The reduction of energy consumption is an increasingly important topic of the railway system.Energy-efficient train control(EETC)is one solution,which refers to mathematically computing when to accelerate,which cruisi...The reduction of energy consumption is an increasingly important topic of the railway system.Energy-efficient train control(EETC)is one solution,which refers to mathematically computing when to accelerate,which cruising speed to hold,how long one should coast over a suitable space,and when to brake.Most approaches in literature and industry greatly simplify a lot of nonlinear effects,such that they ignore mostly the losses due to energy conversion in traction components and auxiliaries.To fill this research gap,a series of increasingly detailed nonlinear losses is described and modelled.We categorize an increasing detail in this representation as four levels.We study the impact of those levels of detail on the energy optimal speed trajectory.To do this,a standard approach based on dynamic programming is used,given constraints on total travel time.This evaluation of multiple test cases highlights the influence of the dynamic losses and the power consumption of auxiliary components on railway trajectories,also compared to multiple benchmarks.The results show how the losses can make up 50%of the total energy consumption for an exemplary trip.Ignoring them would though result in consistent but limited errors in the optimal trajectory.Overall,more complex trajectories can result in less energy consumption when including the complexity of nonlinear losses than when a simpler model is considered.Those effects are stronger when the trajectory includes many acceleration and braking phases.展开更多
Recently,Multicore systems use Dynamic Voltage/Frequency Scaling(DV/FS)technology to allow the cores to operate with various voltage and/or frequencies than other cores to save power and enhance the performance.In thi...Recently,Multicore systems use Dynamic Voltage/Frequency Scaling(DV/FS)technology to allow the cores to operate with various voltage and/or frequencies than other cores to save power and enhance the performance.In this paper,an effective and reliable hybridmodel to reduce the energy and makespan in multicore systems is proposed.The proposed hybrid model enhances and integrates the greedy approach with dynamic programming to achieve optimal Voltage/Frequency(Vmin/F)levels.Then,the allocation process is applied based on the availableworkloads.The hybrid model consists of three stages.The first stage gets the optimum safe voltage while the second stage sets the level of energy efficiency,and finally,the third is the allocation stage.Experimental results on various benchmarks show that the proposed model can generate optimal solutions to save energy while minimizing the makespan penalty.Comparisons with other competitive algorithms show that the proposed model provides on average 48%improvements in energy-saving and achieves an 18%reduction in computation time while ensuring a high degree of system reliability.展开更多
Residential energy-efficiency measures, besides energy savings, provide opportunities for improvement of thermal comfort, air quality, lighting quality, and operation. However, all these benefits sometimes are not eno...Residential energy-efficiency measures, besides energy savings, provide opportunities for improvement of thermal comfort, air quality, lighting quality, and operation. However, all these benefits sometimes are not enough to convince a homeowner to pay the incremental cost associated with the energy-efficiency measure. The objective of this work is to develop a methodology for the economic evaluation of residential energy-efficiency measures that can simplify the economic analysis for the homeowner while taking into consideration all factors associated with the purchase, ownership, and selling of the house with the energy-efficiency measure. The methodology accounts for direct and indirect economic parameters associated to an energy-efficiency measure;direct parameters such as the mortgage interest and fuel price escalation rate, and indirect parameters such as savings account interest and marginal income tax rate. The methodology also considers different cases based on the service life of the energy-efficiency measure and loss of efficiency through a derating factor. To estimate the market value, the methodology uses the future energy cost savings instead of the cost of the EEM. Results from the methodology offer to homeowner annual net savings and net assets. The annual net savings gives the homeowner a measure of the annual positive cash flow that can be obtained from an energy-efficiency project;but more important, the net assets offer a measure of the added net wealth. To simplify and increase the use of the methodology by homeowners, the methodology has been implemented in an Excel tool that can be downloaded from the TxAIRE’s website.展开更多
To efficiently complete a complex computation task,the complex task should be decomposed into subcomputation tasks that run parallel in edge computing.Wireless Sensor Network(WSN)is a typical application of parallel c...To efficiently complete a complex computation task,the complex task should be decomposed into subcomputation tasks that run parallel in edge computing.Wireless Sensor Network(WSN)is a typical application of parallel computation.To achieve highly reliable parallel computation for wireless sensor network,the network's lifetime needs to be extended.Therefore,a proper task allocation strategy is needed to reduce the energy consumption and balance the load of the network.This paper proposes a task model and a cluster-based WSN model in edge computing.In our model,different tasks require different types of resources and different sensors provide different types of resources,so our model is heterogeneous,which makes the model more practical.Then we propose a task allocation algorithm that combines the Genetic Algorithm(GA)and the Ant Colony Optimization(ACO)algorithm.The algorithm concentrates on energy conservation and load balancing so that the lifetime of the network can be extended.The experimental result shows the algorithm's effectiveness and advantages in energy conservation and load balancing.展开更多
Wireless Sensor Network(WSN)consists of a group of limited energy source sensors that are installed in a particular region to collect data from the environment.Designing the energy-efficient data collection methods in...Wireless Sensor Network(WSN)consists of a group of limited energy source sensors that are installed in a particular region to collect data from the environment.Designing the energy-efficient data collection methods in largescale wireless sensor networks is considered to be a difficult area in the research.Sensor node clustering is a popular approach for WSN.Moreover,the sensor nodes are grouped to form clusters in a cluster-based WSN environment.The battery performance of the sensor nodes is likewise constrained.As a result,the energy efficiency of WSNs is critical.In specific,the energy usage is influenced by the loads on the sensor node as well as it ranges from the Base Station(BS).Therefore,energy efficiency and load balancing are very essential in WSN.In the proposed method,a novel Grey Wolf Improved Particle Swarm Optimization with Tabu Search Techniques(GW-IPSO-TS)was used.The selection of Cluster Heads(CHs)and routing path of every CH from the base station is enhanced by the proposed method.It provides the best routing path and increases the lifetime and energy efficiency of the network.End-to-end delay and packet loss rate have also been improved.The proposed GW-IPSO-TS method enhances the evaluation of alive nodes,dead nodes,network survival index,convergence rate,and standard deviation of sensor nodes.Compared to the existing algorithms,the proposed method outperforms better and improves the lifetime of the network.展开更多
The heating,ventilating,and air conditioning(HVAC)system consumes nearly 50%of the building’s energy,especially in Taiwan with a hot and humid climate.Due to the challenges in obtaining energy sources and the negativ...The heating,ventilating,and air conditioning(HVAC)system consumes nearly 50%of the building’s energy,especially in Taiwan with a hot and humid climate.Due to the challenges in obtaining energy sources and the negative impacts of excessive energy use on the environment,it is essential to employ an energy-efficient HVAC system.This study conducted the machine tools building in a university.The field measurement was carried out,and the data were used to conduct energymodelling with EnergyPlus(EP)in order to discover some improvements in energy-efficient design.The validation between fieldmeasurement and energymodelling was performed,and the error rate was less than 10%.The following strategies were proposed in this study based on several energy-efficient approaches,including room temperature settings,chilled water supply temperature settings,chiller coefficient of performance(COP),shading,and building location.Energy-efficient approaches have been evaluated and could reduce energy consumption annually.The results reveal that the proposed energy-efficient approaches of room temperature settings(3.8%),chilled water supply temperature settings(2.1%),chiller COP(5.9%),using shading(9.1%),and building location(3.0%),respectively,could reduce energy consumption.The analysis discovered that using a well-performing HVAC system and building shading were effective in lowering the amount of energy used,and the energy modelling method could be an effective and satisfactory tool in determining potential energy savings.展开更多
An energy-efficient heuristic mechanism is presented to obtain the optimal solution for the coverage problem in sensor networks. The mechanism can ensure that all targets are fully covered corresponding to their level...An energy-efficient heuristic mechanism is presented to obtain the optimal solution for the coverage problem in sensor networks. The mechanism can ensure that all targets are fully covered corresponding to their levels of importance at minimum cost, and the ant colony optimization algorithm (ACO) is adopted to achieve the above metrics. Based on the novel design of heuristic factors, artificial ants can adaptively detect the energy status and coverage ability of sensor networks via local information. By introducing the evaluation function to global pheromone updating rule, the pheromone trail on the best solution is greatly enhanced, so that the convergence process of the algorithm is speed up. Finally, the optimal solution with a higher coverage- efficiency and a longer lifetime is obtained.展开更多
Recent advancements in wireless communications have allowed the birth of novel wireless sensor networks(WSN).A sensor network comprises several micro-sensors deployed randomly in an area of interest.A micro-sensor is ...Recent advancements in wireless communications have allowed the birth of novel wireless sensor networks(WSN).A sensor network comprises several micro-sensors deployed randomly in an area of interest.A micro-sensor is provided with an energy resource to supply electricity to all of its components.However,the disposed energy resource is limited and battery replacement is generally infeasible.With this restriction,the sensors must conserve energy to prolong their lifetime.Various energy conservation strategies for WSNs have been presented in the literature,from the application to the physical layer.Most of these solutions focus only on optimizing a single layer in terms of energy consumption.In this research,a novel cross-layer technique for WSNs’effective energy usage is presented.Because most energy consumption factors exist in the Medium Access Control(MAC)layer and network layer,our EECLP protocol(Energy Efficient Cross-Layer Protocol for Wireless Sensor Networks)integrates these two layers to satisfy energy efficiency criteria.To gain access to the transmission channel,we implement a communication regime at the MAC layer based on CSMA/CA(Carrier Sense Multiple Access/Collision Avoidance)techniques.Next,depending on the activity and a standby period,we employ the RTS/CTS(Request to Send/Clear to Send)method to prevent collisions and resolve hidden node concerns by utilizing the network allocation vector(NAV)to calculate the transmission duration.Employing a greedy strategy,we establish chains amongst cluster members to mitigate the issue of high energy consumption in routing data.An objective function was utilized to determine the optimal cross-chain path based on the distances to the base station(BS)and residual energy(RE).The simulation,testing,and comparison of the proposed protocol to peer protocols have shown superior outcomes and a prolonged network lifespan.Using the suggested protocol,the network lifetime increases by 10%compared to FAMACO(Fuzzy and Ant Colony Optimization based MAC/Routing Cross-layer)protocol,and it increases by 90%and 95%compared to IFUC(Improved Fuzzy Unequal Clustering)and UHEED(Unequal Hybrid Energy Efficient and Distributed)protocols successively.展开更多
In order to improve the energy efficiency(EE)in cognitive radio(CR),this paper investigates the joint design of cooperative spectrum sensing time and the power control optimization problem for the secondary user syste...In order to improve the energy efficiency(EE)in cognitive radio(CR),this paper investigates the joint design of cooperative spectrum sensing time and the power control optimization problem for the secondary user systems to achieve the maximum energy efficiency in a cognitive network based on hybrid spectrum sharing,meanwhile considering the maximum transmit power,user quality of service(QoS)requirements,interference limitations,and primary user protection.The optimization of energy efficient sensing time and power allocation is formulated as a non-convex optimization problem.The Dinkelbach’s method is adopted to solve this problem and to transform the non-convex optimization problem in fractional form into an equivalent optimization problem in the form of subtraction.Then,an iterative power allocation algorithm is proposed to solve the optimization problem.The simulation results show the effectiveness of the proposed algorithms for energy-efficient resource allocation in the cognitive network.展开更多
UAV cooperative control has been applied in many complex UAV communication networks. It remains challenging to develop UAV cooperative coverage and UAV energy-efficient communication technology. In this paper, we inve...UAV cooperative control has been applied in many complex UAV communication networks. It remains challenging to develop UAV cooperative coverage and UAV energy-efficient communication technology. In this paper, we investigate current works about UAV coverage problem and propose a multi-UAV coverage model based on energy-efficient communication. The proposed model is decomposed into two steps: coverage maximization and power control, both are proved to be exact potential games(EPG) and have Nash equilibrium(NE) points. Then the multi-UAV energy-efficient coverage deployment algorithm based on spatial adaptive play(MUECD-SAP) is adopted to perform coverage maximization and power control, which guarantees optimal energy-efficient coverage deployment. Finally, simulation results show the effectiveness of our proposed approach, and confirm the reliability of proposed model.展开更多
Mobile Edge Computing(MEC)is promising to alleviate the computation and storage burdens for terminals in wireless networks.The huge energy consumption of MEC servers challenges the establishment of smart cities and th...Mobile Edge Computing(MEC)is promising to alleviate the computation and storage burdens for terminals in wireless networks.The huge energy consumption of MEC servers challenges the establishment of smart cities and their service time powered by rechargeable batteries.In addition,Orthogonal Multiple Access(OMA)technique cannot utilize limited spectrum resources fully and efficiently.Therefore,Non-Orthogonal Multiple Access(NOMA)-based energy-efficient task scheduling among MEC servers for delay-constraint mobile applications is important,especially in highly-dynamic vehicular edge computing networks.The various movement patterns of vehicles lead to unbalanced offloading requirements and different load pressure for MEC servers.Self-Imitation Learning(SIL)-based Deep Reinforcement Learning(DRL)has emerged as a promising machine learning technique to break through obstacles in various research fields,especially in time-varying networks.In this paper,we first introduce related MEC technologies in vehicular networks.Then,we propose an energy-efficient approach for task scheduling in vehicular edge computing networks based on DRL,with the purpose of both guaranteeing the task latency requirement for multiple users and minimizing total energy consumption of MEC servers.Numerical results demonstrate that the proposed algorithm outperforms other methods.展开更多
Recently,backscatter communication(BC)has been introduced as a green paradigm for Internet of Things(IoT).Meanwhile,unmanned aerial vehicles(UAVs)can serve as aerial base stations(BSs)to enhance the performance of BC ...Recently,backscatter communication(BC)has been introduced as a green paradigm for Internet of Things(IoT).Meanwhile,unmanned aerial vehicles(UAVs)can serve as aerial base stations(BSs)to enhance the performance of BC system thanks to their high mobility and flexibility.In this paper,we investigate the problem of energy efficiency(EE)for an energy-limited backscatter communication(BC)network,where backscatter devices(BDs)on the ground harvest energy from the wireless signal of a flying rotary-wing quadrotor.Specifically,we first reformulate the EE optimization problem as a Markov decision process(MDP)and then propose a deep reinforcement learning(DRL)algorithm to design the UAV trajectory with the constraints of the BD scheduling,the power reflection coefficients,the transmission power,and the fairness among BDs.Simulation results show the proposed DRL algorithm achieves close-to-optimal performance and significant EE gains compared to the benchmark schemes.展开更多
In the coexisted world of 3G,4G,5G and many other specialized wireless communication systems,billions of connections could be existing for various information transmission types.Unluckily,data show that the increase o...In the coexisted world of 3G,4G,5G and many other specialized wireless communication systems,billions of connections could be existing for various information transmission types.Unluckily,data show that the increase of network capacity is heavily more than the increase of the network energy efficiency in recent years,which could lead to more energy consumption per transmitted bit in the future network.As basic units in mobile communication systems,microwave/RF components and modules play key roles展开更多
Cloud computing infrastructure has been evolving as a cost-effective platform for providing computational resources in the form of high-performance computing as a service(HPCaaS)to users for executing HPC applications...Cloud computing infrastructure has been evolving as a cost-effective platform for providing computational resources in the form of high-performance computing as a service(HPCaaS)to users for executing HPC applications.However,the broader use of the Cloud services,the rapid increase in the size,and the capacity of Cloud data centers bring a remarkable rise in energy consumption leading to a significant rise in the system provider expenses and carbon emissions in the environment.Besides this,users have become more demanding in terms of Quality-of-service(QoS)expectations in terms of execution time,budget cost,utilization,and makespan.This situation calls for the design of task scheduling policy,which ensures efficient task sequencing and allocation of computing resources to tasks to meet the trade-off between QoS promises and service provider requirements.Moreover,the task scheduling in the Cloud is a prevalent NP-Hard problem.Motivated by these concerns,this paper introduces and implements a QoS-aware Energy-Efficient Scheduling policy called as CSPSO,for scheduling tasks in Cloud systems to reduce the energy consumption of cloud resources and minimize the makespan of workload.The proposed multi-objective CSPSO policy hybridizes the search qualities of two robust metaheuristics viz.cuckoo search(CS)and particle swarm optimization(PSO)to overcome the slow convergence and lack of diversity of standard CS algorithm.A fitness-aware resource allocation(FARA)heuristic was developed and used by the proposed policy to allocate resources to tasks efficiently.A velocity update mechanism for cuckoo individuals is designed and incorporated in the proposed CSPSO policy.Further,the proposed scheduling policy has been implemented in the CloudSim simulator and tested with real supercomputing workload traces.The comparative analysis validated that the proposed scheduling policy can produce efficient schedules with better performance over other well-known heuristics and meta-heuristics scheduling policies.展开更多
In wireless sensor networks(WSNs),nodes are usually powered by batteries.Since the energy consumption directly impacts the network lifespan,energy saving is a vital issue in WSNs,especially in the designing phase of c...In wireless sensor networks(WSNs),nodes are usually powered by batteries.Since the energy consumption directly impacts the network lifespan,energy saving is a vital issue in WSNs,especially in the designing phase of cryptographic algorithms.As a complementary mechanism,reputation has been applied to WSNs.Different from most reputation schemes that were based on beta distribution,negative multinomial distribution was deduced and its feasibility in the reputation modeling was proved.Through comparison tests with beta distribution based reputation in terms of the update computation,results show that the proposed method in this research is more energy-efficient for the reputation update and thus can better prolong the lifespan of WSNs.展开更多
This paper presents a co-time co-frequency fullduplex(CCFD)massive multiple-input multiple-output(MIMO)system to meet high spectrum efficiency requirements for beyond the fifth-generation(5G)and the forthcoming the si...This paper presents a co-time co-frequency fullduplex(CCFD)massive multiple-input multiple-output(MIMO)system to meet high spectrum efficiency requirements for beyond the fifth-generation(5G)and the forthcoming the sixth-generation(6G)networks.To achieve equilibrium of energy consumption,system resource utilization,and overall transmission capacity,an energy-efficient resource management strategy concerning power allocation and antenna selection is designed.A continuous quantum-inspired termite colony optimization(CQTCO)algorithm is proposed as a solution to the resource management considering the communication reliability while promoting energy conservation for the CCFD massive MIMO system.The effectiveness of CQTCO compared with other algorithms is evaluated through simulations.The results reveal that the proposed resource management scheme under CQTCO can obtain a superior performance in different communication scenarios,which can be considered as an eco-friendly solution for promoting reliable and efficient communication in future wireless networks.展开更多
In order to resolve the relay selection problem in wireless mobile relay networks (WMRNs), a novel balanced energy-efficient mobile relay selection scheme is proposed in this paper. Compared with traditional counter...In order to resolve the relay selection problem in wireless mobile relay networks (WMRNs), a novel balanced energy-efficient mobile relay selection scheme is proposed in this paper. Compared with traditional counter-based algorithm, distance and energy consumption are considered from network respect to provide a better network lifetime performance in the proposed scheme. Also, it performs well when nodes move freely at high speed. A random assessment delay (RAD) mechanism is added to avoid collisions and improve transmission efficiency. Simulation results reveal that, the proposed scheme has advantages in prolonging network lifetime, balancing energy compared with existing counter-based scheme. consumption and reducing the total energy consumption展开更多
How to energy-efficiently maintain the topology of wireless sensor networks(WSNs) is still a difficult problem because of their numerous nodes,highly dynamic nature,varied application scenarios and limited resources.A...How to energy-efficiently maintain the topology of wireless sensor networks(WSNs) is still a difficult problem because of their numerous nodes,highly dynamic nature,varied application scenarios and limited resources.An energy-efficient multi-mode clusters maintenance(M2CM) method is proposed based on localized and event-driven mechanism in this work,which is different from the conventional clusters maintenance model with always periodically re-clustered among the whole network style based on time-trigger for hierarchical WSNs.M2 CM can meet such demands of clusters maintenance as adaptive local maintenance for the damaged clusters according to its changes in time and space field.,the triggers of M2 CM include such events as nodes' residual energy being under the threshold,the load imbalance of cluster head,joining in or exiting from any cluster for new node or disable one,etc.Based on neighboring relationship of the damaged clusters,one can start a single cluster(inner-cluster) maintenance or clusters(inter-cluster) maintenance program to meet diverse demands in the topology management of hierarchical WSNs.The experiment results based on NS2 simulation show that the proposed method can significantly save energy used in maintaining a damaged network,effectively narrow down the influenced area of clusters maintenance,and increase transmitted data and prolong lifetime of network compared to the traditional schemes.展开更多
This paper solves an energy-efficient optimization problem of a fixed-wing unmanned aerial vehicle(UAV) assisted full-duplex mobile relaying in maritime communication environments.Taking the speed and the acceleration...This paper solves an energy-efficient optimization problem of a fixed-wing unmanned aerial vehicle(UAV) assisted full-duplex mobile relaying in maritime communication environments.Taking the speed and the acceleration of the UAV and the information-causality constraints into consideration,the energy-efficiency of the system under investigation is maximized by jointly optimizing the UAV’s trajectory and the individual transmit power levels of the source and the UAV relay nodes.The optimization problem is non-convex and thus cannot be solved directly.Therefore,it is decoupled into two subproblems.One sub-problem is for the transmit power control at the source and the UAV relay nodes,and the other aims at optimizing the UAV s flight trajectory.By using the Lagrangian dual and Dinkelbach methods,the two sub-problems are solved,leading to an iterative algorithm for the joint design of transmit power control and trajectory optimization.Computer simulations demonstrated that by conducting the proposed algorithm,the flight trajectory of the UAV and the individual transmit power levels of the nodes can be flexibly adjusted according to the system conditions,and the proposed algorithm can achieve signiflcantly higher energy efficiency as compared with the other benchmark schemes.展开更多
High computational energy-efficiency and rapid real-timeresponse are the major concerns for applications of artificial intelligencein low-power mobile and Internet of Things deviceswith limited storage capacity. Due t...High computational energy-efficiency and rapid real-timeresponse are the major concerns for applications of artificial intelligencein low-power mobile and Internet of Things deviceswith limited storage capacity. Due to the outstanding superiorityof less memory requirement, low computation overheadand negligible accuracy degradation, deep neural networkswith binary/ternary weights (BTNNs) have been widely adoptedto replace traditional full-precision neural networks.展开更多
基金supported by Swiss Federal Office of Transport,the ETH foundation and via the grant RAILPOWER.
文摘The reduction of energy consumption is an increasingly important topic of the railway system.Energy-efficient train control(EETC)is one solution,which refers to mathematically computing when to accelerate,which cruising speed to hold,how long one should coast over a suitable space,and when to brake.Most approaches in literature and industry greatly simplify a lot of nonlinear effects,such that they ignore mostly the losses due to energy conversion in traction components and auxiliaries.To fill this research gap,a series of increasingly detailed nonlinear losses is described and modelled.We categorize an increasing detail in this representation as four levels.We study the impact of those levels of detail on the energy optimal speed trajectory.To do this,a standard approach based on dynamic programming is used,given constraints on total travel time.This evaluation of multiple test cases highlights the influence of the dynamic losses and the power consumption of auxiliary components on railway trajectories,also compared to multiple benchmarks.The results show how the losses can make up 50%of the total energy consumption for an exemplary trip.Ignoring them would though result in consistent but limited errors in the optimal trajectory.Overall,more complex trajectories can result in less energy consumption when including the complexity of nonlinear losses than when a simpler model is considered.Those effects are stronger when the trajectory includes many acceleration and braking phases.
文摘Recently,Multicore systems use Dynamic Voltage/Frequency Scaling(DV/FS)technology to allow the cores to operate with various voltage and/or frequencies than other cores to save power and enhance the performance.In this paper,an effective and reliable hybridmodel to reduce the energy and makespan in multicore systems is proposed.The proposed hybrid model enhances and integrates the greedy approach with dynamic programming to achieve optimal Voltage/Frequency(Vmin/F)levels.Then,the allocation process is applied based on the availableworkloads.The hybrid model consists of three stages.The first stage gets the optimum safe voltage while the second stage sets the level of energy efficiency,and finally,the third is the allocation stage.Experimental results on various benchmarks show that the proposed model can generate optimal solutions to save energy while minimizing the makespan penalty.Comparisons with other competitive algorithms show that the proposed model provides on average 48%improvements in energy-saving and achieves an 18%reduction in computation time while ensuring a high degree of system reliability.
文摘Residential energy-efficiency measures, besides energy savings, provide opportunities for improvement of thermal comfort, air quality, lighting quality, and operation. However, all these benefits sometimes are not enough to convince a homeowner to pay the incremental cost associated with the energy-efficiency measure. The objective of this work is to develop a methodology for the economic evaluation of residential energy-efficiency measures that can simplify the economic analysis for the homeowner while taking into consideration all factors associated with the purchase, ownership, and selling of the house with the energy-efficiency measure. The methodology accounts for direct and indirect economic parameters associated to an energy-efficiency measure;direct parameters such as the mortgage interest and fuel price escalation rate, and indirect parameters such as savings account interest and marginal income tax rate. The methodology also considers different cases based on the service life of the energy-efficiency measure and loss of efficiency through a derating factor. To estimate the market value, the methodology uses the future energy cost savings instead of the cost of the EEM. Results from the methodology offer to homeowner annual net savings and net assets. The annual net savings gives the homeowner a measure of the annual positive cash flow that can be obtained from an energy-efficiency project;but more important, the net assets offer a measure of the added net wealth. To simplify and increase the use of the methodology by homeowners, the methodology has been implemented in an Excel tool that can be downloaded from the TxAIRE’s website.
基金supported by Postdoctoral Science Foundation of China(No.2021M702441)National Natural Science Foundation of China(No.61871283)。
文摘To efficiently complete a complex computation task,the complex task should be decomposed into subcomputation tasks that run parallel in edge computing.Wireless Sensor Network(WSN)is a typical application of parallel computation.To achieve highly reliable parallel computation for wireless sensor network,the network's lifetime needs to be extended.Therefore,a proper task allocation strategy is needed to reduce the energy consumption and balance the load of the network.This paper proposes a task model and a cluster-based WSN model in edge computing.In our model,different tasks require different types of resources and different sensors provide different types of resources,so our model is heterogeneous,which makes the model more practical.Then we propose a task allocation algorithm that combines the Genetic Algorithm(GA)and the Ant Colony Optimization(ACO)algorithm.The algorithm concentrates on energy conservation and load balancing so that the lifetime of the network can be extended.The experimental result shows the algorithm's effectiveness and advantages in energy conservation and load balancing.
基金The authors extend their appreciation to the Deanship of Scientific Research at King Khalid University for funding this work through Larg Groups project Under Grant Number(71/43)Princess Nourah bint Abdulrahman University Researchers Supporting Project Number(PNURSP2022R238)Princess Nourah bint Abdulrahman University,Riyadh,Saudi Arabia.The authors would like to thank the Deanship of Scientific Research at Umm Al-Qura University for supporting this work by Grant Code:22UQU4340237DSR20.
文摘Wireless Sensor Network(WSN)consists of a group of limited energy source sensors that are installed in a particular region to collect data from the environment.Designing the energy-efficient data collection methods in largescale wireless sensor networks is considered to be a difficult area in the research.Sensor node clustering is a popular approach for WSN.Moreover,the sensor nodes are grouped to form clusters in a cluster-based WSN environment.The battery performance of the sensor nodes is likewise constrained.As a result,the energy efficiency of WSNs is critical.In specific,the energy usage is influenced by the loads on the sensor node as well as it ranges from the Base Station(BS).Therefore,energy efficiency and load balancing are very essential in WSN.In the proposed method,a novel Grey Wolf Improved Particle Swarm Optimization with Tabu Search Techniques(GW-IPSO-TS)was used.The selection of Cluster Heads(CHs)and routing path of every CH from the base station is enhanced by the proposed method.It provides the best routing path and increases the lifetime and energy efficiency of the network.End-to-end delay and packet loss rate have also been improved.The proposed GW-IPSO-TS method enhances the evaluation of alive nodes,dead nodes,network survival index,convergence rate,and standard deviation of sensor nodes.Compared to the existing algorithms,the proposed method outperforms better and improves the lifetime of the network.
基金support by the Ministry of Science and Technology under Grant No.MOST 108-2622-E-169-006-CC3.
文摘The heating,ventilating,and air conditioning(HVAC)system consumes nearly 50%of the building’s energy,especially in Taiwan with a hot and humid climate.Due to the challenges in obtaining energy sources and the negative impacts of excessive energy use on the environment,it is essential to employ an energy-efficient HVAC system.This study conducted the machine tools building in a university.The field measurement was carried out,and the data were used to conduct energymodelling with EnergyPlus(EP)in order to discover some improvements in energy-efficient design.The validation between fieldmeasurement and energymodelling was performed,and the error rate was less than 10%.The following strategies were proposed in this study based on several energy-efficient approaches,including room temperature settings,chilled water supply temperature settings,chiller coefficient of performance(COP),shading,and building location.Energy-efficient approaches have been evaluated and could reduce energy consumption annually.The results reveal that the proposed energy-efficient approaches of room temperature settings(3.8%),chilled water supply temperature settings(2.1%),chiller COP(5.9%),using shading(9.1%),and building location(3.0%),respectively,could reduce energy consumption.The analysis discovered that using a well-performing HVAC system and building shading were effective in lowering the amount of energy used,and the energy modelling method could be an effective and satisfactory tool in determining potential energy savings.
基金The Natural Science Foundation of Jiangsu Province(NoBK2005409)
文摘An energy-efficient heuristic mechanism is presented to obtain the optimal solution for the coverage problem in sensor networks. The mechanism can ensure that all targets are fully covered corresponding to their levels of importance at minimum cost, and the ant colony optimization algorithm (ACO) is adopted to achieve the above metrics. Based on the novel design of heuristic factors, artificial ants can adaptively detect the energy status and coverage ability of sensor networks via local information. By introducing the evaluation function to global pheromone updating rule, the pheromone trail on the best solution is greatly enhanced, so that the convergence process of the algorithm is speed up. Finally, the optimal solution with a higher coverage- efficiency and a longer lifetime is obtained.
基金This research was partially funded by the Algerian National Agency of Research and Development(DGRSDT-PRFU Project Number C00L07UN010120200001)The research was also partially funded by Mohammed Bin Rashid Smart Learning Program,United Arab Emirates(MBRSLP/06/23).
文摘Recent advancements in wireless communications have allowed the birth of novel wireless sensor networks(WSN).A sensor network comprises several micro-sensors deployed randomly in an area of interest.A micro-sensor is provided with an energy resource to supply electricity to all of its components.However,the disposed energy resource is limited and battery replacement is generally infeasible.With this restriction,the sensors must conserve energy to prolong their lifetime.Various energy conservation strategies for WSNs have been presented in the literature,from the application to the physical layer.Most of these solutions focus only on optimizing a single layer in terms of energy consumption.In this research,a novel cross-layer technique for WSNs’effective energy usage is presented.Because most energy consumption factors exist in the Medium Access Control(MAC)layer and network layer,our EECLP protocol(Energy Efficient Cross-Layer Protocol for Wireless Sensor Networks)integrates these two layers to satisfy energy efficiency criteria.To gain access to the transmission channel,we implement a communication regime at the MAC layer based on CSMA/CA(Carrier Sense Multiple Access/Collision Avoidance)techniques.Next,depending on the activity and a standby period,we employ the RTS/CTS(Request to Send/Clear to Send)method to prevent collisions and resolve hidden node concerns by utilizing the network allocation vector(NAV)to calculate the transmission duration.Employing a greedy strategy,we establish chains amongst cluster members to mitigate the issue of high energy consumption in routing data.An objective function was utilized to determine the optimal cross-chain path based on the distances to the base station(BS)and residual energy(RE).The simulation,testing,and comparison of the proposed protocol to peer protocols have shown superior outcomes and a prolonged network lifespan.Using the suggested protocol,the network lifetime increases by 10%compared to FAMACO(Fuzzy and Ant Colony Optimization based MAC/Routing Cross-layer)protocol,and it increases by 90%and 95%compared to IFUC(Improved Fuzzy Unequal Clustering)and UHEED(Unequal Hybrid Energy Efficient and Distributed)protocols successively.
基金supported in part by the National Natural Science Foundation of China for Young Scholars under Grant No.61701167Young Elite Backbone Teachers in Blue and Blue Project of Jiangsu Province, China
文摘In order to improve the energy efficiency(EE)in cognitive radio(CR),this paper investigates the joint design of cooperative spectrum sensing time and the power control optimization problem for the secondary user systems to achieve the maximum energy efficiency in a cognitive network based on hybrid spectrum sharing,meanwhile considering the maximum transmit power,user quality of service(QoS)requirements,interference limitations,and primary user protection.The optimization of energy efficient sensing time and power allocation is formulated as a non-convex optimization problem.The Dinkelbach’s method is adopted to solve this problem and to transform the non-convex optimization problem in fractional form into an equivalent optimization problem in the form of subtraction.Then,an iterative power allocation algorithm is proposed to solve the optimization problem.The simulation results show the effectiveness of the proposed algorithms for energy-efficient resource allocation in the cognitive network.
基金supported by the National Natural Science Foundation of China under Grant No. 61771488in part by the Natural Science Foundation for Distinguished Young Scholars of Jiangsu Province under Grant No. BK20160034+1 种基金 in part by the Open Research Foundation of Science and Technology on Communication Networks Laboratorythe Guang Xi Universities Key Laboratory Fund of Embedded Technology and Intelligent System (Guilin University of Technology)
文摘UAV cooperative control has been applied in many complex UAV communication networks. It remains challenging to develop UAV cooperative coverage and UAV energy-efficient communication technology. In this paper, we investigate current works about UAV coverage problem and propose a multi-UAV coverage model based on energy-efficient communication. The proposed model is decomposed into two steps: coverage maximization and power control, both are proved to be exact potential games(EPG) and have Nash equilibrium(NE) points. Then the multi-UAV energy-efficient coverage deployment algorithm based on spatial adaptive play(MUECD-SAP) is adopted to perform coverage maximization and power control, which guarantees optimal energy-efficient coverage deployment. Finally, simulation results show the effectiveness of our proposed approach, and confirm the reliability of proposed model.
基金supported in part by the National Natural Science Foundation of China under Grant 61971084 and Grant 62001073in part by the National Natural Science Foundation of Chongqing under Grant cstc2019jcyj-msxmX0208in part by the open research fund of National Mobile Communications Research Laboratory,Southeast University,under Grant 2020D05.
文摘Mobile Edge Computing(MEC)is promising to alleviate the computation and storage burdens for terminals in wireless networks.The huge energy consumption of MEC servers challenges the establishment of smart cities and their service time powered by rechargeable batteries.In addition,Orthogonal Multiple Access(OMA)technique cannot utilize limited spectrum resources fully and efficiently.Therefore,Non-Orthogonal Multiple Access(NOMA)-based energy-efficient task scheduling among MEC servers for delay-constraint mobile applications is important,especially in highly-dynamic vehicular edge computing networks.The various movement patterns of vehicles lead to unbalanced offloading requirements and different load pressure for MEC servers.Self-Imitation Learning(SIL)-based Deep Reinforcement Learning(DRL)has emerged as a promising machine learning technique to break through obstacles in various research fields,especially in time-varying networks.In this paper,we first introduce related MEC technologies in vehicular networks.Then,we propose an energy-efficient approach for task scheduling in vehicular edge computing networks based on DRL,with the purpose of both guaranteeing the task latency requirement for multiple users and minimizing total energy consumption of MEC servers.Numerical results demonstrate that the proposed algorithm outperforms other methods.
基金the National Natural Science Foundation of China 61661021,61971191,61902214,and 61871321,in part by the Beijing Natural Science Foundation under Grant L182018,in part by the National Science and Technology Major Project of the Ministry of Science and Technology of China under Grant 2016ZX03001014-006in part by the open project of Shanghai Institute of Microsystem and Information Technology(20190910)+1 种基金in part by the Key project of Natural Science Foundation of Jiangxi Province(20202ACBL202006)in part by the open project of Key Laboratory of Wireless Sensor Network&Communication,Shanghai Institute of Microsystem and Information Technology,Chinese Academy of Sciences,865 Changning Road,Shanghai 200050 China,and in part by the Tsinghua University Initiative Scientific Research Program 2019Z08QCX19.
文摘Recently,backscatter communication(BC)has been introduced as a green paradigm for Internet of Things(IoT).Meanwhile,unmanned aerial vehicles(UAVs)can serve as aerial base stations(BSs)to enhance the performance of BC system thanks to their high mobility and flexibility.In this paper,we investigate the problem of energy efficiency(EE)for an energy-limited backscatter communication(BC)network,where backscatter devices(BDs)on the ground harvest energy from the wireless signal of a flying rotary-wing quadrotor.Specifically,we first reformulate the EE optimization problem as a Markov decision process(MDP)and then propose a deep reinforcement learning(DRL)algorithm to design the UAV trajectory with the constraints of the BD scheduling,the power reflection coefficients,the transmission power,and the fairness among BDs.Simulation results show the proposed DRL algorithm achieves close-to-optimal performance and significant EE gains compared to the benchmark schemes.
文摘In the coexisted world of 3G,4G,5G and many other specialized wireless communication systems,billions of connections could be existing for various information transmission types.Unluckily,data show that the increase of network capacity is heavily more than the increase of the network energy efficiency in recent years,which could lead to more energy consumption per transmitted bit in the future network.As basic units in mobile communication systems,microwave/RF components and modules play key roles
文摘Cloud computing infrastructure has been evolving as a cost-effective platform for providing computational resources in the form of high-performance computing as a service(HPCaaS)to users for executing HPC applications.However,the broader use of the Cloud services,the rapid increase in the size,and the capacity of Cloud data centers bring a remarkable rise in energy consumption leading to a significant rise in the system provider expenses and carbon emissions in the environment.Besides this,users have become more demanding in terms of Quality-of-service(QoS)expectations in terms of execution time,budget cost,utilization,and makespan.This situation calls for the design of task scheduling policy,which ensures efficient task sequencing and allocation of computing resources to tasks to meet the trade-off between QoS promises and service provider requirements.Moreover,the task scheduling in the Cloud is a prevalent NP-Hard problem.Motivated by these concerns,this paper introduces and implements a QoS-aware Energy-Efficient Scheduling policy called as CSPSO,for scheduling tasks in Cloud systems to reduce the energy consumption of cloud resources and minimize the makespan of workload.The proposed multi-objective CSPSO policy hybridizes the search qualities of two robust metaheuristics viz.cuckoo search(CS)and particle swarm optimization(PSO)to overcome the slow convergence and lack of diversity of standard CS algorithm.A fitness-aware resource allocation(FARA)heuristic was developed and used by the proposed policy to allocate resources to tasks efficiently.A velocity update mechanism for cuckoo individuals is designed and incorporated in the proposed CSPSO policy.Further,the proposed scheduling policy has been implemented in the CloudSim simulator and tested with real supercomputing workload traces.The comparative analysis validated that the proposed scheduling policy can produce efficient schedules with better performance over other well-known heuristics and meta-heuristics scheduling policies.
基金National Natural Science Foundations of China (No.61073177,60905037)
文摘In wireless sensor networks(WSNs),nodes are usually powered by batteries.Since the energy consumption directly impacts the network lifespan,energy saving is a vital issue in WSNs,especially in the designing phase of cryptographic algorithms.As a complementary mechanism,reputation has been applied to WSNs.Different from most reputation schemes that were based on beta distribution,negative multinomial distribution was deduced and its feasibility in the reputation modeling was proved.Through comparison tests with beta distribution based reputation in terms of the update computation,results show that the proposed method in this research is more energy-efficient for the reputation update and thus can better prolong the lifespan of WSNs.
基金supported by the Ph.D.Student Research and Innovation Fund of the Fundamental Research Funds for the Central Universities(3072020GIP0803)Heilongjiang Province Key Laboratory Fund of High Accuracy Satellite Navigation and Marine Application Laboratory(HKL-2020-Y01)+2 种基金the National Natural Science Foundation of China(61571149)the Initiation Fund for Postdoctoral Research in Heilongjiang Province(LBH-Q19098)the Key Laboratory of Advanced Marine Communication and Information Technology,Ministry of Industry and Information Technology。
文摘This paper presents a co-time co-frequency fullduplex(CCFD)massive multiple-input multiple-output(MIMO)system to meet high spectrum efficiency requirements for beyond the fifth-generation(5G)and the forthcoming the sixth-generation(6G)networks.To achieve equilibrium of energy consumption,system resource utilization,and overall transmission capacity,an energy-efficient resource management strategy concerning power allocation and antenna selection is designed.A continuous quantum-inspired termite colony optimization(CQTCO)algorithm is proposed as a solution to the resource management considering the communication reliability while promoting energy conservation for the CCFD massive MIMO system.The effectiveness of CQTCO compared with other algorithms is evaluated through simulations.The results reveal that the proposed resource management scheme under CQTCO can obtain a superior performance in different communication scenarios,which can be considered as an eco-friendly solution for promoting reliable and efficient communication in future wireless networks.
基金Supported by the National High Technology Research and Development Programme of China (No. 2007AA01Z221, 2009AA01Z246) and the National Natural Science Foundation of China (No. 60832009).
文摘In order to resolve the relay selection problem in wireless mobile relay networks (WMRNs), a novel balanced energy-efficient mobile relay selection scheme is proposed in this paper. Compared with traditional counter-based algorithm, distance and energy consumption are considered from network respect to provide a better network lifetime performance in the proposed scheme. Also, it performs well when nodes move freely at high speed. A random assessment delay (RAD) mechanism is added to avoid collisions and improve transmission efficiency. Simulation results reveal that, the proposed scheme has advantages in prolonging network lifetime, balancing energy compared with existing counter-based scheme. consumption and reducing the total energy consumption
基金supported by the National Natural Science Foundation of China(Grant No.61170219)the Joint Research Foundation of the Ministry of Education of the People’s Republic of China and China Mobile(Grant No.MCM20150202)the Science and Technology Project Affiliated to Chongqing Education Commission(KJ1602201)
文摘How to energy-efficiently maintain the topology of wireless sensor networks(WSNs) is still a difficult problem because of their numerous nodes,highly dynamic nature,varied application scenarios and limited resources.An energy-efficient multi-mode clusters maintenance(M2CM) method is proposed based on localized and event-driven mechanism in this work,which is different from the conventional clusters maintenance model with always periodically re-clustered among the whole network style based on time-trigger for hierarchical WSNs.M2 CM can meet such demands of clusters maintenance as adaptive local maintenance for the damaged clusters according to its changes in time and space field.,the triggers of M2 CM include such events as nodes' residual energy being under the threshold,the load imbalance of cluster head,joining in or exiting from any cluster for new node or disable one,etc.Based on neighboring relationship of the damaged clusters,one can start a single cluster(inner-cluster) maintenance or clusters(inter-cluster) maintenance program to meet diverse demands in the topology management of hierarchical WSNs.The experiment results based on NS2 simulation show that the proposed method can significantly save energy used in maintaining a damaged network,effectively narrow down the influenced area of clusters maintenance,and increase transmitted data and prolong lifetime of network compared to the traditional schemes.
基金National Natural Science Foundation of China(No.61871241)Nantong Science and Technology Project(JC2019114,JC2021129).
文摘This paper solves an energy-efficient optimization problem of a fixed-wing unmanned aerial vehicle(UAV) assisted full-duplex mobile relaying in maritime communication environments.Taking the speed and the acceleration of the UAV and the information-causality constraints into consideration,the energy-efficiency of the system under investigation is maximized by jointly optimizing the UAV’s trajectory and the individual transmit power levels of the source and the UAV relay nodes.The optimization problem is non-convex and thus cannot be solved directly.Therefore,it is decoupled into two subproblems.One sub-problem is for the transmit power control at the source and the UAV relay nodes,and the other aims at optimizing the UAV s flight trajectory.By using the Lagrangian dual and Dinkelbach methods,the two sub-problems are solved,leading to an iterative algorithm for the joint design of transmit power control and trajectory optimization.Computer simulations demonstrated that by conducting the proposed algorithm,the flight trajectory of the UAV and the individual transmit power levels of the nodes can be flexibly adjusted according to the system conditions,and the proposed algorithm can achieve signiflcantly higher energy efficiency as compared with the other benchmark schemes.
文摘High computational energy-efficiency and rapid real-timeresponse are the major concerns for applications of artificial intelligencein low-power mobile and Internet of Things deviceswith limited storage capacity. Due to the outstanding superiorityof less memory requirement, low computation overheadand negligible accuracy degradation, deep neural networkswith binary/ternary weights (BTNNs) have been widely adoptedto replace traditional full-precision neural networks.