With the increasing penetration of wind and solar energies,the accompanying uncertainty that propagates in the system places higher requirements on the expansion planning of power systems.A source-grid-load-storage co...With the increasing penetration of wind and solar energies,the accompanying uncertainty that propagates in the system places higher requirements on the expansion planning of power systems.A source-grid-load-storage coordinated expansion planning model based on stochastic programming was proposed to suppress the impact of wind and solar energy fluctuations.Multiple types of system components,including demand response service entities,converter stations,DC transmission systems,cascade hydropower stations,and other traditional components,have been extensively modeled.Moreover,energy storage systems are considered to improve the accommodation level of renewable energy and alleviate the influence of intermittence.Demand-response service entities from the load side are used to reduce and move the demand during peak load periods.The uncertainties in wind,solar energy,and loads were simulated using stochastic programming.Finally,the effectiveness of the proposed model is verified through numerical simulations.展开更多
Building emission reduction is an important way to achieve China’s carbon peaking and carbon neutrality goals.Aiming at the problem of low carbon economic operation of a photovoltaic energy storage building system,a ...Building emission reduction is an important way to achieve China’s carbon peaking and carbon neutrality goals.Aiming at the problem of low carbon economic operation of a photovoltaic energy storage building system,a multi-time scale optimal scheduling strategy based on model predictive control(MPC)is proposed under the consideration of load optimization.First,load optimization is achieved by controlling the charging time of electric vehicles as well as adjusting the air conditioning operation temperature,and the photovoltaic energy storage building system model is constructed to propose a day-ahead scheduling strategy with the lowest daily operation cost.Second,considering inter-day to intra-day source-load prediction error,an intraday rolling optimal scheduling strategy based on MPC is proposed that dynamically corrects the day-ahead dispatch results to stabilize system power fluctuations and promote photovoltaic consumption.Finally,taking an office building on a summer work day as an example,the effectiveness of the proposed scheduling strategy is verified.The results of the example show that the strategy reduces the total operating cost of the photovoltaic energy storage building system by 17.11%,improves the carbon emission reduction by 7.99%,and the photovoltaic consumption rate reaches 98.57%,improving the system’s low-carbon and economic performance.展开更多
As a flexible resource,energy storage plays an increasingly significant role in stabilizing and supporting the power system,while providing auxiliary services.Still,the current high demand for energy storage contrasts...As a flexible resource,energy storage plays an increasingly significant role in stabilizing and supporting the power system,while providing auxiliary services.Still,the current high demand for energy storage contrasts with the fuzzy lack of market-oriented mechanisms for energy storage,the principle of market-oriented operation has not been embodied,and there is no unified and systematic analytical framework for the business model.However,the dispatch management model of energy storage in actual power system operation is not clear.Still,the specific scheduling process and energy storage strategy on the source-load-network side could be more specific,and there needs to be a greater understanding of the collaborative scheduling process of the multilevel scheduling center.On this basis,this paper reviews the energy storage operation model and market-based incentive mechanism,For different functional types and installation locations of energy storage within the power system,the operational models and existing policies for energy storage participation in the market that are adapted to multiple operating states are summarized.From the point of view of the actual scheduling and operation management of energy storage in China,an energy storage regulation and operation management model based on“national,provincial,and local”multilevel coordination is proposed,as well as key technologies in the interactive scenarios of source-load,network and storage.展开更多
In view of the Three North areas existing wind power absorption and environment pollution problems,the previous scholars have improved the wind abandon problem by adding electrothermal coupling equipment or optimizing...In view of the Three North areas existing wind power absorption and environment pollution problems,the previous scholars have improved the wind abandon problem by adding electrothermal coupling equipment or optimizing power grid operation.In this paper,an electrothermal integrated energy system including heat pump and thermal storage units was proposed.The scheduling model was based on the load data and the output characteristics of power units,each power unit capacity was programmed without constraints,and the proposed scheduling model was compared with the traditional combined heat and power scheduling model.Results showed that the investment and pollutant discharge of the system was reduced respectively.Wind power was fully absorbed.Compared with the traditional thermal power unit,the proportion of the output was significantly decreased by the proposed model.The proposed system could provide a new prospect for wind power absorption and environment protection.展开更多
After the integration of large-scale DistributedGeneration(DG)into the distribution network,the randomness and volatility of its output result in a reduction of spatiotemporal alignment between power generation and de...After the integration of large-scale DistributedGeneration(DG)into the distribution network,the randomness and volatility of its output result in a reduction of spatiotemporal alignment between power generation and demand in the distribution network,exacerbating the phenomenon of wind and solar power wastage.As a novel power system model,the fundamental concept of Regional Autonomous Power Grids(RAPGs)is to achieve localized management and energy autonomy,thereby facilitating the effective consumption of DGs.Therefore,this paper proposes a distributed resource planning strategy that enhances the autonomy capabilities of regional power grids by considering multiple evaluation indexes for autonomy.First,a regional Energy Storage(ES)configuration strategy is proposed.This strategy can select a suitable reference value for the upper limit of ES configuration based on the regional load andDGoutput to maximize the elimination of source load deviations in the region as the upper limit constraint of ES capacity.Then,a control strategy for regional ES is proposed,the charging and discharging reference line of ES is set,and multiple autonomy and economic indexes are used as objective functions to select different proportions of ES to control the distributed resources of the regional power grid and establish evaluation indexes of the internal regional generation and load power ratio,the proportion of power supply matching hours,new energy consumption rate and tie line power imbalance outside the region to evaluate changes in the regional autonomy capabilities.The final simulation results showthat in the real regional grid example,the planning method in the planning year in the region of the overall power supply matching hour ratio and new energy consumption rate increased by 3.9%and 4.8%on average,and the power imbalance of the tie line decreased by 7.8%on average.The proposed planning approach enables the maximization of regional autonomy while effectively smoothing the fluctuation of power exchange between the regional grid and the higher-level grid.This presents a rational and effective planning solution for the regional grid,facilitating the coordinated development between the region and the distribution network.展开更多
In the electricity market,fluctuations in real-time prices are unstable,and changes in short-term load are determined by many factors.By studying the timing of charging and discharging,as well as the economic benefits...In the electricity market,fluctuations in real-time prices are unstable,and changes in short-term load are determined by many factors.By studying the timing of charging and discharging,as well as the economic benefits of energy storage in the process of participating in the power market,this paper takes energy storage scheduling as merely one factor affecting short-term power load,which affects short-term load time series along with time-of-use price,holidays,and temperature.A deep learning network is used to predict the short-term load,a convolutional neural network(CNN)is used to extract the features,and a long short-term memory(LSTM)network is used to learn the temporal characteristics of the load value,which can effectively improve prediction accuracy.Taking the load data of a certain region as an example,the CNN-LSTM prediction model is compared with the single LSTM prediction model.The experimental results show that the CNN-LSTM deep learning network with the participation of energy storage in dispatching can have high prediction accuracy for short-term power load forecasting.展开更多
Driven by the goal of“carbon neutrality,”the increase in use of renewable energy power systems will be inevitable in the future.Uncontrolled output power and random volatility make it difficult to balance power in r...Driven by the goal of“carbon neutrality,”the increase in use of renewable energy power systems will be inevitable in the future.Uncontrolled output power and random volatility make it difficult to balance power in real time during system operation.Therefore,energy storage is considered to be an effective way to ensure the real-time balance of system power.However,cost of energy storage is relatively expensive.As a solution,energy storage can be used to balance the system power in order to reduce system operating costs.Taking the high proportion of wind power systems as an example,the impact of the“supply side”low-carbon transformation on the economics and reliability of power system operation is explored.In order to solve the problem of power system operation configuration optimization under the background of“carbon neutrality,”this paper establishes a multi-objective programming model.展开更多
The traditional production planning and scheduling problems consider performance indicators like time, cost and quality as optimization objectives in manufacturing processes. However, environmentally-friendly factors ...The traditional production planning and scheduling problems consider performance indicators like time, cost and quality as optimization objectives in manufacturing processes. However, environmentally-friendly factors like energy consumption of production have not been completely taken into consideration. Against this background, this paper addresses an approach to modify a given schedule generated by a production plarming and scheduling system in a job shop floor, where machine tools can work at different cutting speeds. It can adjust the cutting speeds of the operations while keeping the original assignment and processing sequence of operations of each job fixed in order to obtain energy savings. First, the proposed approach, based on a mixed integer programming mathematical model, changes the total idle time of the given schedule to minimize energy consumption in the job shop floor while accepting the optimal solution of the scheduling objective, makespan. Then, a genetic-simulated annealing algorithm is used to explore the optimal solution due to the fact that the problem is strongly NP-hard. Finally, the effectiveness of the approach is performed small- and large-size instances, respectively. The experimental results show that the approach can save 5%-10% of the average energy consumption while accepting the optimal solution of the makespan in small-size instances. In addition, the average maximum energy saving ratio can reach to 13%. And it can save approximately 1%-4% of the average energy consumption and approximately 2.4% of the average maximum energy while accepting the near-optimal solution of the makespan in large-size instances. The proposed research provides an interesting point to explore an energy-aware schedule optimization for a traditional production planning and scheduling problem.展开更多
电化学储能(electrochemical energy storage,EES)内部的多种功能性老化行为是影响EES规划决策以及经济性评估的重要因素。针对独立运营模式下EES同时参与电能量和调频市场的容量配置问题,首先提出计及功能性衰减的EES两阶段容量优化配...电化学储能(electrochemical energy storage,EES)内部的多种功能性老化行为是影响EES规划决策以及经济性评估的重要因素。针对独立运营模式下EES同时参与电能量和调频市场的容量配置问题,首先提出计及功能性衰减的EES两阶段容量优化配置决策模型。第一阶段模型以EES期望寿命周期内收益最大化为目标进行EES容量优化配置;第二阶段模型考虑EES寿命和功能性老化行为约束,以日运行利润最大化为目标优化各运行年内EES运营决策。然后采用多参数规划理论方法对两阶段模型进行联合优化求解,以获得独立运营模式下EES的配置容量及其期望寿命。最后通过算例仿真分析了EES的功能性老化行为对其经济寿命及容量配置的影响,验证了所提模型和方法的有效性。展开更多
微电网的能量管理与优化调度作为构建新型电力系统的重要环节,提高其可再生能源的消纳水平、降低源荷不确定性风险以及优化系统运行成本具有重要意义。因此,文中提出一种基于信息间隙决策理论(information gap decision theory,IGDT)的...微电网的能量管理与优化调度作为构建新型电力系统的重要环节,提高其可再生能源的消纳水平、降低源荷不确定性风险以及优化系统运行成本具有重要意义。因此,文中提出一种基于信息间隙决策理论(information gap decision theory,IGDT)的含广义储能的独立直流微电网日前优化调度模型。首先,构建含超级电容的混合储能系统,以降低蓄电池运行成本,将具备虚拟储能特性的柔性负荷与混合储能相结合,形成广义储能,充分发挥微电网系统内灵活性资源特性;其次,考虑系统风光荷不确定性,引入IGDT模型,在确定性模型基础上建立风险规避策略下的鲁棒模型和风险投机策略下的机会模型,从2种决策角度追求降低风险与最大化收益;最后,基于算例仿真分析,证明该调度策略在降低微电网运行成本的基础上可量化不确定性因素对系统调度决策的影响,验证了模型的有效性和可参考性。展开更多
基金supported by Science and Technology Project of SGCC(SGSW0000FZGHBJS2200070)。
文摘With the increasing penetration of wind and solar energies,the accompanying uncertainty that propagates in the system places higher requirements on the expansion planning of power systems.A source-grid-load-storage coordinated expansion planning model based on stochastic programming was proposed to suppress the impact of wind and solar energy fluctuations.Multiple types of system components,including demand response service entities,converter stations,DC transmission systems,cascade hydropower stations,and other traditional components,have been extensively modeled.Moreover,energy storage systems are considered to improve the accommodation level of renewable energy and alleviate the influence of intermittence.Demand-response service entities from the load side are used to reduce and move the demand during peak load periods.The uncertainties in wind,solar energy,and loads were simulated using stochastic programming.Finally,the effectiveness of the proposed model is verified through numerical simulations.
文摘Building emission reduction is an important way to achieve China’s carbon peaking and carbon neutrality goals.Aiming at the problem of low carbon economic operation of a photovoltaic energy storage building system,a multi-time scale optimal scheduling strategy based on model predictive control(MPC)is proposed under the consideration of load optimization.First,load optimization is achieved by controlling the charging time of electric vehicles as well as adjusting the air conditioning operation temperature,and the photovoltaic energy storage building system model is constructed to propose a day-ahead scheduling strategy with the lowest daily operation cost.Second,considering inter-day to intra-day source-load prediction error,an intraday rolling optimal scheduling strategy based on MPC is proposed that dynamically corrects the day-ahead dispatch results to stabilize system power fluctuations and promote photovoltaic consumption.Finally,taking an office building on a summer work day as an example,the effectiveness of the proposed scheduling strategy is verified.The results of the example show that the strategy reduces the total operating cost of the photovoltaic energy storage building system by 17.11%,improves the carbon emission reduction by 7.99%,and the photovoltaic consumption rate reaches 98.57%,improving the system’s low-carbon and economic performance.
基金the North China Branch of State Grid Corporation of China,Contract No.SGNC0000BGWT2310175.
文摘As a flexible resource,energy storage plays an increasingly significant role in stabilizing and supporting the power system,while providing auxiliary services.Still,the current high demand for energy storage contrasts with the fuzzy lack of market-oriented mechanisms for energy storage,the principle of market-oriented operation has not been embodied,and there is no unified and systematic analytical framework for the business model.However,the dispatch management model of energy storage in actual power system operation is not clear.Still,the specific scheduling process and energy storage strategy on the source-load-network side could be more specific,and there needs to be a greater understanding of the collaborative scheduling process of the multilevel scheduling center.On this basis,this paper reviews the energy storage operation model and market-based incentive mechanism,For different functional types and installation locations of energy storage within the power system,the operational models and existing policies for energy storage participation in the market that are adapted to multiple operating states are summarized.From the point of view of the actual scheduling and operation management of energy storage in China,an energy storage regulation and operation management model based on“national,provincial,and local”multilevel coordination is proposed,as well as key technologies in the interactive scenarios of source-load,network and storage.
基金the fund program of research on re-electrification(heat pump clean heating)to promote the new energy consumption in Shaanxi power grid(5226KY18002P).
文摘In view of the Three North areas existing wind power absorption and environment pollution problems,the previous scholars have improved the wind abandon problem by adding electrothermal coupling equipment or optimizing power grid operation.In this paper,an electrothermal integrated energy system including heat pump and thermal storage units was proposed.The scheduling model was based on the load data and the output characteristics of power units,each power unit capacity was programmed without constraints,and the proposed scheduling model was compared with the traditional combined heat and power scheduling model.Results showed that the investment and pollutant discharge of the system was reduced respectively.Wind power was fully absorbed.Compared with the traditional thermal power unit,the proportion of the output was significantly decreased by the proposed model.The proposed system could provide a new prospect for wind power absorption and environment protection.
基金supported by the State Grid Henan Economic Research Institute Science and Technology Project“Calculation and Demonstration of Distributed Photovoltaic Open Capacity Based on Multi-Source Heterogeneous Data”(5217L0230013).
文摘After the integration of large-scale DistributedGeneration(DG)into the distribution network,the randomness and volatility of its output result in a reduction of spatiotemporal alignment between power generation and demand in the distribution network,exacerbating the phenomenon of wind and solar power wastage.As a novel power system model,the fundamental concept of Regional Autonomous Power Grids(RAPGs)is to achieve localized management and energy autonomy,thereby facilitating the effective consumption of DGs.Therefore,this paper proposes a distributed resource planning strategy that enhances the autonomy capabilities of regional power grids by considering multiple evaluation indexes for autonomy.First,a regional Energy Storage(ES)configuration strategy is proposed.This strategy can select a suitable reference value for the upper limit of ES configuration based on the regional load andDGoutput to maximize the elimination of source load deviations in the region as the upper limit constraint of ES capacity.Then,a control strategy for regional ES is proposed,the charging and discharging reference line of ES is set,and multiple autonomy and economic indexes are used as objective functions to select different proportions of ES to control the distributed resources of the regional power grid and establish evaluation indexes of the internal regional generation and load power ratio,the proportion of power supply matching hours,new energy consumption rate and tie line power imbalance outside the region to evaluate changes in the regional autonomy capabilities.The final simulation results showthat in the real regional grid example,the planning method in the planning year in the region of the overall power supply matching hour ratio and new energy consumption rate increased by 3.9%and 4.8%on average,and the power imbalance of the tie line decreased by 7.8%on average.The proposed planning approach enables the maximization of regional autonomy while effectively smoothing the fluctuation of power exchange between the regional grid and the higher-level grid.This presents a rational and effective planning solution for the regional grid,facilitating the coordinated development between the region and the distribution network.
基金supported by a State Grid Zhejiang Electric Power Co.,Ltd.Economic and Technical Research Institute Project(Key Technologies and Empirical Research of Diversified Integrated Operation of User-Side Energy Storage in Power Market Environment,No.5211JY19000W)supported by the National Natural Science Foundation of China(Research on Power Market Management to Promote Large-Scale New Energy Consumption,No.71804045).
文摘In the electricity market,fluctuations in real-time prices are unstable,and changes in short-term load are determined by many factors.By studying the timing of charging and discharging,as well as the economic benefits of energy storage in the process of participating in the power market,this paper takes energy storage scheduling as merely one factor affecting short-term power load,which affects short-term load time series along with time-of-use price,holidays,and temperature.A deep learning network is used to predict the short-term load,a convolutional neural network(CNN)is used to extract the features,and a long short-term memory(LSTM)network is used to learn the temporal characteristics of the load value,which can effectively improve prediction accuracy.Taking the load data of a certain region as an example,the CNN-LSTM prediction model is compared with the single LSTM prediction model.The experimental results show that the CNN-LSTM deep learning network with the participation of energy storage in dispatching can have high prediction accuracy for short-term power load forecasting.
文摘Driven by the goal of“carbon neutrality,”the increase in use of renewable energy power systems will be inevitable in the future.Uncontrolled output power and random volatility make it difficult to balance power in real time during system operation.Therefore,energy storage is considered to be an effective way to ensure the real-time balance of system power.However,cost of energy storage is relatively expensive.As a solution,energy storage can be used to balance the system power in order to reduce system operating costs.Taking the high proportion of wind power systems as an example,the impact of the“supply side”low-carbon transformation on the economics and reliability of power system operation is explored.In order to solve the problem of power system operation configuration optimization under the background of“carbon neutrality,”this paper establishes a multi-objective programming model.
基金Supported by a Marie Curie International Research Staff Exchange Scheme Fellowship within the 7th European Community Framework Program(Grant No.294931)National Science Foundation of China(Grant No.51175262)+1 种基金Jiangsu Provincial Science Foundation for Excellent Youths of China(Grant No.BK2012032)Jiangsu Provincial Industry-Academy-Research Grant of China(Grant No.BY201220116)
文摘The traditional production planning and scheduling problems consider performance indicators like time, cost and quality as optimization objectives in manufacturing processes. However, environmentally-friendly factors like energy consumption of production have not been completely taken into consideration. Against this background, this paper addresses an approach to modify a given schedule generated by a production plarming and scheduling system in a job shop floor, where machine tools can work at different cutting speeds. It can adjust the cutting speeds of the operations while keeping the original assignment and processing sequence of operations of each job fixed in order to obtain energy savings. First, the proposed approach, based on a mixed integer programming mathematical model, changes the total idle time of the given schedule to minimize energy consumption in the job shop floor while accepting the optimal solution of the scheduling objective, makespan. Then, a genetic-simulated annealing algorithm is used to explore the optimal solution due to the fact that the problem is strongly NP-hard. Finally, the effectiveness of the approach is performed small- and large-size instances, respectively. The experimental results show that the approach can save 5%-10% of the average energy consumption while accepting the optimal solution of the makespan in small-size instances. In addition, the average maximum energy saving ratio can reach to 13%. And it can save approximately 1%-4% of the average energy consumption and approximately 2.4% of the average maximum energy while accepting the near-optimal solution of the makespan in large-size instances. The proposed research provides an interesting point to explore an energy-aware schedule optimization for a traditional production planning and scheduling problem.
文摘电化学储能(electrochemical energy storage,EES)内部的多种功能性老化行为是影响EES规划决策以及经济性评估的重要因素。针对独立运营模式下EES同时参与电能量和调频市场的容量配置问题,首先提出计及功能性衰减的EES两阶段容量优化配置决策模型。第一阶段模型以EES期望寿命周期内收益最大化为目标进行EES容量优化配置;第二阶段模型考虑EES寿命和功能性老化行为约束,以日运行利润最大化为目标优化各运行年内EES运营决策。然后采用多参数规划理论方法对两阶段模型进行联合优化求解,以获得独立运营模式下EES的配置容量及其期望寿命。最后通过算例仿真分析了EES的功能性老化行为对其经济寿命及容量配置的影响,验证了所提模型和方法的有效性。
文摘微电网的能量管理与优化调度作为构建新型电力系统的重要环节,提高其可再生能源的消纳水平、降低源荷不确定性风险以及优化系统运行成本具有重要意义。因此,文中提出一种基于信息间隙决策理论(information gap decision theory,IGDT)的含广义储能的独立直流微电网日前优化调度模型。首先,构建含超级电容的混合储能系统,以降低蓄电池运行成本,将具备虚拟储能特性的柔性负荷与混合储能相结合,形成广义储能,充分发挥微电网系统内灵活性资源特性;其次,考虑系统风光荷不确定性,引入IGDT模型,在确定性模型基础上建立风险规避策略下的鲁棒模型和风险投机策略下的机会模型,从2种决策角度追求降低风险与最大化收益;最后,基于算例仿真分析,证明该调度策略在降低微电网运行成本的基础上可量化不确定性因素对系统调度决策的影响,验证了模型的有效性和可参考性。