The sharing of telecommunications infrastructure and power supply equipment is currently an applicable and very common model for grouping signal transmission and reception equipment and their power supply on the same ...The sharing of telecommunications infrastructure and power supply equipment is currently an applicable and very common model for grouping signal transmission and reception equipment and their power supply on the same site to ensure coverage of fixed, mobile, Internet and radio and television broadcasting networks. This study consists of producing an inventory of telecommunications and energy infrastructure sharing, focusing on the one hand on analyzing the impacts of active and passive sharing of telecommunications infrastructure from a technical point of view, particularly in terms of legal framework, deployment, coverage and exposure to electromagnetic radiation, and on the other hand on identifying the effects of infrastructure sharing from a socio-economic point of view in a multi-operator mobile telephony environment, by indicating the economic value of the revenue generated as a result of infrastructure sharing. Finally, the results will contribute to identify strategies for ensuring maximum deployment and coverage of the country, and for developing the information and communication technologies (ICT) sector in order to contribute to the digital transformation by digitising services using mobile telephony and the Internet in Burundi.展开更多
Photocatalysis is an effective way to solve the problems of environmental pollution and energy shortage.Numerous photocatalysts have been developed and various strategies have been proposed to improve the photocatalyt...Photocatalysis is an effective way to solve the problems of environmental pollution and energy shortage.Numerous photocatalysts have been developed and various strategies have been proposed to improve the photocatalytic performance.Among them,Bi-based photocatalysts have become one of the most popular research topics due to their suitable band gaps,unique layered structures,and physicochemical properties.In this review,Bi-based photocatalysts(BiOX,BiVO_(4),Bi_(2)S_(3),Bi_(2)MoO_(6),and other Bi-based photocatalysts)have been summarized in the field of photocatalysis,including their applications of the removal of organic pollutants,hydrogen production,oxygen production etc.The preparation strategies on how to improve the photocatalytic performance and the possible photocatalytic mechanism are also summarized,which could supply new insights for fabricating high-efficient Bi-based photocatalysts.Finally,we summarize the current challenges and make a reasonable outlook on the future development direction of Bi-based photocatalysts.展开更多
The unfettered reliance on fossil fuels for centuries has pushed the world to the brink of severe environmental crises. While individual studies on renewable energy generation capacity have been conducted, a comprehen...The unfettered reliance on fossil fuels for centuries has pushed the world to the brink of severe environmental crises. While individual studies on renewable energy generation capacity have been conducted, a comprehensive analysis is lacking. This study aims to address this gap by providing a comparative analysis of three major renewable energy sources—hydro, solar, and wind— and their current global utilization statistics. Additionally, it will examine the efficacy of fossil fuels and their detrimental impact on the environment. Global warming and its associated health consequences on the ecosystem are rapidly escalating. Without a complete decarbonization of our energy systems, environmental deterioration is poised to continue at an alarming rate. Fortunately, a plethora of traditional and renewable energy resources exist that have minimal or no environmental impact and have been available for years. However, these resources remain largely untapped. The full potential of RE resources hinges on the development of sustainable technologies to harness their energy to their fullest capacity. This study delves into the current global and regional RE utilization from 2013 to 2022, based on data from the International Renewable Energy Agency (IRENA) 2023. The focus is limited to the three primary renewable energy sources with the highest harnessing capacity in recent times. Employing appropriate mathematical analyses, the results reveal exponential growth in renewable energy, with an average annual generating capacity of 2353550.7 MW over the past decade. Hydroelectric power, solar power, and wind, among others, have played a significant role in the global penetration of renewable energy systems. The changing dynamics have propelled these RE resources into the spotlight in recent years, owing to their sustainability and environmental friendliness.展开更多
For a long time,China's regional water resource imbalance has restricted the development of coal chemical industry,and it is imperative to achieve zero liquid discharge(ZLD).Therefore,the game relationship between...For a long time,China's regional water resource imbalance has restricted the development of coal chemical industry,and it is imperative to achieve zero liquid discharge(ZLD).Therefore,the game relationship between technical indicators,costs and emissions in ZLD process of fixed-bed coal gasification wastewater treatment process should be explored in detail.According to the accurate model,the simulation for ZLD of fixed-bed coal gasification wastewater treatment process is established,and this process is assessed from the perspective of thermodynamics,economy,and environment.The total energy consumption of ZLD process before optimization is 4.032×10^(8)W.The results of exergy analysis show exergy destruction of ZLD process is 94.55%.For economic and environmental results,the total annual cost is 1.892×10^(7)USD·a^(-1)and the total environmental impact is 4.782×10^(-8).The total energy consumption of the optimal six-step ZLD process based on multi-objective optimization is 4.028×10^(8)W.The CO_(2)content in the treated wastewater is 0.1%.This study will have an important role in promoting the establishment of the ZLD process for coal chemistry industry.展开更多
A large amount of waste liquids containing methanol/acetone/water mixtures are produced in the synthesis of methyl methacrylate(MMA).Under the advocacy of green chemical industry,it is urgent to develop an efficient,e...A large amount of waste liquids containing methanol/acetone/water mixtures are produced in the synthesis of methyl methacrylate(MMA).Under the advocacy of green chemical industry,it is urgent to develop an efficient,economic and energy-saving mixture separation process.Through thermodynamic azeotropic behavior and pressure sensitivity analysis,pressure-swing distillation was determined and the optimal separation pressure of each column in the process was obtained.Due to the composition of waste liquids produced were quite different in MMA production,the pressure-swing distillation separation process was designed to fully achieve the accurate waste liquids treatment.Taking the total annual cost(TAC)as the target,the sequential iteration method was used to optimize the process,and the impact of composition on economy was compared.In order to further realize the energy-saving of the separation process,the pervaporation membrane module was introduced to pretreat the waste liquid in the pressure-swing distillation.The results showed that the TAC of the coupling process was 46% higher than that of the pressure-swing distillation process,and the thermodynamic efficiency was 30% higher.This study provides waste liquid treatment technology for enterprises and analyzes its economic and energy efficiency,which has reference significance for the development of coupled separation technology.展开更多
This paper discusses the specific features of the energy in China, and addresses those key challenges in China is that the co\|exist of (1) higher total energy production and lower per capita level; (2) lower per capi...This paper discusses the specific features of the energy in China, and addresses those key challenges in China is that the co\|exist of (1) higher total energy production and lower per capita level; (2) lower per capita energy resources level with unrational energy consumption structure; (3) lower energy utilization efficiency and higher energy conservation potential; and (4) unequal distribution of energy resources. It reviews the key environmental problems related to the feature of energy production and consumption. Based on the analysis, the author furthers addresses the policy and actions needed.展开更多
The main characteristics of energy environment, energy products, primary productivity and basic process ofenergy flow for three-hardwood forest(Juglans mandshurica, Fraxinus mandshurica, and Phellodendron amurense) we...The main characteristics of energy environment, energy products, primary productivity and basic process ofenergy flow for three-hardwood forest(Juglans mandshurica, Fraxinus mandshurica, and Phellodendron amurense) werestudied. The research was mainly hased on the thcory and method of community energetics, dealing with fixed position,quantitative test and expcrimental analysis. The time-space dynamics of sun-radiation in three-hardwood forest were measured and the energy compartment model was set up. his rescarch work provided a scientitic basis for the exploitation, utilization and management of three-hardtwood forest.展开更多
The energy,industrial economy and atmospheric environment were taken into account as a whole cornplex system in this study. Based on the application of grey system theory and the analysis of development coefficients a...The energy,industrial economy and atmospheric environment were taken into account as a whole cornplex system in this study. Based on the application of grey system theory and the analysis of development coefficients about major parameters of the system,the method of grey developrnent decision was approached, and a new concept-integrated development coefficient was put forward. Furthermore,the reasonable ranking of development decision within eight industrial sectors(building materials,coking,food and drink,chemical engineering,paper rnaking,machinery and electrical appliance,textile, mining)has been concluded from the viewpoint of economic growth, energy saving and ambient air quality protection.展开更多
To address air pollution and offer a convenient and comfortable living environment,the Chinese government launched a smart city pilot(SCP)project in 2012,accompanied by a comprehensive set of environmental and energy-...To address air pollution and offer a convenient and comfortable living environment,the Chinese government launched a smart city pilot(SCP)project in 2012,accompanied by a comprehensive set of environmental and energy-related laws and regulations.Although academic interest in smart cities has surged,there remains a notable gap in empirical research exploring the economic,environmental,and energy effects of such initiatives.Taking 232 prefecture-level cities from 2003 to 2017 as research subjects,this study measures energy effi‐ciency by using energy consumption per unit of GDP and adopts a difference-in-differences(DID)analysis to investigate the impact of SCPs on energy efficiency.The empirical results indicate that SCPs improved energy efficiency by promoting urban technological innovation capabilities and green total factor productivity,and this effect was more pronounced in cities that were more dependent on traditional fossil fuel energy sources and had more developed fiscal and financial levels.Studying the impact of smart city construction on energy utilization efficiency in developing countries,such as China,is not only significantly enlightening for China’s green and low-carbon transition but also provides reference opinions for constructing smart cities and the path to enhancing energy efficiency in other developing countries.The findings provide valuable insights into the global development of smart cities,urban sustainability,and high-quality economic growth.展开更多
Promoting the coordinated development of regional population,economy and environment is beneficial to the realization of sustainable development.Based on the construction of evaluation index system of coordinated deve...Promoting the coordinated development of regional population,economy and environment is beneficial to the realization of sustainable development.Based on the construction of evaluation index system of coordinated development of systems,the entropy weight-TOPSIS method and coupling coordination model,the coordinated development degree of population,economy and environment system in Nanjing was measured,and the temporal variation characteristics of each subsystem and their coordinated development degree form 1997 to 2016 were analyzed.The results showed that the development of population,economy system and environment system in Nanjing was generally in a continuous upward trend.Among them,the economy system developed fastest.The coordinated development degree of population,economy system and environment system in Nanjing was constantly increasing but still at a low level;the degree was only in the primary coordination phase,and its type was environment lagging.The economy subsystem and environment subsystem were important factors restricting the development of population,economy and environment in Nanjing,and the main obstacle factor was the production of industrial solid waste.The results above can provide a scientific basis for promoting the coordinated development of population,economy and environment system in Nanjing and achieving regional sustainable development.展开更多
The sustainable production of green hydrogen via water electrolysis necessitates cost-effective electrocatalysts.By following the circular economy principle,the utilization of waste-derived catalysts significantly pro...The sustainable production of green hydrogen via water electrolysis necessitates cost-effective electrocatalysts.By following the circular economy principle,the utilization of waste-derived catalysts significantly promotes the sustainable development of green hydrogen energy.Currently,diverse waste-derived catalysts have exhibited excellent catalytic performance toward hydrogen evolution reaction(HER),oxygen evolution reaction(OER),and overall water electrolysis(OWE).Herein,we systematically examine recent achievements in waste-derived electrocatalysts for water electrolysis.The general principles of water electrolysis and design principles of efficient electrocatalysts are discussed,followed by the illustration of current strategies for transforming wastes into electrocatalysts.Then,applications of waste-derived catalysts(i.e.,carbon-based catalysts,transitional metal-based catalysts,and carbon-based heterostructure catalysts)in HER,OER,and OWE are reviewed successively.An emphasis is put on correlating the catalysts’structure-performance relationship.Also,challenges and research directions in this booming field are finally highlighted.This review would provide useful insights into the design,synthesis,and applications of waste-derived electrocatalysts,and thus accelerate the development of the circular economy-driven green hydrogen energy scheme.展开更多
Fossil energy is the material basis of human survival, economic development and social progress. The relationship between energy consumption and economic growth is becoming increasingly close. However, energy consumpt...Fossil energy is the material basis of human survival, economic development and social progress. The relationship between energy consumption and economic growth is becoming increasingly close. However, energy consumption is the major source of greenhouse gases, which can significantly affect the balance of the global ecosystem. It has become the common goal of countries worldwide to address climate change, reduce carbon dioxide emissions, and implement sustainable development strategies. In this study, we applied an approximate relationship analysis, a decoupling relationship analysis, and a trend analysis to explore the relationship between energy consumption and economic growth using data from Kazakhstan for the period of 1993-2010. The results demonstrated: (1) the total energy consumption and GDP in Kazakhstan showed a "U"-type curve from 1993 to 2010. This curve was observed because 1993-1999 was a period during which Kazakhstan transitioned from a republic to an independent country and experienced a difficult transition from a planned to a market economy. Then, the economic system became more stable and the industrial production increased rapidly because of the effective financial, monetary and industrial policy support from 2000 to 2010. (2) The relationships between energy con- sumption and carbon emissions, economic growth and energy exports were linked; the carbon emissions were mainly derived from energy consumption, and the dependence of economic growth on energy exports gradually increased from 1993 to 2010. Before 2000, the relationship between energy consumption and economic growth was in a recessional decoupling state because of the economic recession. After 2000, this relationship was in strong and weak decoupling states because the international crude oil prices rose and energy exports increased greatly year by year. (3) It is forecasted that Kazakhstan cannot achieve its goal of energy consumption by 2020. Therefore, a low-carbon economy is the best strategic choice to address climate change from a global perspective in Kazakhstan. Thus, we proposed strategies including the improvement of the energy consumption structure, the development of new energy and renewable energy, the use of cleaner production technologies, the adjustment and optimization of the industrial structure, and the expansion of forest areas.展开更多
As the main inorganic component of human bones and teeth,hydroxyapatite(HAP)materials have been widely investigated for various applications especially in the biomedical field.Recently,HAP nanowires(HAP NWs)have attra...As the main inorganic component of human bones and teeth,hydroxyapatite(HAP)materials have been widely investigated for various applications especially in the biomedical field.Recently,HAP nanowires(HAP NWs)have attracted research interest in the energy and environment-related fields owing to their advantages such as excellent biocompatibility and bioactivity,high-thermal stability,surface modification and functionalization,and selfassembly to form nanoscale porous networked structure.In this review,we first briefly discuss the synthesis of HAP NWs.Then we focus on summarizing the foremost advances in energy and environment-related applications of HAP NWs,including the battery,solar energy-assisted water evaporation,light-driven self-propelled device,thermal insulation,fireresistant inorganic paper,water purification,air purification,molecular detection,superhydrophobic surface,and high-strength nanocomposite materials.In addition,the future research directions on HAP NWs and their energy and environmental applications are proposed.This review aims to provide inspiration and stimulate extensive future studies in the energy and environmental applications of HAP NWs and other inorganic NWs.展开更多
Chongqing is the largest municipality under the Chinese Central Government (MCG) in terms of administrative area and population and is now the most important economic and cultural center of the upper Yangtze River and...Chongqing is the largest municipality under the Chinese Central Government (MCG) in terms of administrative area and population and is now the most important economic and cultural center of the upper Yangtze River and Three Gorges area. The Three Gorges Dam project, one of the largest world infrastructure projects, causes a great deal of immigration to Chongqing and results in the rapid urbanization of the city, and it has brought in a great deal of environmental impact, which is a global concerned issue. This paper introduces the city profile of Chongqing municipality and its urbanization impact on energy and environment. The demand and the trend of energy consumption in built environment (building and transport) have been analysed. The living environment of Chongqing residents and the local energy efficient policy have been introduced. Finally the authors discuss the key issues of the sustainable urban development of Chongqing.展开更多
The development of refractory industry is closely related with resource,energy and environment. In order to realize the sustainable development,China's refractory industry should comprehensively exploit and utilize t...The development of refractory industry is closely related with resource,energy and environment. In order to realize the sustainable development,China's refractory industry should comprehensively exploit and utilize the raw refractory materials because of the shortage of some refractory raw materials resources; adjust the structure of refractory products to meet the needs for energy-savings in high energy consumption industries and develop new energy-saving refractory materials to reduce the energy consumption during refractories manufacturing processes; adopt high performance chrome-free refractories and research the technologies of avoiding the formation of Cr6+ to minimize the negative impact on environment; utilize comprehensively the used refractory materials and reduce the mineral resource consumption,energy consumption,and waste solid emissions.展开更多
The creation of national energy strategy cannot proceed without accurate projections of future electricity consumption;this is because EC is intimately tied to other forms of energy,such as oil and natural gas.For the...The creation of national energy strategy cannot proceed without accurate projections of future electricity consumption;this is because EC is intimately tied to other forms of energy,such as oil and natural gas.For the purpose of determining and bettering overall energy consumption,there is an urgent requirement for accurate monitoring and calculation of EC at the building level using cutting-edge technology such as data analytics and the internet of things(IoT).Soft computing is a subset of AI that tries to design procedures that are more accurate and reliable,and it has proven to be an effective tool for solving a number of issues that are associated with the use of energy.The use of soft computing for energy prediction is an essential part of the solution to these kinds of challenges.This study presents an improved version of the Harris Hawks Optimization model by combining it with the IHHODL-ECP algorithm for use in Internet of Things settings.The IHHODL-ECP model that has been supplied acts as a useful instrument for the prediction of integrated energy consumption.In order for the raw electrical data to be compatible with the subsequent processing in the IHHODL-ECP model,it is necessary to perform a preprocessing step.The technique of prediction uses a combination of three different kinds of deep learning models,namely DNN,GRU,and DBN.In addition to this,the IHHO algorithm is used as a technique for making adjustments to the hyperparameters.The experimental result analysis of the IHHODL-ECP model is carried out under a variety of different aspects,and the comparison inquiry highlighted the advantages of the IHHODL-ECP model over other present approaches.According to the findings of the experiments conducted with an hourly time resolution,the IHHODL-ECP model obtained a MAPE value of 33.85,which was lower than those produced by the LR,LSTM,and CNN-LSTM models,which had MAPE values of 83.22,44.57,and 34.62 respectively.These findings provided evidence of the IHHODL-ECP model’s improved ability to provide accurate forecasts.展开更多
Cattle dung, firewood, and crop straw have being used as survival necessities by farmers and herdsmen for thousands of years in Tibet. Until recently such biotic energy source still constitutes more than 92 per cent o...Cattle dung, firewood, and crop straw have being used as survival necessities by farmers and herdsmen for thousands of years in Tibet. Until recently such biotic energy source still constitutes more than 92 per cent of total rural energy consumption due to lack of petroleum, coal and new alternative energy sources. As a result, environmental degradation such as land desertification, soil erosion, grassland degradation and soil fertility reduction is increasingly aggravated, the area of desertified land has increased 1467.5 km2 from 1991 to 1997. Degraded area of grassland has reached 2.60×107hm2, increased by 116.1% from 1987 to 1996. To prevent further deterioration of eco-environment in Tibet great efforts should be made to make full use of ample solar energy, wind energy and other biotic energy of the Qinghai-Tibet Plateau. The solar cooking stoves and solar hothouse, expand forest area and replace existing abiotic energy sources with firewood forest should be popularized. This is an urgent task to protect the eco-environment of Tibet today.展开更多
The purpose of this paper is to clarify the questions concerning stimulation of the innovation and the diffusion of energy saving or low-carbon.To do so,this paper explains using two cases of Japan-energy saving innov...The purpose of this paper is to clarify the questions concerning stimulation of the innovation and the diffusion of energy saving or low-carbon.To do so,this paper explains using two cases of Japan-energy saving innovation after the Oil Shock and the eco points system.For the case after the oil shock,we explain the energy saving trend after the Oil Shock and the factors statistically.Then we put forward the business model for the low-carbon economy.Furthermore,we analyze the case of the eco points system from 2009-2011 in Japan and explain the significance of the business model for diffusion of the low-carbon products.展开更多
In 2009,the pig iron output of China increased dramatically up to 543.75 Mt and was 15.87%higher than that in 2008,accounting for 60.53%of the world production.The processing of pig iron must consume huge amount of ir...In 2009,the pig iron output of China increased dramatically up to 543.75 Mt and was 15.87%higher than that in 2008,accounting for 60.53%of the world production.The processing of pig iron must consume huge amount of iron ores and coal and consequently leads to the shortage of ores and cokemaking coals supply,with prices soaring but quality worsening remarkably.How to maintain or even improve the efficiency of blast furnace production under negative conditions of constantly worsening resources of iron ore and coal has become an important scenario the Chinese ironmaking industry must face.In this paper,the production with high coal injection rate,low fuel rate and big productivity in the Wuhan Iron and Steel Corporation(Group) was introduced and revealed.The quantitative correlation between blast furnace production efficiency and diverse technical measures through combined mass-heat balances and gas-liquid counter-current flow dynamics analysis.Moreover,potential problems and countermeasures in ironmaking by feeding high Al_2O_3 and low grade iron ores were also discussed.展开更多
Built Environment and Energy Application Engineering(BEEAE),namely Heating,Ventilating,Air Conditioning and Refrigerating(HVAC&R),is one of the international accreditation programs.Its knowledge system of professi...Built Environment and Energy Application Engineering(BEEAE),namely Heating,Ventilating,Air Conditioning and Refrigerating(HVAC&R),is one of the international accreditation programs.Its knowledge system of professional theory and professional education in accredited engineering academic programs must meet the requirements of the relevant international engineering certification.In view of professional engineers and technicians training of BEEAE,the professional training programs and the knowledge system are compared and explored in line with the international certification criteria.This study compares the items and requirements of different international certification criteria,and summarizes the experienced methods of education training.The undergraduate education and training programs are then improved in accordance with the requirements from international certification criteria.The BEEAE education training schemes should combine the knowledge system of the national professional guidance standards with the items from international certification criteria.展开更多
文摘The sharing of telecommunications infrastructure and power supply equipment is currently an applicable and very common model for grouping signal transmission and reception equipment and their power supply on the same site to ensure coverage of fixed, mobile, Internet and radio and television broadcasting networks. This study consists of producing an inventory of telecommunications and energy infrastructure sharing, focusing on the one hand on analyzing the impacts of active and passive sharing of telecommunications infrastructure from a technical point of view, particularly in terms of legal framework, deployment, coverage and exposure to electromagnetic radiation, and on the other hand on identifying the effects of infrastructure sharing from a socio-economic point of view in a multi-operator mobile telephony environment, by indicating the economic value of the revenue generated as a result of infrastructure sharing. Finally, the results will contribute to identify strategies for ensuring maximum deployment and coverage of the country, and for developing the information and communication technologies (ICT) sector in order to contribute to the digital transformation by digitising services using mobile telephony and the Internet in Burundi.
基金We gratefully acknowledge the support of this research by the National Natural Science Foundation of China(52172206,21871078)the Heilongjiang Province Natural Science Foundation of China(JQ2019B001)+4 种基金the Shandong Province Natural Science Foundation(ZR2021MB016)the Heilongjiang Provincial Institutions of Higher Learning Basic Research Funds Basic Research Projects(2021-KYYWF-0007)the Heilongjiang Postdoctoral Startup Fund(LBH-Q14135)the Heilongjiang University Science Fund for Distinguished Young Scholars(JCL201802)the Development plan of Youth Innovation Team in Colleges and Universities of Shandong Province.
文摘Photocatalysis is an effective way to solve the problems of environmental pollution and energy shortage.Numerous photocatalysts have been developed and various strategies have been proposed to improve the photocatalytic performance.Among them,Bi-based photocatalysts have become one of the most popular research topics due to their suitable band gaps,unique layered structures,and physicochemical properties.In this review,Bi-based photocatalysts(BiOX,BiVO_(4),Bi_(2)S_(3),Bi_(2)MoO_(6),and other Bi-based photocatalysts)have been summarized in the field of photocatalysis,including their applications of the removal of organic pollutants,hydrogen production,oxygen production etc.The preparation strategies on how to improve the photocatalytic performance and the possible photocatalytic mechanism are also summarized,which could supply new insights for fabricating high-efficient Bi-based photocatalysts.Finally,we summarize the current challenges and make a reasonable outlook on the future development direction of Bi-based photocatalysts.
文摘The unfettered reliance on fossil fuels for centuries has pushed the world to the brink of severe environmental crises. While individual studies on renewable energy generation capacity have been conducted, a comprehensive analysis is lacking. This study aims to address this gap by providing a comparative analysis of three major renewable energy sources—hydro, solar, and wind— and their current global utilization statistics. Additionally, it will examine the efficacy of fossil fuels and their detrimental impact on the environment. Global warming and its associated health consequences on the ecosystem are rapidly escalating. Without a complete decarbonization of our energy systems, environmental deterioration is poised to continue at an alarming rate. Fortunately, a plethora of traditional and renewable energy resources exist that have minimal or no environmental impact and have been available for years. However, these resources remain largely untapped. The full potential of RE resources hinges on the development of sustainable technologies to harness their energy to their fullest capacity. This study delves into the current global and regional RE utilization from 2013 to 2022, based on data from the International Renewable Energy Agency (IRENA) 2023. The focus is limited to the three primary renewable energy sources with the highest harnessing capacity in recent times. Employing appropriate mathematical analyses, the results reveal exponential growth in renewable energy, with an average annual generating capacity of 2353550.7 MW over the past decade. Hydroelectric power, solar power, and wind, among others, have played a significant role in the global penetration of renewable energy systems. The changing dynamics have propelled these RE resources into the spotlight in recent years, owing to their sustainability and environmental friendliness.
基金supported by the National Natural Science Foundation of China(22078166,22178188)。
文摘For a long time,China's regional water resource imbalance has restricted the development of coal chemical industry,and it is imperative to achieve zero liquid discharge(ZLD).Therefore,the game relationship between technical indicators,costs and emissions in ZLD process of fixed-bed coal gasification wastewater treatment process should be explored in detail.According to the accurate model,the simulation for ZLD of fixed-bed coal gasification wastewater treatment process is established,and this process is assessed from the perspective of thermodynamics,economy,and environment.The total energy consumption of ZLD process before optimization is 4.032×10^(8)W.The results of exergy analysis show exergy destruction of ZLD process is 94.55%.For economic and environmental results,the total annual cost is 1.892×10^(7)USD·a^(-1)and the total environmental impact is 4.782×10^(-8).The total energy consumption of the optimal six-step ZLD process based on multi-objective optimization is 4.028×10^(8)W.The CO_(2)content in the treated wastewater is 0.1%.This study will have an important role in promoting the establishment of the ZLD process for coal chemistry industry.
基金supported by the National Natural Science Foundation of China(22078166)。
文摘A large amount of waste liquids containing methanol/acetone/water mixtures are produced in the synthesis of methyl methacrylate(MMA).Under the advocacy of green chemical industry,it is urgent to develop an efficient,economic and energy-saving mixture separation process.Through thermodynamic azeotropic behavior and pressure sensitivity analysis,pressure-swing distillation was determined and the optimal separation pressure of each column in the process was obtained.Due to the composition of waste liquids produced were quite different in MMA production,the pressure-swing distillation separation process was designed to fully achieve the accurate waste liquids treatment.Taking the total annual cost(TAC)as the target,the sequential iteration method was used to optimize the process,and the impact of composition on economy was compared.In order to further realize the energy-saving of the separation process,the pervaporation membrane module was introduced to pretreat the waste liquid in the pressure-swing distillation.The results showed that the TAC of the coupling process was 46% higher than that of the pressure-swing distillation process,and the thermodynamic efficiency was 30% higher.This study provides waste liquid treatment technology for enterprises and analyzes its economic and energy efficiency,which has reference significance for the development of coupled separation technology.
文摘This paper discusses the specific features of the energy in China, and addresses those key challenges in China is that the co\|exist of (1) higher total energy production and lower per capita level; (2) lower per capita energy resources level with unrational energy consumption structure; (3) lower energy utilization efficiency and higher energy conservation potential; and (4) unequal distribution of energy resources. It reviews the key environmental problems related to the feature of energy production and consumption. Based on the analysis, the author furthers addresses the policy and actions needed.
文摘The main characteristics of energy environment, energy products, primary productivity and basic process ofenergy flow for three-hardwood forest(Juglans mandshurica, Fraxinus mandshurica, and Phellodendron amurense) werestudied. The research was mainly hased on the thcory and method of community energetics, dealing with fixed position,quantitative test and expcrimental analysis. The time-space dynamics of sun-radiation in three-hardwood forest were measured and the energy compartment model was set up. his rescarch work provided a scientitic basis for the exploitation, utilization and management of three-hardtwood forest.
文摘The energy,industrial economy and atmospheric environment were taken into account as a whole cornplex system in this study. Based on the application of grey system theory and the analysis of development coefficients about major parameters of the system,the method of grey developrnent decision was approached, and a new concept-integrated development coefficient was put forward. Furthermore,the reasonable ranking of development decision within eight industrial sectors(building materials,coking,food and drink,chemical engineering,paper rnaking,machinery and electrical appliance,textile, mining)has been concluded from the viewpoint of economic growth, energy saving and ambient air quality protection.
文摘To address air pollution and offer a convenient and comfortable living environment,the Chinese government launched a smart city pilot(SCP)project in 2012,accompanied by a comprehensive set of environmental and energy-related laws and regulations.Although academic interest in smart cities has surged,there remains a notable gap in empirical research exploring the economic,environmental,and energy effects of such initiatives.Taking 232 prefecture-level cities from 2003 to 2017 as research subjects,this study measures energy effi‐ciency by using energy consumption per unit of GDP and adopts a difference-in-differences(DID)analysis to investigate the impact of SCPs on energy efficiency.The empirical results indicate that SCPs improved energy efficiency by promoting urban technological innovation capabilities and green total factor productivity,and this effect was more pronounced in cities that were more dependent on traditional fossil fuel energy sources and had more developed fiscal and financial levels.Studying the impact of smart city construction on energy utilization efficiency in developing countries,such as China,is not only significantly enlightening for China’s green and low-carbon transition but also provides reference opinions for constructing smart cities and the path to enhancing energy efficiency in other developing countries.The findings provide valuable insights into the global development of smart cities,urban sustainability,and high-quality economic growth.
文摘Promoting the coordinated development of regional population,economy and environment is beneficial to the realization of sustainable development.Based on the construction of evaluation index system of coordinated development of systems,the entropy weight-TOPSIS method and coupling coordination model,the coordinated development degree of population,economy and environment system in Nanjing was measured,and the temporal variation characteristics of each subsystem and their coordinated development degree form 1997 to 2016 were analyzed.The results showed that the development of population,economy system and environment system in Nanjing was generally in a continuous upward trend.Among them,the economy system developed fastest.The coordinated development degree of population,economy system and environment system in Nanjing was constantly increasing but still at a low level;the degree was only in the primary coordination phase,and its type was environment lagging.The economy subsystem and environment subsystem were important factors restricting the development of population,economy and environment in Nanjing,and the main obstacle factor was the production of industrial solid waste.The results above can provide a scientific basis for promoting the coordinated development of population,economy and environment system in Nanjing and achieving regional sustainable development.
基金supported by the Australian Research Council (ARC) Discovery Project (DP220101139)support of the Australian Research Council (ARC) through Project DE220100530support of the Australian Research Council (ARC) through Project DE200100970
文摘The sustainable production of green hydrogen via water electrolysis necessitates cost-effective electrocatalysts.By following the circular economy principle,the utilization of waste-derived catalysts significantly promotes the sustainable development of green hydrogen energy.Currently,diverse waste-derived catalysts have exhibited excellent catalytic performance toward hydrogen evolution reaction(HER),oxygen evolution reaction(OER),and overall water electrolysis(OWE).Herein,we systematically examine recent achievements in waste-derived electrocatalysts for water electrolysis.The general principles of water electrolysis and design principles of efficient electrocatalysts are discussed,followed by the illustration of current strategies for transforming wastes into electrocatalysts.Then,applications of waste-derived catalysts(i.e.,carbon-based catalysts,transitional metal-based catalysts,and carbon-based heterostructure catalysts)in HER,OER,and OWE are reviewed successively.An emphasis is put on correlating the catalysts’structure-performance relationship.Also,challenges and research directions in this booming field are finally highlighted.This review would provide useful insights into the design,synthesis,and applications of waste-derived electrocatalysts,and thus accelerate the development of the circular economy-driven green hydrogen energy scheme.
基金supported by International Science & Technology Cooperation Program of China (2010DFA92720-07)
文摘Fossil energy is the material basis of human survival, economic development and social progress. The relationship between energy consumption and economic growth is becoming increasingly close. However, energy consumption is the major source of greenhouse gases, which can significantly affect the balance of the global ecosystem. It has become the common goal of countries worldwide to address climate change, reduce carbon dioxide emissions, and implement sustainable development strategies. In this study, we applied an approximate relationship analysis, a decoupling relationship analysis, and a trend analysis to explore the relationship between energy consumption and economic growth using data from Kazakhstan for the period of 1993-2010. The results demonstrated: (1) the total energy consumption and GDP in Kazakhstan showed a "U"-type curve from 1993 to 2010. This curve was observed because 1993-1999 was a period during which Kazakhstan transitioned from a republic to an independent country and experienced a difficult transition from a planned to a market economy. Then, the economic system became more stable and the industrial production increased rapidly because of the effective financial, monetary and industrial policy support from 2000 to 2010. (2) The relationships between energy con- sumption and carbon emissions, economic growth and energy exports were linked; the carbon emissions were mainly derived from energy consumption, and the dependence of economic growth on energy exports gradually increased from 1993 to 2010. Before 2000, the relationship between energy consumption and economic growth was in a recessional decoupling state because of the economic recession. After 2000, this relationship was in strong and weak decoupling states because the international crude oil prices rose and energy exports increased greatly year by year. (3) It is forecasted that Kazakhstan cannot achieve its goal of energy consumption by 2020. Therefore, a low-carbon economy is the best strategic choice to address climate change from a global perspective in Kazakhstan. Thus, we proposed strategies including the improvement of the energy consumption structure, the development of new energy and renewable energy, the use of cleaner production technologies, the adjustment and optimization of the industrial structure, and the expansion of forest areas.
基金Financial support from The National Natural Science Foundation of China(21875277)
文摘As the main inorganic component of human bones and teeth,hydroxyapatite(HAP)materials have been widely investigated for various applications especially in the biomedical field.Recently,HAP nanowires(HAP NWs)have attracted research interest in the energy and environment-related fields owing to their advantages such as excellent biocompatibility and bioactivity,high-thermal stability,surface modification and functionalization,and selfassembly to form nanoscale porous networked structure.In this review,we first briefly discuss the synthesis of HAP NWs.Then we focus on summarizing the foremost advances in energy and environment-related applications of HAP NWs,including the battery,solar energy-assisted water evaporation,light-driven self-propelled device,thermal insulation,fireresistant inorganic paper,water purification,air purification,molecular detection,superhydrophobic surface,and high-strength nanocomposite materials.In addition,the future research directions on HAP NWs and their energy and environmental applications are proposed.This review aims to provide inspiration and stimulate extensive future studies in the energy and environmental applications of HAP NWs and other inorganic NWs.
基金UK FCO GOF(PGI GCC 000012) and Chongqing Small town Programme (CSTC-2004AA7008)
文摘Chongqing is the largest municipality under the Chinese Central Government (MCG) in terms of administrative area and population and is now the most important economic and cultural center of the upper Yangtze River and Three Gorges area. The Three Gorges Dam project, one of the largest world infrastructure projects, causes a great deal of immigration to Chongqing and results in the rapid urbanization of the city, and it has brought in a great deal of environmental impact, which is a global concerned issue. This paper introduces the city profile of Chongqing municipality and its urbanization impact on energy and environment. The demand and the trend of energy consumption in built environment (building and transport) have been analysed. The living environment of Chongqing residents and the local energy efficient policy have been introduced. Finally the authors discuss the key issues of the sustainable urban development of Chongqing.
文摘The development of refractory industry is closely related with resource,energy and environment. In order to realize the sustainable development,China's refractory industry should comprehensively exploit and utilize the raw refractory materials because of the shortage of some refractory raw materials resources; adjust the structure of refractory products to meet the needs for energy-savings in high energy consumption industries and develop new energy-saving refractory materials to reduce the energy consumption during refractories manufacturing processes; adopt high performance chrome-free refractories and research the technologies of avoiding the formation of Cr6+ to minimize the negative impact on environment; utilize comprehensively the used refractory materials and reduce the mineral resource consumption,energy consumption,and waste solid emissions.
文摘The creation of national energy strategy cannot proceed without accurate projections of future electricity consumption;this is because EC is intimately tied to other forms of energy,such as oil and natural gas.For the purpose of determining and bettering overall energy consumption,there is an urgent requirement for accurate monitoring and calculation of EC at the building level using cutting-edge technology such as data analytics and the internet of things(IoT).Soft computing is a subset of AI that tries to design procedures that are more accurate and reliable,and it has proven to be an effective tool for solving a number of issues that are associated with the use of energy.The use of soft computing for energy prediction is an essential part of the solution to these kinds of challenges.This study presents an improved version of the Harris Hawks Optimization model by combining it with the IHHODL-ECP algorithm for use in Internet of Things settings.The IHHODL-ECP model that has been supplied acts as a useful instrument for the prediction of integrated energy consumption.In order for the raw electrical data to be compatible with the subsequent processing in the IHHODL-ECP model,it is necessary to perform a preprocessing step.The technique of prediction uses a combination of three different kinds of deep learning models,namely DNN,GRU,and DBN.In addition to this,the IHHO algorithm is used as a technique for making adjustments to the hyperparameters.The experimental result analysis of the IHHODL-ECP model is carried out under a variety of different aspects,and the comparison inquiry highlighted the advantages of the IHHODL-ECP model over other present approaches.According to the findings of the experiments conducted with an hourly time resolution,the IHHODL-ECP model obtained a MAPE value of 33.85,which was lower than those produced by the LR,LSTM,and CNN-LSTM models,which had MAPE values of 83.22,44.57,and 34.62 respectively.These findings provided evidence of the IHHODL-ECP model’s improved ability to provide accurate forecasts.
文摘Cattle dung, firewood, and crop straw have being used as survival necessities by farmers and herdsmen for thousands of years in Tibet. Until recently such biotic energy source still constitutes more than 92 per cent of total rural energy consumption due to lack of petroleum, coal and new alternative energy sources. As a result, environmental degradation such as land desertification, soil erosion, grassland degradation and soil fertility reduction is increasingly aggravated, the area of desertified land has increased 1467.5 km2 from 1991 to 1997. Degraded area of grassland has reached 2.60×107hm2, increased by 116.1% from 1987 to 1996. To prevent further deterioration of eco-environment in Tibet great efforts should be made to make full use of ample solar energy, wind energy and other biotic energy of the Qinghai-Tibet Plateau. The solar cooking stoves and solar hothouse, expand forest area and replace existing abiotic energy sources with firewood forest should be popularized. This is an urgent task to protect the eco-environment of Tibet today.
基金supported by Grant-in-Aid for Asian CORE Program"Manufacturing and Environmental Management in East Asia"of Japan Society for the Promotion of Science(JSPS)
文摘The purpose of this paper is to clarify the questions concerning stimulation of the innovation and the diffusion of energy saving or low-carbon.To do so,this paper explains using two cases of Japan-energy saving innovation after the Oil Shock and the eco points system.For the case after the oil shock,we explain the energy saving trend after the Oil Shock and the factors statistically.Then we put forward the business model for the low-carbon economy.Furthermore,we analyze the case of the eco points system from 2009-2011 in Japan and explain the significance of the business model for diffusion of the low-carbon products.
文摘In 2009,the pig iron output of China increased dramatically up to 543.75 Mt and was 15.87%higher than that in 2008,accounting for 60.53%of the world production.The processing of pig iron must consume huge amount of iron ores and coal and consequently leads to the shortage of ores and cokemaking coals supply,with prices soaring but quality worsening remarkably.How to maintain or even improve the efficiency of blast furnace production under negative conditions of constantly worsening resources of iron ore and coal has become an important scenario the Chinese ironmaking industry must face.In this paper,the production with high coal injection rate,low fuel rate and big productivity in the Wuhan Iron and Steel Corporation(Group) was introduced and revealed.The quantitative correlation between blast furnace production efficiency and diverse technical measures through combined mass-heat balances and gas-liquid counter-current flow dynamics analysis.Moreover,potential problems and countermeasures in ironmaking by feeding high Al_2O_3 and low grade iron ores were also discussed.
基金“2017 Light of Textiles” China Textile Industry Federation Higher Education Teaching Reform,China(No.2017BKJGLX201)
文摘Built Environment and Energy Application Engineering(BEEAE),namely Heating,Ventilating,Air Conditioning and Refrigerating(HVAC&R),is one of the international accreditation programs.Its knowledge system of professional theory and professional education in accredited engineering academic programs must meet the requirements of the relevant international engineering certification.In view of professional engineers and technicians training of BEEAE,the professional training programs and the knowledge system are compared and explored in line with the international certification criteria.This study compares the items and requirements of different international certification criteria,and summarizes the experienced methods of education training.The undergraduate education and training programs are then improved in accordance with the requirements from international certification criteria.The BEEAE education training schemes should combine the knowledge system of the national professional guidance standards with the items from international certification criteria.