Ammonia serves both as a widely used fertilizer and environmentally friendly energy source due to its high energy density,rich hydrogen content,and emissions-free combustion.Additionally,it offers convenient transport...Ammonia serves both as a widely used fertilizer and environmentally friendly energy source due to its high energy density,rich hydrogen content,and emissions-free combustion.Additionally,it offers convenient transportation and storage as a hydrogen carrier.The dominant method used for large-scale ammonia production is the Haber-Bosch process,which requires high temperatures and pressures and is energy-intensive.However,non-thermal plasma offers an eco-friendly alternative for ammonia synthesis,gaining significant attention.It enables ammonia production at lower temperatures and pressures using plasma technology.This review provides insights into the catalyst and reactor developments,which are pivotal for promoting ammonia efficiency and addressing existing challenges.At first,the reaction kinetics and mechanisms are introduced to gain a comprehensive understanding of the reaction pathways involved in plasma-assisted ammonia synthesis.Thereafter,the enhancement of ammonia synthesis efficiency is discussed by developing and optimizing plasma reactors and effective catalysts.The effect of other feeding sources,such as water and methane,instead of hydrogen is also presented.Finally,the challenges and possible solutions are outlined to facilitate energy-saving and enhance ammonia efficiency in the future.展开更多
Plasma-based NO_(x) synthesis has been considered as a sustainable alternative to the conventional HaberBosch process.Despite the advancements in research achieved in recent years,limited attention has been paid to th...Plasma-based NO_(x) synthesis has been considered as a sustainable alternative to the conventional HaberBosch process.Despite the advancements in research achieved in recent years,limited attention has been paid to the reversible dimerization reaction of NO_(2) to N_(2)O_(4).This reaction can significantly alter the parameters considered with the process’output,such as the concentration or volume fraction of products and the energy consumption.This work aims to investigate the significance of dimerization through theoretical analysis and experimentation.Experiments were conducted with a 2D-gliding arc reactor to evaluate the influence of dimerization in the case of plasma reactor operation.It was observed that the dimerization reaction reached equilibrium in microseconds,resulting in a maximum hypothetical NO_(2) equilibrium conversion of 48.8%.For plasma experiments,the dimerization could cause a maximum error of 14.1%in product detection,which needs to be carefully considered along with the influence of temperature variations on the measurement.展开更多
The rapid deployment of solar and wind technology produces significant amount of low-quality electricity that calls for a better storage or usage instead of being discarded by the grid.Instead of electrochemical CO2 r...The rapid deployment of solar and wind technology produces significant amount of low-quality electricity that calls for a better storage or usage instead of being discarded by the grid.Instead of electrochemical CO2 reduction and/or NH3 production,here we propose that non-thermal plasma oxidation of N2 into nitrate or other valuable nitrogen containing compounds deserve more research attention because it uses free air as the reactant and avoids the solubility difficulty,and also because its energy consumption is merely 0.2 MJ/mol,even lower than the industrially very successful Haber-Bosch process(0.48 MJ/mol)for NH3 production.We advocate that researchers from the plasma community and chemistry community should work together to build energy efficient non-thermal plasma setup,identify robust,active and low-cost catalyst,and understand the catalyzing mechanism in a plasma environment.We are confident that free production of nitrate with zero C02 emission will come true in the near future.展开更多
Ammonia,with its high hydrogen storage density of 17.7 wt.%(mass fraction),cleanliness,efficiency,and renewability,presents itself as a promising zero-carbon fuel.However,the traditional Haber−Bosch(H−B)process for am...Ammonia,with its high hydrogen storage density of 17.7 wt.%(mass fraction),cleanliness,efficiency,and renewability,presents itself as a promising zero-carbon fuel.However,the traditional Haber−Bosch(H−B)process for ammonia synthesis necessitates high temperature and pressure,resulting in over 420 million tons of carbon dioxide emissions annually,and relies on fossil fuel consumption.In contrast,dielectric barrier discharge(DBD)plasma-assisted ammonia synthesis operates at low temperatures and atmospheric pressures,utilizing nitrogen and hydrogen radicals excited by energetic electrons,offering a potential alternative to the H−B process.This method can be effectively coupled with renewable energy sources(such as solar and wind)for environmentally friendly,distributed,and efficient ammonia production.This review delves into a comprehensive analysis of the low-temperature DBD plasma-assisted ammonia synthesis technology at atmospheric pressure,covering the reaction pathway,mechanism,and catalyst system involved in plasma nitrogen fixation.Drawing from current research,it evaluates the economic feasibility of the DBD plasmaassisted ammonia synthesis technology,analyzes existing dilemmas and challenges,and provides insights and recommendations for the future of nonthermal plasma ammonia processes.展开更多
基金the financial support provided by the Canada Research Chair program and the Natural Science and Engineering Research Council of Canada (NSERC)
文摘Ammonia serves both as a widely used fertilizer and environmentally friendly energy source due to its high energy density,rich hydrogen content,and emissions-free combustion.Additionally,it offers convenient transportation and storage as a hydrogen carrier.The dominant method used for large-scale ammonia production is the Haber-Bosch process,which requires high temperatures and pressures and is energy-intensive.However,non-thermal plasma offers an eco-friendly alternative for ammonia synthesis,gaining significant attention.It enables ammonia production at lower temperatures and pressures using plasma technology.This review provides insights into the catalyst and reactor developments,which are pivotal for promoting ammonia efficiency and addressing existing challenges.At first,the reaction kinetics and mechanisms are introduced to gain a comprehensive understanding of the reaction pathways involved in plasma-assisted ammonia synthesis.Thereafter,the enhancement of ammonia synthesis efficiency is discussed by developing and optimizing plasma reactors and effective catalysts.The effect of other feeding sources,such as water and methane,instead of hydrogen is also presented.Finally,the challenges and possible solutions are outlined to facilitate energy-saving and enhance ammonia efficiency in the future.
基金supported by the NOW’s Prescient project(16271)the LEAP-AGRI project AFRICA。
文摘Plasma-based NO_(x) synthesis has been considered as a sustainable alternative to the conventional HaberBosch process.Despite the advancements in research achieved in recent years,limited attention has been paid to the reversible dimerization reaction of NO_(2) to N_(2)O_(4).This reaction can significantly alter the parameters considered with the process’output,such as the concentration or volume fraction of products and the energy consumption.This work aims to investigate the significance of dimerization through theoretical analysis and experimentation.Experiments were conducted with a 2D-gliding arc reactor to evaluate the influence of dimerization in the case of plasma reactor operation.It was observed that the dimerization reaction reached equilibrium in microseconds,resulting in a maximum hypothetical NO_(2) equilibrium conversion of 48.8%.For plasma experiments,the dimerization could cause a maximum error of 14.1%in product detection,which needs to be carefully considered along with the influence of temperature variations on the measurement.
基金This work was financially supported by the National Natural Science Foundation of China (Grant No. 61725401 ) and the National Key R&D Program of China (No. 2016YFA0204000). We also thank Junye Zhang from School of Optical and Electronic Information, Huazhong University of Science and Technology, and Sai Tu from College of Chemistry and Molecular Science, Wuhan University for helpful discussions.
文摘The rapid deployment of solar and wind technology produces significant amount of low-quality electricity that calls for a better storage or usage instead of being discarded by the grid.Instead of electrochemical CO2 reduction and/or NH3 production,here we propose that non-thermal plasma oxidation of N2 into nitrate or other valuable nitrogen containing compounds deserve more research attention because it uses free air as the reactant and avoids the solubility difficulty,and also because its energy consumption is merely 0.2 MJ/mol,even lower than the industrially very successful Haber-Bosch process(0.48 MJ/mol)for NH3 production.We advocate that researchers from the plasma community and chemistry community should work together to build energy efficient non-thermal plasma setup,identify robust,active and low-cost catalyst,and understand the catalyzing mechanism in a plasma environment.We are confident that free production of nitrate with zero C02 emission will come true in the near future.
基金supported by the National Natural Science Foundation of China(Grant No.52076045)the Ministry of Science and Technology of China(No.2022YFB4201802)the Fundamental Research Funds for the Central Universities(No.2242023K40007)。
文摘Ammonia,with its high hydrogen storage density of 17.7 wt.%(mass fraction),cleanliness,efficiency,and renewability,presents itself as a promising zero-carbon fuel.However,the traditional Haber−Bosch(H−B)process for ammonia synthesis necessitates high temperature and pressure,resulting in over 420 million tons of carbon dioxide emissions annually,and relies on fossil fuel consumption.In contrast,dielectric barrier discharge(DBD)plasma-assisted ammonia synthesis operates at low temperatures and atmospheric pressures,utilizing nitrogen and hydrogen radicals excited by energetic electrons,offering a potential alternative to the H−B process.This method can be effectively coupled with renewable energy sources(such as solar and wind)for environmentally friendly,distributed,and efficient ammonia production.This review delves into a comprehensive analysis of the low-temperature DBD plasma-assisted ammonia synthesis technology at atmospheric pressure,covering the reaction pathway,mechanism,and catalyst system involved in plasma nitrogen fixation.Drawing from current research,it evaluates the economic feasibility of the DBD plasmaassisted ammonia synthesis technology,analyzes existing dilemmas and challenges,and provides insights and recommendations for the future of nonthermal plasma ammonia processes.