated into a photovoltaic grid. To do this, modelling and simulation of a photovoltaic system connected to a lithium-ion battery storage system will be carried out using MATLAB/Simulink software. A diagnostic of the energy consumption of the Kaya Polytechnic University Centre will be carried out, and the data will then be used in the simulator to observe the behaviour of the PV-Lion system. The results obtained indicate that lithium-ion batteries can effectively meet the centre’s energy demand. In addition, it was observed that lithium-ion batteries perform better under high energy demand than the other battery technologies studied. Successive storage systems with the same capacity but different battery technologies were compared. It was found that these storage systems can handle a maximum power of 4 × 10<sup>5</sup> W for lead-acid batteries, 6.5 × 10<sup>5</sup> W for nickel-cadmium batteries, 8.5 × 10<sup>5</sup> W for nickel-metal-hydride batteries, and more than 10 × 10<sup>5</sup> W for lithium-ion technology. 展开更多
关键词 Photovoltaic energy energy storage lithium-ion Accumulator MODELING MATLAB/Simulink Simulation
下载PDF
Applications of Lithium-Ion Batteries in Grid-Scale Energy Storage Systems 被引量:11
10
作者 Tianmei Chen Yi Jin +5 位作者 Hanyu Lv Antao Yang Meiyi Liu Bing Chen Ying Xie Qiang Chen 《Transactions of Tianjin University》 EI CAS 2020年第3期208-217,共10页
In the electrical energy transformation process,the grid-level energy storage system plays an essential role in balancing power generation and utilization.Batteries have considerable potential for application to grid-... In the electrical energy transformation process,the grid-level energy storage system plays an essential role in balancing power generation and utilization.Batteries have considerable potential for application to grid-level energy storage systems because of their rapid response,modularization,and flexible installation.Among several battery technologies,lithium-ion batteries(LIBs)exhibit high energy efficiency,long cycle life,and relatively high energy density.In this perspective,the properties of LIBs,including their operation mechanism,battery design and construction,and advantages and disadvantages,have been analyzed in detail.Moreover,the performance of LIBs applied to grid-level energy storage systems is analyzed in terms of the following grid services:(1)frequency regulation;(2)peak shifting;(3)integration with renewable energy sources;and(4)power management.In addition,the challenges encountered in the application of LIBs are discussed and possible research directions aimed at overcoming these challenges are proposed to provide insight into the development of grid-level energy storage systems. 展开更多
关键词 lithium-ion batteries Grid-level energy storage system Frequency regulation and peak SHAVING RENEWABLE energy integration Power management
下载PDF
Intrinsic Self-Healing Chemistry for Next-Generation Flexible Energy Storage Devices 被引量:7
11
作者 Xin Wan Tiansheng Mu Geping Yin 《Nano-Micro Letters》 SCIE EI CAS CSCD 2023年第7期136-164,共29页
The booming wearable/portable electronic devices industry has stimulated the progress of supporting flexible energy storage devices.Excellent performance of flexible devices not only requires the component units of ea... The booming wearable/portable electronic devices industry has stimulated the progress of supporting flexible energy storage devices.Excellent performance of flexible devices not only requires the component units of each device to maintain the original performance under external forces,but also demands the overall device to be flexible in response to external fields.However,flexible energy storage devices inevitably occur mechanical damages(extrusion,impact,vibration)/electrical damages(overcharge,over-discharge,external short circuit)during longterm complex deformation conditions,causing serious performance degradation and safety risks.Inspired by the healing phenomenon of nature,endowing energy storage devices with self-healing capability has become a promising strategy to effectively improve the durability and functionality of devices.Herein,this review systematically summarizes the latest progress in intrinsic self-healing chemistry for energy storage devices.Firstly,the main intrinsic self-healing mechanism is introduced.Then,the research situation of electrodes,electrolytes,artificial interface layers and integrated devices based on intrinsic self-healing and advanced characterization technology is reviewed.Finally,the current challenges and perspective are provided.We believe this critical review will contribute to the development of intrinsic self-healing chemistry in the flexible energy storage field. 展开更多
关键词 Flexible energy storage Intrinsic self-healing chemistry lithium-ion battery Supercapacitor Advanced characterizations
下载PDF
Research progress of alkaline earth metal iron-based oxides as anodes for lithium-ion batteries
12
作者 Mingyuan Ye Xiaorui Hao +6 位作者 Jinfeng Zeng Lin Li Pengfei Wang Chenglin Zhang Li Liu Fanian Shi Yuhan Wu 《Journal of Semiconductors》 EI CAS CSCD 2024年第2期21-33,共13页
Anode materials are an essential part of lithium-ion batteries(LIBs),which determine the performance and safety of LIBs.Currently,graphite,as the anode material of commercial LIBs,is limited by its low theoretical cap... Anode materials are an essential part of lithium-ion batteries(LIBs),which determine the performance and safety of LIBs.Currently,graphite,as the anode material of commercial LIBs,is limited by its low theoretical capacity of 372 mA·h·g^(−1),thus hindering further development toward high-capacity and large-scale applications.Alkaline earth metal iron-based oxides are considered a promising candidate to replace graphite because of their low preparation cost,good thermal stability,superior stability,and high electrochemical performance.Nonetheless,many issues and challenges remain to be addressed.Herein,we systematically summarize the research progress of alkaline earth metal iron-based oxides as LIB anodes.Meanwhile,the material and structural properties,synthesis methods,electrochemical reaction mechanisms,and improvement strategies are introduced.Finally,existing challenges and future research directions are discussed to accelerate their practical application in commercial LIBs. 展开更多
关键词 alkali-earth metal iron-based oxides anodes lithium-ion batteries electrochemical energy storage
下载PDF
Pioneering the direct large-scale laser printing of flexible“graphenic silicon”self-standing thin films as ultrahigh-performance lithium-ion battery anodes
13
作者 Avinash Kothuru Adam Cohen +2 位作者 Gil Daffan Yonatan Juhl Fernando Patolsky 《Carbon Energy》 SCIE EI CAS CSCD 2024年第7期26-40,共15页
Recent technological advancements,such as portable electronics and electric vehicles,have created a pressing need for more efficient energy storage solutions.Lithium-ion batteries(LIBs)have been the preferred choice f... Recent technological advancements,such as portable electronics and electric vehicles,have created a pressing need for more efficient energy storage solutions.Lithium-ion batteries(LIBs)have been the preferred choice for these applications,with graphite being the standard anode material due to its stability.However,graphite falls short of meeting the growing demand for higher energy density,possessing a theoretical capacity that lags behind.To address this,researchers are actively seeking alternative materials to replace graphite in commercial batteries.One promising avenue involves lithiumalloying materials like silicon and phosphorus,which offer high theoretical capacities.Carbon-silicon composites have emerged as a viable option,showing improved capacity and performance over traditional graphite or pure silicon anodes.Yet,the existing methods for synthesizing these composites remain complex,energy-intensive,and costly,preventing widespread adoption.A groundbreaking approach is presented here:the use of a laser writing strategy to rapidly transform common organic carbon precursors and silicon blends into efficient“graphenic silicon”composite thin films.These films exhibit exceptional structural and energy storage properties.The resulting three-dimensional porous composite anodes showcase impressive attributes,including ultrahigh silicon content,remarkable cyclic stability(over 4500 cycles with∼40%retention),rapid charging rates(up to 10 A g^(-1)),substantial areal capacity(>5.1 mAh cm^(-2)),and excellent gravimetric capacity(>2400 mAh g^(-1) at 0.2 A g^(-1)).This strategy marks a significant step toward the scalable production of high-performance LIB materials.Leveraging widely available,cost-effective precursors,the laser-printed“graphenic silicon”composites demonstrate unparalleled performance,potentially streamlining anode production while maintaining exceptional capabilities.This innovation not only paves the way for advanced LIBs but also sets a precedent for transforming various materials into high-performing electrodes,promising reduced complexity and cost in battery production. 展开更多
关键词 4D printing energy storage fast-charging laser-induced graphene lithium-ion silicon carbon composite anodes
下载PDF
Synergistically constructed lamination-like network of redox-active polyimide and MXene via π-π interactions for aqueous NH_(4)^(+) storage
14
作者 Jing He Hongye Xuan +5 位作者 Jing Jin Ke Yu Changyao Liyang Lintong Hu Minjie Shi Chao Yan 《Chinese Journal of Chemical Engineering》 SCIE EI CAS CSCD 2024年第7期217-224,共8页
As a nonmetallic charge carrier,ammonium ion(NH_(4)^(+))has garnered significant attention in the construction of aqueous batteries due to its advantages of low molar mass,small hydration size and rapid diffusion in a... As a nonmetallic charge carrier,ammonium ion(NH_(4)^(+))has garnered significant attention in the construction of aqueous batteries due to its advantages of low molar mass,small hydration size and rapid diffusion in aqueous solutions.Polymers are a kind of potential electro-active materials for aqueous NH_(4)^(+)storage.However,traditional polymer electrodes are typically created by covering the bulky collectors with excessive additives,which could lead to low volume capacity and unsatisfactory stability.Herein,a nanoparticle-like polyimide(PI)was synthesized and then combined with MXene nanosheets to synergistically construct an additive-free and self-standing PI@MXene composite electrode.Significantly,the redox-active PI nanoparticles are enclosed between conductive MXene flakes to create a 3D lamination-like network that promotes electron transmission,while theπ-πinteractions existing between PI and MXene contribute to the enhanced structural integrity and stability within the composite electrode.As such,it delivers superior aqueous NH_(4)^(+)storage behaviors in terms of a notable specific capacity of 110.7 mA·h·cm^(–3) and a long lifespan with only 0.0064%drop each cycle.Furthermore,in-situ Raman and UV–Vis examinations provide evidence of reversible and stable redox mechanism of the PI@MXene composite electrode during NH_(4)^(+)uptake/removal,highlighting its significance in the area of electrochemical energy storage. 展开更多
关键词 Synergetic coupling Composite materials POLYIMIDE energy storage Aqueous ammonium ion batteries
下载PDF
Dual-conductive metal-organic framework@MXene heterogeneity stabilizes lithium-ion storage 被引量:2
15
作者 Lanju Sun Honglei Wang +7 位作者 Shengliang Zhai Jikai Sun Xu Fang Hongyan Yang Dong Zhai Chengcheng Liu Wei-Qiao Deng Hao Wu 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2023年第1期368-376,I0009,共10页
Although a few pristine metal-organic frameworks(MOFs) of graphene analogue topology exhibit high intrinsic electrical conductivity, their use in lithium-ion batteries(LIBs) is still hampered by unfavorable Li+adsorpt... Although a few pristine metal-organic frameworks(MOFs) of graphene analogue topology exhibit high intrinsic electrical conductivity, their use in lithium-ion batteries(LIBs) is still hampered by unfavorable Li+adsorption energy(ΔEa). In this paper, an electroconductive ferrocene-based MOF@MXene heterostructure is built to provide stable anodes for Li+storage. Charge density difference and planar average potential charge density show substantial redistribution of charges at the interfaces, transferring from MXene to MOF layers. Moreover, density functional theory(DFT) calculations reveal that the interaction between MXene and MOF significantly increases the ΔEa. As a result, the heterostructure anode exhibits high capacities and outstanding cycling stability with a capacity retention of 80% after 5000 cycles at 5 A g^(-1), outperforming mono-component MXene and MOF. Furthermore, the heterostructure anode is built into a full cell with a commercial NCM 532 cathode, delivering a high energy density of 611 Wh kg^(-1)and power density of 7600 W kg^(-1). The developed conductive MOF@MXene heterogeneity for improved LIB offers valuable insights into the design of advanced electrode materials for energy storage. 展开更多
关键词 MXene Metal-organic framework HETEROSTRUCTURE lithium-ion battery Adsorption energy
下载PDF
Lithium-Ion Battery Pack Based on Fuzzy Logic Control Research on Multi-Layer Equilibrium Circuits
16
作者 Tiezhou Wu Yukan Zhang 《Energy Engineering》 EI 2024年第8期2231-2255,共25页
In order to solve the problem of inconsistent energy in the charging and discharging cycles of lithium-ion battery packs,a new multilayer equilibrium topology is designed in this paper.The structure adopts a hierarchi... In order to solve the problem of inconsistent energy in the charging and discharging cycles of lithium-ion battery packs,a new multilayer equilibrium topology is designed in this paper.The structure adopts a hierarchical structure design,which includes intra-group equilibrium,primary inter-group equilibrium and secondary inter-group equilibrium.This structure greatly increases the number of equilibrium paths for lithium-ion batteries,thus shortening the time required for equilibrium,and improving the overall efficiency.In terms of control strategy,fuzzy logic control(FLC)is chosen to control the size of the equilibrium current during the equilibrium process.We performed rigorous modeling and simulation of the proposed system by MATLAB and Simulink software.Experiments show that the multilayer equilibrium circuit structure greatly exceeds the traditional single-layer equilibrium circuit in terms of efficacy,specifically,the Li-ion battery equilibrium speed is improved by 12.71%in static equilibrium,14.48%in charge equilibrium,and 11.19%in discharge equilibrium.In addition,compared with the maximum value algorithm,the use of the FLC algorithm reduces the equalization time by about 3.27%and improves the energy transfer efficiency by about 66.49%under the stationary condition,which verifies the feasibility of the equalization scheme. 展开更多
关键词 lithium-ion battery for new energy vehicles lithium-ion battery equilibrium fuzzy logic control
下载PDF
Recent advances in 3D printed electrode materials for electrochemical energy storage devices 被引量:1
17
作者 Suhail Mubarak Duraisami Dhamodharan Hun-Soo Byun 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2023年第6期272-312,I0008,共42页
Electrochemical energy storage(EES)systems like batteries and supercapacitors are becoming the key power sources for attempts to change the energy dependency from inadequate fossil fuels to sustainable and renewable r... Electrochemical energy storage(EES)systems like batteries and supercapacitors are becoming the key power sources for attempts to change the energy dependency from inadequate fossil fuels to sustainable and renewable resources.Electrochemical energy storage devices(EESDs)operate efficiently as a result of the construction and assemblage of electrodes and electrolytes with appropriate structures and effective materials.Conventional manufacturing procedures have restrictions on regulating the morphology and architecture of the electrodes,which would influence the performance of the devices.3D printing(3DP)is an advanced manufacturing technology combining computer-aided design and has been recognised as an artistic method of fabricating different fragments of energy storage devices with its ability to precisely control the geometry,porosity,and morphology with improved specific energy and power densities.The capacity to create mathematically challenging shape or configuration designs and high-aspect-ratio 3D architectures makes 3D printing technology unique in its benefits.Nevertheless,the control settings,interactive manufacturing processes,and protracted post-treatments will affect the reproducibility of the printed components.More intelligent software,sophisticated control systems,high-grade industrial equipment,and post-treatment-free methods are necessary to develop.3D printed(3DPd)EESDs necessitate dynamic printable materials and composites that are influenced by performance criteria and fundamental electrochemistry.Herein,we review the recent advances in 3DPd electrodes for EES applications.The emphasis is on printable material synthesis,3DP techniques,and the electrochemical performance of printed electrodes.For the fabrication of electrodes,we concentrate on major 3DP technologies such as direct ink writing(DIW),inkjet printing(IJP),fused deposition modelling(FDM),and stereolithography3DP(SLA).The benefits and drawbacks of each 3DP technology are extensively discussed.We provide an outlook on the integration of synthesis of emerging nanomaterials and fabrication of complex structures from micro to macroscale to construct highly effective electrodes for the EESDs. 展开更多
关键词 3D printing 3D printed electrodes Electrochemical energy storage lithium-ion battery Zinc-ion battery SUPERCAPACITOR
下载PDF
Empowering the Future: Exploring the Construction and Characteristics of Lithium-Ion Batteries
18
作者 Dan Tshiswaka Dan 《Advances in Chemical Engineering and Science》 CAS 2024年第2期84-111,共28页
Lithium element has attracted remarkable attraction for energy storage devices, over the past 30 years. Lithium is a light element and exhibits the low atomic number 3, just after hydrogen and helium in the periodic t... Lithium element has attracted remarkable attraction for energy storage devices, over the past 30 years. Lithium is a light element and exhibits the low atomic number 3, just after hydrogen and helium in the periodic table. The lithium atom has a strong tendency to release one electron and constitute a positive charge, as Li<sup> </sup>. Initially, lithium metal was employed as a negative electrode, which released electrons. However, it was observed that its structure changed after the repetition of charge-discharge cycles. To remedy this, the cathode mainly consisted of layer metal oxide and olive, e.g., cobalt oxide, LiFePO<sub>4</sub>, etc., along with some contents of lithium, while the anode was assembled by graphite and silicon, etc. Moreover, the electrolyte was prepared using the lithium salt in a suitable solvent to attain a greater concentration of lithium ions. Owing to the lithium ions’ role, the battery’s name was mentioned as a lithium-ion battery. Herein, the presented work describes the working and operational mechanism of the lithium-ion battery. Further, the lithium-ion batteries’ general view and future prospects have also been elaborated. 展开更多
关键词 lithium-ion Batteries battery Construction battery Characteristics energy storage Electrochemical Cells Anode Materials Cathode Materials State of Charge (SOC) Depth of Discharge (DOD) Solid Electrolyte Interface (SEI)
下载PDF
Application and Progress of Confinement Synthesis Strategy in Electrochemical Energy Storage
19
作者 Yike Xu Zhenyu Liu +3 位作者 Wenhua Cong Jingwen Zhao Xuguang Liu Meiling Wang 《Transactions of Tianjin University》 EI CAS 2023年第2期151-187,共37页
Designing high-performance nanostructured electrode materials is the current core of electrochemical energy storage devices.Multi-scaled nanomaterials have triggered considerable interest because they effectively comb... Designing high-performance nanostructured electrode materials is the current core of electrochemical energy storage devices.Multi-scaled nanomaterials have triggered considerable interest because they effectively combine a library of advantages of each component on different scales for energy storage.However,serious aggregation,structural degradation,and even poor stability of nanomaterials are well-known issues during electrochemically driven volume expansion/contraction processes.The confinement strategy provides a new route to construct controllable internal void spaces to avoid the intrinsic volume effects of nanomaterials during the reaction or charge/discharge process.Herein,we discuss the confinement strategies and methods for energy storage-related electrode materials with a one-dimensional channel,two-dimensional interlayer,and three-dimensional space as reaction environments.For each confinement environment,the correlation between the confinement condition/structure and the behavioral characteristics of energy storage devices in the scope of metal-ion batteries(e.g.,Li-ion,Na-ion,K-ion,and Mg-ion batteries),Li-S batteries(LSBs),Zn-air batteries(ZIBs),and supercapacitors.Finally,we discussed the challenges and perspectives on future nanomaterial confinement strategies for electrochemical energy storage devices. 展开更多
关键词 Confi nement Electrochemical energy storage NANOMATERIALS BATTERIES SUPERCAPACITORS
下载PDF
Recent Progress of Conductive Metal-Organic Frameworks for Electrochemical Energy Storage
20
作者 Zhiyuan Sang Yueyu Tong +1 位作者 Feng Hou Ji Liang 《Transactions of Tianjin University》 EI CAS 2023年第2期136-150,共15页
The development of reliable and low-cost energy storage systems is of considerable value in using renewable and clean energy sources,and exploring advanced electrodes with high reversible capacity,excellent rate perfo... The development of reliable and low-cost energy storage systems is of considerable value in using renewable and clean energy sources,and exploring advanced electrodes with high reversible capacity,excellent rate performance,and long cycling life for Li/Na/Zn-ion batteries and supercapacitors is the key problem.Particularly because of their diverse structure,high specific surface area,and adjustable redox activity,electrically conductive metal-organic frameworks(c-MOFs)are considered promising candidates for these electrochemical applications,and a detailed overview of the recent progress of c-MOFs for electrochemical energy storage and their intrinsic energy storage mechanism helps realize a comprehensive and systematic understanding of this progress and further achieve highly efficient energy storage and conversion.Herein,the chemical structure of c-MOFs and their conductive mechanism are first introduced.Subsequently,a comprehensive summarization of the current applications of c-MOFs in energy storage systems,namely supercapacitors,LIBs,SIBs,and ZIBs,is presented.Finally,the prospects and challenges of c-MOFs toward much higher-performance energy storage devices are presented,which should illuminate the future scientific research and practical applications of c-MOFs in energy storage fields. 展开更多
关键词 energy storage Conductive metal-organic frameworks BATTERIES SUPERCAPACITORS
下载PDF
上一页 1 2 152 下一页 到第
使用帮助 返回顶部